
Critical Analysis of Computer Science
Methodology: Theory

Björn Lisper
Dept. of Computer Science and Engineering

Mälardalen University

bjorn.lisper@mdh.se
http://www.idt.mdh.se/˜blr/

March 3, 2004

Critical Analysis of CS Methodology: Theory

Introduction

Famous quote: “There’s nothing as useful as a good theory”

However, some caution is advisable. Some relevant questions:

� Is the theory accurate enough?

� Is the theory powerful enough to describe anything interesting?

� Can the theory be used for other than toy systems?

We will use formal verification of system properties to exemplify

Critical Analysis of CS Methodology: Theory 1

Is the Theory Accurate Enough?

A theory is always limited by its axioms

If the axioms are not in full accordance with the system being modeled, then
there will be aspects of the system that the theory will not describe

Such aspects may affect the practical functionality of the system

In reality, any theory has to be approximative to some extent (or it would be
too complex to be useful anyway)

Thus, formal proofs of system properties should be viewed with some
precaution

Critical Analysis of CS Methodology: Theory 2

Example: Programming Language Semantics

A programming language might be given a formal semantics

Proofs of properties of programs, written in the language, can then be
carried out

For instance, a program can be proven correct w.r.t. some crucial property

Naïvely interpreted, such a program cannot go wrong

However, there are often aspects that the semantics does not cover

A proof of correctness cannot guarantee absence of errors for aspects not
covered by the semantics

Critical Analysis of CS Methodology: Theory 3

For instance, semantics for functions often assume that recursive calls can
be made to arbitrary depth

This would require an unbounded memory size to store the call stack

But a computer only has a finite, limited memory!

As a consequence, some programs may run out of space even though the
semantics says they are correct

Particularly nasty for reactive systems (servers, embedded control systems,

� � �), which are supposed to run forever

Critical Analysis of CS Methodology: Theory 4

Is the Theory Powerful Enough?

Some theories allow exact reasoning and automatic proof methods

In such a theory, everything can be proved by an automatic tool!

An example is model checking:

Model checking works over some finite state model describing a system,
and a logical formula specifying some property of the system

If the formula is true, then the system has the property specified by the
formula

A proof method can then automatically prove or disprove that the system
has the property

Critical Analysis of CS Methodology: Theory 5

The finiteness of the state space is what makes an automatic proof method
possible

Model checking typically works by a (more or less clever) traversal of the
finite state space of the system, thus checking the formula for each possible
state

However, many interesting systems are not finite-state!

Many, even quite simple, software programs are not, for instance

Verification of properties for infinite-state systems is typically undecidable

Decidable logics, which allow automated proofs, tend to have limited
expressiveness. One must be aware of this limitation

Critical Analysis of CS Methodology: Theory 6

This is not to say that model checking is not a useful technique!

Also, there is active research extending model checking to certain kinds of
infinite-state systems

Critical Analysis of CS Methodology: Theory 7

Can the Theory be Used for Other than Toy Systems?

Some methods are perfect in principle

However, when applied in practice, it may turn out that the method is not
efficient enough to work for other than small toy systems

Model checking is sometimes suffering from this problem

Due to the number of states for the system, which may be large even if finite

For instance, a chip that can store ��� bits will have ���
�

possible states

This large number makes a naïve, exhaustive state exploration impossible

Some model checking algorithms use smart representations and algorithms
to deal with whole sets of states simultaneously (active research topic), but
it’s definitely a problem in practice

Critical Analysis of CS Methodology: Theory 8

Exact Methods vs. Approximate Methods

Model checking is an exact method

Answers “yes” if the property is true and “no” if it is false

To some extent, this is the root of its limitations

Sometimes, approximate methods are of interest

Such a method may answer “yes” (meaning “surely yes”), “no” (meaning
“surely no”), or “don’t know” (meaning “either yes or no, but I cannot tell for
sure which”)

Critical Analysis of CS Methodology: Theory 9

The “don’t know” option makes it possible to design approximate methods
for undecidable problems

This makes them potentially more widely applicable

It is also possible to have approximate methods give more detailed answers
than yes/no, like a range of possible values for a numeric entity

Critical Analysis of CS Methodology: Theory 10

Example: Abstract Interpretation

Abstract interpretation is a theoretical framework for program analysis

It uses abstract domains to represent properties of entities

For every entity � of interest in the program, abstract interpretation defines
an abstract entity �� in the abstract domain

This means that � surely has the property represented by ��

Critical Analysis of CS Methodology: Theory 11

Example: an abstract domain of integer pairs ����� representing intervals

�����, and, for each program variable � and program point � , �� 	 �����

the property “the value of � in � is always in the interval �����”:

int a[17]
...
P: a[i] =

If the analysis finds, in program point P, that �i 	 ��� 	� where � � � and

	
 �
, then we know we will surely not access the array out of bounds

This property can be quite important for the correctness of the program

Critical Analysis of CS Methodology: Theory 12

Potential Pitfalls of Abstract Interpretation

An abstract domain always contains a “top element” �

This element represents “don’t know”

So if the analysis says that �i 	 �, then we know nothing about the value
of i in the program point in question

Pitfall 1: the analysis returns � in cases when we could have better
knowledge

(Actually, an abstract interpretation always returning � is correct, however
not very useful)

Critical Analysis of CS Methodology: Theory 13

Pitfall 2: the analysis might yield grossly overapproximated answers

For instance, an abstract interpretation based on intervals must return

��� ����� (representing ���� possible values) when the entity can only
assume either the value � or ���� (two possible values)

This pitfall is likely if the abstract domain has overly simplistic values

(Pitfall 1 is a special case of pitfall 2)

Critical Analysis of CS Methodology: Theory 14

Pitfall 3: the analysis might be very resource-consuming

Especially true if it uses an abstract domain with more elaborate property
representations

Such representations can allow a more precise analysis. So there is a
tradeoff between precision and speed/memory requirements

In conclusion, approximative methods can also suffer from similar problems
as exact methods (although they can be used for a wider class of problems)

Critical Analysis of CS Methodology: Theory 15

Conclusion

A theory can never model all aspects of a system

A proof about the system is only valid for the aspects actually modeled by
the theory

A sound method based on a sound theory may still have limitations, due to:

� inexpressiveness of the theory

� complexity issues

� impreciseness due to large approximations

Critical Analysis of CS Methodology: Theory 16

