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The absolute c~-decay in 212 Po is calculated using a she/l-model description of the a-particle formation. It is found that 
high-lying shell-model configurations greatly enhance both the a-clustering features and the calculated a-decay width. The 
interaction among the nucleons that form the a-particle is included through correlated two-particle states. 

One important feature of  the shell model is that it 
provides a very convenient representation to solve the 
many-body Schr6dinger equation. That is, of  all the 
infinite single-particle shell-model states needed to 
completely span the Hilbert space (including the con- 
tinuum) only very few are necessary to describe 
bound states in spherical nuclei. Yet, as soon as the 
number of  active particles becomes large enough the 
number of  shell-model configurations formed by 
those few single-particle states becomes unmanageably 
large. A similar difficulty appears when one wants to 
describe very high excited states. In particular, the 
clustering of  nucleons on the nuclear surface requires 
the inclusion of  very high single-particle states and in 
the case of  a-decay even the continuum part of  the 
single-particle spectrum has to be taken into account. 
High-lying configurations are important to describe 
processes that take place in the nuclear surface region 
because these configurations extend further out in the 
nuclear surface [14]. This is the reason why configura- 
tion mixing was found to have a tremendous importance 
in a-decay calculations [ 1 - 6 ] .  In ref. [7] it was found 
that even the clustering of  the pair of  particles induced 
by the pairing interaction (giving rise to the pairing 
vibration state) proceeds through high-lying configura- 
tions. The a-decay widths are also strongly enhanced 
by the same effect [3,7]. Moreover, the inclusion of  
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high-lying configurations gives the proper tail of  the 
a-cluster wavefunction and the a-width may be writ- 
ten in the classical form as [3] 

X L = 2PL(rc) T2(rc) , ( l )  

where 7L is the a-particle formation amplitude. If  the 
shell-model wavefunction is assumed for the mother 
nucleus with the daughter nucleus as the core one ob- 
tains 

3'L(rc) = (hErc/21a) 1/2 f dra f YL(ra)}l 

×%(r1 ,  r2, r3, r4), (2) 

where {~}  = {~1, ~2, ~3) are the internal coordinates 
of  the a-particle. The intrinsic radial a-particle wave- 
function is given by 

¢b~(~,~) =V~g(Vafir)9/4exp[va(~2+~2+ 2~2)/4]Xa, (3) 

We took the parameter entering eq. (3) as in ref. [3]. 
The shell-model wavefunction @a in (2) describes the 
motion of  the four particles outside the core. In addi- 
tion, only neut ron-neut ron  (pro ton-pro ton)  total 
spin Sv = 0 (S ,  = 0) is assumed in eq. (2). The coordi- 
nates r i (i = 1, ..., 4) fix the position o f  the four parti- 
cles with respect to the core center. Finally ra is the 
a-particle center-of-mass coordinate. The function PL 
in eq. (1) is the Coulomb penetration factor and rc is 
the radius beyond which only the Coulomb field is 
important. I f  the wavefunction of  the mother nucleus 
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is well described at large distance (where the nucleus 
density is very low) one can match this function to 
the irregular Coulomb function GL, which describes 
the relative motion of the a-particle and the daughter 
nucleus. That is, in this region the Pauli principle has 
practically no effect and the a-decay process can be 
viewed as a two-body problem. In the language of the 
resonating group method [8,9] one could say that in 
the low density region ~ = (1 - K) -1/2, where 1 - K 
is the overlap kernel, is practically the identity. Al- 
though in refs. [3,7] high-lying configurations pro- 
duced a large enhancement of a-decay width, only 
neutron-neutron and proton-proton interactions 
were included. Thus, only clusters of "dineutrons" 
and "diprotons" were taken into account in the a-par- 
ticle wavefunction but protons and neutrons were 
completely uncorrelated from each other [7]. As a 
result, even when including many configurations the 
a-decay width in refs. [3,7] was too small compared 
with the experimental value by an order of magnitude. 
In these references the 212po wavefunction was writ- 
ten as 

1212po(gs)) = 1210po(gs) 210pb(gs)), (4) 

which, even without using high-lying configurations, 
describes the bound state properties of 212po [10] 
well. A proper description of the a-cluster would 
require either the inclusion (at least in principle) of 
all the 210pb and 210po states i.e. 

X(a2~2) 1210pb(a2) 210po(/32)) 
a2 ~2 

as suggested in ref. [7], or the inclusion of correlated 
states in 210Bi. If  there is a state in 210Bi which shows 
to be clustered in the nuclear surface then one would 
expect that neutrons and protons in the a-particle may 
also be clustered through the same mechanism. In this 
case eq. (4) becomes 

1212po(gs)) = A 121°po(gs) 210pb(gs)} 

+ B I21°Bi@) 210Bi(X)). (5) 

This wavefunction would be exactly the same as eq. 
(4) if the overlap 

O12 = (21°po(gs) 21°pb(gs) 1210Bi(X) 210Bi(X)) (6) 

would be one. In general, the wavefunction amplitudes 

A and B can be calculated if both (6) and 

022 = (210Bi(X) 210Bi@)1210Bi(~,) 210Bi(X)) (7) 

are known. This can be done using, for example, the 
multistep shell-model method (MSM) [ 11 ]). 

Using the shell-model representation that includes 
the high-lying single particle states of ref. [7], we 
looked for a state in 210Bi with clustering features. 
Perhaps not surprising, we found that the state 
1210Bi(0])) has these features (in fact even more pro- 
nounced than the corresponding states 121°pb(0~)) 
and 1210po(0~))). This state was not found experi- 
mentally, but we assigned to it an excitation energy of 
5 MeV, which corresponds to about the energy of the 
energy gap between major shell-model shells. With the 
single-particle states of ref. [7] and a neutron-proton 
pairing interaction we calculated the 1210Bi(0-~)) wave 
function. We found 022 = 1.08 and O12 = 0.09 which 
shows that the two basis states in eq. (5) are practically 
independent of each other. Once one knows these 
overlaps and the two-particle energies, the wave func- 
tion (5) can be calculated [11]. Using the MSM we ob- 
tainedA = 0.98, B = 0.10 and the 212po(gs) energy 
was reproduced within 100 keV. These values are the 
same as those that one would obtain using the stan- 
dard shell-model calculation. Yet, these values of A 
and B may be considered as a first approximation to 
the corresponding values that would be obtained by a 
proper treatment of the neutron-proton correlations 
that induce the clustering of neutrons and protons to 
form the a-particle outside the surface of the mother 
nucleus. 

The calculation of the a-width requires the compu- 
tation of a nine-dimensional integral since the integral 
over ra gives a factor 4n. We did this using the code 
D01FCF [12] which took about 11 h of CPU time i n  
a VAX 11/78 computer. 

The first thing we did was to check whether the a- 
particle was indeed clustered in the nuclear surface. 
This calculation was relatively easy since no integral 
was involved. As a function of different coordinates 
we plotted the square of the wave function (5). In fig. 
1 we show one of such graphs. This figure shows quite 
clearly that our treatment gives a good description of 
the clustering of the a-particle at the nuclear surface. 

We then calculated the a-decay half-lives and found 
that our results are practically independent of the dis- 
tances between the daughter nucleus and the a-par- 
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Fig. 1. Square of the wave function of the c~-particle moving around the 2°apb core [eq. (5)]. Of the 12 spatial coordinates needed 
to descr~e this wave function, we chose all azimuthal angles Oi = 0, besides we chose r 1 = r 2 = rp and r 3 ~- r4 = rn, where 1 and 2 
(3 and 4) label protons (neutrons), rp (rn) is the pro ton-pro ton  (neutron-neutron)  center-of-mass radius and the pro ton-pro ton  
(neutron-neutron)  relative angle 0p (On) is 0p = O n = 0. In this Ftgure we located the two protons over the x-axis at a dis tancex  = 
- 8  fro. The two neutrons were allowed to move over the plane. Thus, this figure shows the effect of the neut ron-proton  interac- 
tion upon the a-particle wave function. With B = 0 the clustering seen around x = - 8  fm disappears completely and one obtains an 
arc of large values of the wave function around the centre of coordinate with radius r = 8 fin (i.e. the small wrinkles seen in this 
figure become as important as the large peak). The rotation angle is the view angle. Distances are in fm. 

ticle a r o u n d  the  nuc lea r  surface as s h o w n  in tab le  1. 

However ,  the  ca lcu la ted  ra t io  o f  half-lives at  r = 

8 .7  fm is R = T 1 / 2 ( t h e o r ) / T 1 / 2 ( e x p )  = 31. In ref. [3] 

the  ca lcu la t ion  o f  a -decay  w i d t h  w i t h o u t  np-correla-  

Table 1 
Ratio R = TI /2 ( th ) /T1 /2  (exp) as a function of the distance 
(in fro) between the daughter nucleus and the a-particle. 
T1/2 (exp) was taken from ref. [ 14 ]. 

r(fm) R 

7.0 811 
7.5 94 
8.0 39 
8.5 29 
8.6 31 
8.7 31 
8.8 35 
8.9 36 
9.0 39 
9.5 70 

10.0 160 

t ion  was p e r f o r m e d  for  the  same nuc leus  and  the  

resul ts  were r e p o r t e d  to  be closer to  e x p e r i m e n t  t h a n  

ours. Bu t  in  ref. [3] the  single-part icle  wave func t i ons  

were a s sumed  to  be  the  h a r m o n i c  osci l la tor  wave func-  

t ions  for  wh ich  the  Moslfinski  t r a n s f o r m a t i o n  is valid 

[13] .  I t  is w o r t h w h i l e  to  no t e  t h a t  the  value  B -- 0.1 

in  eq. (5 )  co r re sponds  to  the  b o u n d  s ta te  o f  the  nu- 

cleus 212po. The  ef fec t ive  va lue  o f  th is  a d m i x t u r e  

m a y  be m u c h  more  i m p o r t a n t  in ou r  case. In  tab le  2 

Table 2 
Ratio R (see table 1) as a function of the neut ron-proton  
mixing parameter B [eq. (5)] and for a distance r = 8.7 fro. 

B R 

0.0 76 
0.1 31 
0.2 19.8 
0.43 8.2 
0.6 5.1 
1.0 3.1 
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values of R as function of B are presented. We can see 
that by increasing B we Can come quite close to the 
experimental results. 

We would like to express our gratitude to I. Crnko- 
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would like to express her thanks to IVA (Engineering 
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