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PROLOGUE 

It is now exactly sixty years (1928-1988) since Gamow presented his pioneering 
paper on alpha-decay. In it, a-particle is supposed to exist preformed inside 
the nucleus, and it occurs in the outside world due to the tunnel effect. The 
description of the penetration of a through the Coulomb barrier of the nucleus 
was the first application of quantum mechanics to nuclear physics. Gamow basic 
idea is shown in the following illustration: 

,, 

The decay constant,\ (which equals ln2/T1; 2 ) is given by the product of pene­
tration factor P and the reduced transition probability f: 

,\=f P. 

The f is the number of collisions per second with the barrier ("frequency factor"), 
and P is the fraction of collisions resulting in transmission: 

2Ze2 /rE 2 
-2 J 2Ze 112 P ~ exp ( h [2Ma(-r- - Ea)] dr) 

R 

where Ma is the a-particle reduced mass, Ea is its energy, and the rest as in 
the figure. The integral is extended over the region in which the potential energy 
is larger than the kinetic energy of the a-particle, that is the region into which 
a-particle could not penetrate if classical mechanics were valid. 

It was considered a great success of nuclear physics when Gamow was able to 
explain theoretically Geiger-Nuttal empirical law, connecting the decay constant 
with the energy of emitted alpha-particle. Gamow theory remained essentially 
unchanged for decades. 
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Only with the introduction of shell model, in early fifties, it was possible to for­
mulate the first really microscopic theories and to calculate the reduced transition 
probability f inside the nucleus. Unfortunately enough, the discrepancies between 
theoretical and experimental absolute alpha-decay widths were disastrous: many 
orders of magnitude. Gradually it became clear that the continuum part of the 
single-particle spectrum was not properly treated. The continuum has a very im­
portant effect in the exit channel where alpha-particle is formed. 

As a possible remedy, Resonating Group Method was proposed. In it, the parti­
tion into the final nucleus and the alpha-particle was naturally taken into account. 
The application of RGM to light nuclei was rather successful, but only in seventies 
it was applied to the alpha-decay in heavy nuclei where its success proved to be 
more than modest. 

Although it has long been known that configuration mixing is important to calcu­
late properly a-particle formation amplitude, only recently it was analysed into 
a great detail and applied to the case of a-decay of heavy nuclei. 
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1. INTRODUCTION 

Before entering any discussion about a-decay I want to quote the following poem 
as an example of what one calls the model : 

There are holes in the sky 

where the rain gets in 

but the holes are small: 

that's why rain is thin. 

Spike Milligan 

Actually, we are more likely to think about sun than about rain in connection 
with a-particles. Simply because they are 4 He nuclei. And, as the name Helium 
indicates, they were first identified in the spectrum of the sun (in 1868). 

But now ... let me start from the very beginning ! 
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1.1 Nucleosynthesis 

According to the big bang cosmological model, favoured at the present 
time, the universe is the result of an explosion from initial state with temperature 
T > 1012K. 
From that time it is expanding and cooling continuously, as in the following sce­
nario (ref. 119): 

1) 0.018 seconds after big bang. T = 1011 K. 

The universe is filled with a mixture of matter and radiation in thermal 
equilibrium. The charge, baryon number and lepton number are equal or 
close to zero. There is one nucleon per 109 photons or electrons or neutri­
nos. Numbers of protons and neutrons are about the same. Processes: 

take place. 

Li+ p-+ e+ + v 

v+n-+e+p 

2) 0.11 seconds later, T = 3 x 101° K. 

With falling temperature it is easier for heavier neutrons to turn into lighter 
protons than vice versa. There are 38 % neutrons vs. 62 % protons. 

3) 0.98 seconds later, T = 101° K. 

Proton-neutron balance is shifted to 24 % neutrons and 76 % protons. 

4) 12.73 seconds later, T = 3 x 109 K. 

Number of neutrons is still decreasing. There are 17 % neutrons and 83 % 
protons. 

5) 2 minutes and 48.18 seconds later, T = 109
• 

"Deuterium bottleneck " prevents deuterium to hold together long enough 
to make possible building of heavier nuclei. The neutron-proton balance is 
now: 14 % neutrons and 86 % protons. 

4 



A little bit later, the temperature drops to the point at which deuterium 
nuclei hold together. All the remaining neutrons are built into 4 He. Just 
before nucleosynthesis started it was 13 % neutrons and 87 % protons. 

As 4 He consists of two protons and two neutrons it means that the fraction 
by weight of helium was 26 % . 

6) 31 minutes and 38 seconds after, T = 3 x 108 K. 

Nucleosynthesis have stopped. The nucleons exist either as free protons 
(hydrogen nuclei) or as 4 He (22-28 % by weight). 

Further nucleosynthetic activity can not take place until the matter has condensed 
into stars massive enough to provide (from their gravitational energy) necessary 
high temperature to start nuclear reactions. From (ref. 1, 11) we learn the rest of 
the story about the nucleosynthesis of heavier elements. 

It is certainly not the pure chance that a-particles are considered so important for 
nucleosynthesis. 4 He itself has some very unique features. It is the first completely 
saturated nucleus. As each nucleon has four internal degrees of freedom: spin up 
and down and isospin up and down, the wave-function in spin-isospin space can be 
fully antisymmetric only for four nucleons or less. To a good first approximation, 
a-particle spatial wave function is symmetric under the interchange of any two 
constituent nucleons (ref. 5). 

From the very beginnings of nuclear physics it was known that a-particles emerge 
in the decay process of heavy nuclei (Maria Curie, 1900, E. Rutherford, 1908). 
The fact that a-particles take part in the creation of nucleus and they appear as 
a result of the radioactive decay of nucleus suggests the possibility that a-particle 
exists inside the nucleus. 
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1.2 Alpha-particle model. Clustering 

Let me summarise: 

1. a-particle is a second most abundant nucleus in the universe. 

2. It is very stable and highly symmetric. 

3. It plays an important role in synthesising of heavier nuclei. 

4. It appears as a product of the decay process. 

As a natural consequence comes the a-particle model of nucleus. During its long 
history (ref. 18) it evolved from the naive picture of point-like a-particles inside 
nuclear potential well, to the contemporary concepts of a-clustering. 

Usually, the basic framework to discuss nuclear phenomena is the shell model. 
This model describes well properties of nuclei near closed shells, but it becomes 
increasingly complicated if more valence particles are present. In that cases collec­
tive model is applied. Apart from that, nuclei display a number of" intermediate" 
phenomena which are neither single-particle nor collective and we may call them 
clustering phenomena (ref. 70). 

The extent and the forms of clustering are one of the most intriguing questions 
about nuclear structure. Alpha-clusters are of particular interest for obvious rea­
sons of their high symmetry and stability (ref. 68). The calculations of a-clustering 
effects in nuclear matter (ref. 23) show that at normal densities of nuclear matter 
independent particle model is more stable, but at a density of one-third of the 
normal a transition from the plane wave to the a-cluster occurs. It means that 
a-clusters may be expected at the nuclear surface. 

The existence of dynamical structures consisting of several nucleons (two-particle 
and four particle, a-like clusters) seems to be suggested by experiment. The piece 
of evidence for that is the energy of the cluster correlations separated from the 
total energy of nuclei from which the conclusion has been drawn that two-nucleon 
and four-nucleon clusters exist almost in any region of nuclei. The large vari­
ety of alpha-transfer experiments like (6Li, 4 He), (1Li,t) or (1 6 0, 12 C) have also 
pointed out to such clusters. The reactions of the type (p, 4He) or (1 2 C, 160) need 
preformed a-like structures on the nuclear surface (reaction time about 10-22 sec­
onds) to be explained (ref. 110) . 

Here one comment ought to be made. The a-particle reactions are usually de­
scribed by means of the DWBA formalism. It implies the assumption that either 
incoming a-particle remains intact throughout the collision, or it is "absorbed" 
i.e. it disappears forever from the elastic channel. This seems to be quite simple-
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minded approach. One should rather expect that the incoming a-particle becomes 
distorted (polarised). Moreover, after dissolution of incoming a-particle possibil­
ity for elastic scattering exists, etc. No matter how accurate our picture of transfer 
reactions is, from the commonly accepted two-nucleon clustering, the four-particle 
correlations should follow as well. 

Often two pairs of nucleons with T = 1, J = 0 are called quadruples, and 
T = 0, J = Jmax = 2J are called quartets. Lacking a better word, we call 
the physical structures having SU4 symmetry "quartets". They do seem to exist 
throughout the table of nuclides, but they can have quite different forms in dif­
ferent regions of it. At present our knowledge of the actual forms of the quartets 
is quite limited. I only list here some among conventional models, according to 
(ref. 42). 

1) Wigner supermultiplets 

The forces are assumed to be spin and isospin independent. SU4 is exact. To a 
certain degree these assumptions are fulfilled in the lightest nuclei. 

2) Alpha-clustering 

The four particles in a-quartet are close together and have strong interaction, 
while the interaction between the clusters is weak. The low average density of 
light nuclei allows the appearance of local saturated density regions separated by 
rather low density interstitial regions. 

3) Aligned scheme, stretch state, HF wavefunction 

Incomplete shell nuclei are filling in the intrinsic system first the rrummum-m 
states (positive deformation) or the maximum-m states (negative deformation). 
Already without correlations these wave functions exhibit quartet structure in 
their interaction energies. From these uncorrelated wave functions correlated 
wave functions can be generated by configuration mixing. 

4) Nilsson quartets 

In a deformed basis the four particles allowed in a state of given !Kl form quite 
naturally quartets. The overlap between these particles is large and the interac-
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tion with particles in other IKI orbitals is substantially less. Again, correlations 
can arise by configuration mixing. 

What can be the cause of the validity of the SU4 ? 

The reason must be sought in the fact that the actual two-body forces have a 
short range, which is of the order of the Fermi wave length ( = reciprocal Fermi 
momentum) in nuclei and that only four nucleons can come within one Fermi 
wavelength. This fact is independent of the existence (or non-existence) of cor­
relations. It implies, however, that whatever the effective forces and the effective 
states, in the ground state only four particles at a time can interact strongly. 

So, the reason for SU4 must be a.scribed to the Pauli principle. 

Of course, the mechanism of quarteting is yet far from being well understood. 
Some of the authors (ref. 70) suggest the following scheme for building of quar­
tets : 

p p p 

FERMIONS BOSON 

N N N 

cp ¢ ~ 
BOSONS ALPHA 

FERMIONS BOSON 

fig. 1.1 

The starting point here is proton-proton and neutron-neutron pamng. Four­
particle correlation produces "pairing of pairs" into alpha-clusters. 
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1.3 Odd-even staggering 

One more evidence for four-particle correlations comes from odd-even­
staggering of nuclear charge radii. Namely, the nuclear charge radii of odd-neutron 
isotopes are smaller than the averages of their even-neutron neighbours. With few 
exceptions, this behaviour is found over the whole table of nuclei. The explana­
tion is the following. 
The primary mechanism discriminating between even- and odd- neutron number 
is pairing. But there must be a mechanism which strongly couples the pairing 
properties of protons and neutrons. Otherwise the protons are hardly influenced 
by the fact that the neutron number is odd. 
This mechanism must be universal and collective phenomenon, collectivity com­
pensating for the smallness of the residual interaction. The only mechanism of 
that kind are four-body correlations or a-particle clustering (ref. 121, 122). Pro­
ton pairing increases the charge radius since it leads to partial occupation of levels 
above the Fermi energy at the cost of levels below, and the higher levels generally 
have larger rms radii. An odd neutron reduces neutrons support to proton pairing 
and that results in a reduction of the charge radius. 
In (ref. 122) nuclear model systems with different four-body interactions are dis­
cussed with regard to four-body correlations and odd-even staggering of charge 
radii. Even with separable four-body force, the staggering can be reproduced al­
most quantitatively, the main contribution being due to one of the Hartree-Fock 
terms of this force. 

16 18 20 2 2 2l 26 28 :_i.; 12 )l 36 n 

fig. 1.2 Odd-even staggering as a function of boson number 
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1.4 Four-body microscopic interpretation of the IBM 

The Interacting Boson Model (IBM) of Arima and Iachello has been very 
successful in providing a phenomenological description of a wide variety of nuclear 
collective features. According to IBM, the fermion space is mapped onto a boson 
space by treating bosons as fermion pairs. 
By comparison of boson Hamiltonian in the isospin s-boson space with fermion 
Hamiltonian we see that boson Hamiltonian consists of two parts : isoscalar part 
(T = 0) and isotensor part (T = 2), while the fermion Hamiltonian consists of 
only one, isovector term (T = 1). However, the boson isospin and fermion isospin 
are the same real isospin of the physical system. Hence, the boson and fermion 
Hamiltonians could not be considered as an image of one another. 

It seems that there is only one way to bring the fermion Hamiltonian to 
the same isospin coupling as in the boson Hamiltonian, namely by an assumption 
that the two-body boson interaction has its image in the four-body effective fermion 
interaction. Such mapping exactly preserves the isospin coupling (ref. 112). 

The new interpretation should answer the question why a four-body in­
teraction term ought to be considered in the fermion-boson mapping. We know 
already that the IBM properly describes the physical systems which in fermion 
space can be described by a two-body interaction term alone. A possible answer 
is that the four-body fermion interaction coming from the two-body boson Hamil­
tonian can be considered as an effective four-body interaction following cut off of 
the fermion space of states. This may also partly explain why the IBM is so good 
in the interpretation of nuclear data. 
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1.5 a-decay and a-clustering 

Inspired by the renewed interest in clustering phenomena (ref. 2-7, 13-16, 
21, 23, 28, 30,31, 40,42, 46, 50, 54,64,67,68, 79,80, 84,89,92,93, 97, 100-102, 
110-113, 121-123) we tried to investigate clustering features of 212 Po as well as its 
a-decay half-life. Being made of 208 Pb core plus two protons and two neutrons 
212 Po represents the ideal example of what one expects to be a-clustering in heavy 
nucleus. 208 Pb is well known as the best doubly magic nucleus, with Z = 82 and 
N = 126, thus representing a spherical inert core. It has been verified that it 
remains spherical even when many nucleons are added to the core. Therefore the 
core can be considered as the o+ vacuum state and its energy be set to zero. The 
properties of a nuclear states are derived from the valence nuclear configurations. 

In (ref. 33, 34 and 35) it was shown that 212 Po described as 208 Pb inert 
core plus four valence nucleons exhibits a strong tendency towards formation of 
four-particle cluster in the surface region. Clustering itself is demonstrated. to 
depend on the configuration mixing as well as on the proton-neutron interaction. 
In this picture the a-decay process follows Gamows two-step theory: first step 
being cluster formation, and the second step tunnelling through the potential 
barrier. The aim of present work is to show that the a-decay understood as a 
process of decaying of cluster state is in a good agreement with experimental half­
lifes. The whole Introduction chapter was to put clustering of 212 Po into broader 
context of a-clustering and to suggest the relevance of the question of clustering 
features of nuclei. 

11 



2. ALPHA-DECAY ABSOLUTE REDUCED WIDTH AMPLITUDE 

2.1 Description of the decay process 

Natural alpha-decay is a process where the initial nucleus undergoes the following trans­
formation: 

We describe the initial nucleus B as consisting of the inert core A plus the cluster C 
outside of it : 

fig. 2.1 Initial state 

According to (fig. 2.1) the wave function of the initial state may be written a.s 

or, if we explicitly write down the angular momentum couplings, it becomes: 

Wi = L (JcMcJAMA/JBMB) WJcMa WJAMA· 
Mc MA 

12 
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The core A is considered to be a mere spectator throughout the a-decay process. The 
final state 'Y! f is determined by the a-particle leaving a frozen core : 

fig. 2.2 Final state 

According to (fig. 2.2) the wave function of the final state may be written as 

(3) 

or, if we explicitly write down angular momentum couplings, it becomes 

'1i1 = L ((LJar:).X JA;JBIJar: (JAL).X';JB)[(YL x 'liJJA x WJA]JB· (4) 
A 

Now we take into account that Jar: = 0 and therefore we get the expression 

\Ji/= L((LO)L JA;JBIO (JAL)JB;JB)[(YL X \J!Ja=O)L X WJA]JB' (5) 
A 

Here we can use formula 

{
JAL JB} (-l)JA+L+JB 

OJBL - J(2J8 +1)(2L+l) 
(6) 

to obtain 

(7) 
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After writing down angular momentum couplings 

X L (LMLJAMAIJnMn) YLML WJa=O WJaMa• 
MLMA 

So the final state wave function has the following form 

(-l)JA+L+JB 
q; f = --;::.======= 

!(2Jn + 1)/(2L + 1) 

X L (LMLJAMAIJnMn) YLML WJa=O WJAMA· 
MLMA 

(8) 

(9) 

The reduced alpha-decay width amplitude at given radius R is defined as the overlap 
integral between the initial and the final states 

F(R) =I wj Wi dr . (10) 

If we make use of the definitions (2) and (9), the overlap integral becomes 

F(R) = L (JcMcJAMAIJnMn) J WJaMaWJAMA 
MA Ma 

The core wave function is normalised according to 

(12) 

and the integration may be carried out straightforward, so that the reduced width am­
plitude reads 

F(R) = 

(13) 
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The a-particle internal wave function is as usual of the Gaussian form 

where (3 = 0.574/m-2 is the extension parameter of the a-particle, x(1234) is the spin 
function, while the coordinates are 

t 1 (--+ ..... ) 
'>1 = viz r1 - r2 

..... 1 (..... ..... ) 6 =viz r3 - r4 {14.1) 

(! 1 (..... ..... ..... ..... ) 
1,.3 = - r1 + r2 - r3 - r 4 • 

2 
The four-particle cluster wave function is built of all possible two-particle pairs. There­
fore we distinguish two different contributions to cluster wave function, coming from 
(PP)-(NN) and (PN)-(PN) pairs. The cluster wave-function shown in (fig. 2.3) has the 
following form (for a moment we forget about four-particle wave function antisymmetri­
sation): 

'llJoMa'"" L XNNPP(av,a11"){1/J(r1r2;av)t/J(f3r4;a11')} + 
or.,•°'" Jo 

.L XNPNP(o:s,o:s 1 ){1/Jcr1ra;as)t/J(r2r4;o:s•) -t/J(r1r4;o:s)t/J(r2ra;as•)} . 
°'6 •°'6' Jo 

(15) 

The coefficients XNNPP and XNPNP are called the weights of (NN)-(PP) or (NP)­
(NP) contribution, respectively. They are connected via the condition: 

(16) 

The two-particle wave functions are defined as 

t/J(r1r2;a") =I: X(pq;av){c,op(ri)c,oq(r2)} 
p$q Ot., 

t/J(f3r4; all')= L X(rs; air) { Sor(ra)Sos(r4)} 
r$s °'" 

(17) 

etc. 
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Let us go back to the overlap integral (13) 

F(R) = 

(-l)JA +L+JB I 
x w J M Y* w* dr. j(2J B + l) /(2L + l) a a LML Ja=o 

For JA = 0 (frozen core) and L = 0 that means ==> Jc = 0 and JB 0. 
Consequently, we have 

so finally the expression for the overlap integral looks like as simple as 

F(R) =I w Ja=O YiML wt=o dr. 

Alpha-decay reduced width is defined via overlap integral as the product 

n,2 R 
'"YL(R) = (-) F(R) 

2µ 

whereµ is a-particle reduced mass, and R is channel radius. 

Alpha-decay width is given in a classical form 

f L(R) = 2 '"Yi(R) PL(R) 

and a-decay half-life is given by the equation 

hln2 hln2 
T1;2 = -r- = 2 p 2 

L L '°YL 

(18) 

(19) 

(20) 

(21.1) 

(21.2) 

Up to this point the derivation is model independent. To make a concrete calculations, 
one has to decide about the single-particle radial wave functions. In our previous work 
we used Woods-Saxon radial wave functions. It implies the numerical integration of the 
11-dimensional integral (19). To achieve the sufficient precision of integration routine 
means to consume enormous amunts of CPU-time on VAXll/780 computer. It is much 
more convenient to use H.O. wave functions as they make it possible to calculate overlap 
integral analytically. 
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2.2 Two-particle wave functions 

As already mentioned before, the cluster wave function q; c is built of two-particle wave 
functions (two-neutron, two-proton, neutron-proton). Two-particle wave functions are 
antisymmetrised so that for T = 1 space-spin part is antisymmetric, and for T = 0 
space-spin part is symmetric. Radial wave functions are of the harmonic-oscillator type. 
The Hamiltonian which describes the independent motion of two particles in a harmonic­
oscillator potential can be separated in ( ri, r2) space as well as in the relative ( r) and 

centre-of-mass coordinate (R) (ref. 8, 10, 23.1, 80.1, 80.2, 90.1, 103 ). Talmi showed that 
the oscillator is the only potential that can be separated in both coordinate systems. 
To exploit the simplicity afforded by the oscillator functions it is necessary to change 
from jj to LS coupling. 

Iii) = L(L S/jj) IL S) (22.1) 
LS 

(L S/jj) = Fs .j(2ii + 1)(2j2+I)(2L+1)(2S + 1) { ~ 1 ~ } . (22.2) 

The antisymmetrized two-particle wave function is thereafter 

+ (-l)T (fcpnplp(r2) X 'Pnqlq(ri)JL X Xs(2,l))JM} 

(23) 
where the single-particle wave functions are products of a harmonic oscillator radial wave 
function and a normalized spherical harmonic 

(24.1) 

bis harmonic oscillator strength (b = 0.161 for 208 Pb). A two-particle spin function is 

XsM(l,2) = L (~ ~ m m'/S M) Xm(l) Xm 1 (2). 
I 2 2 m,m 

(24.2) 
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Transformation to the centre-of-mass and relative coordinate of two particles (Moshinsky 
-Talmi transformation) looks like (ref. 80.1) 

[<pnplp (ri) x <pnqlq (r2 )]>.µ = L (nlN L; A.Jnplpnqlq; A.)[ <pn1(r) x <pNL(R)]>.w (25) 
nlNL 

Thus, if we Moshinsky-Talmi transform two-particle wave function (24) using relations 

XsM(2, 1) = (-1) l+S XsM(l, 2) (26.1) 

(26.2) 

(26.3) 

(26.4) 

2np + l P + 2nq + lq = 2n + l + 2N + L (26.5) 

(26.6) 

we obtain for the two-particle wave function, Moshinsky-Talmi transformed, and anti­
symmetrised 

L {t-(-1)5+T+I} ((nlNL;A.Jnplpnqlq;A.)[<pn1(r) x <pNL(R)]>. x xs(l,2)) . 
nlNL JM 

(27) 
These two-particle wave functions are the building blocks which we use to construct the 
four-particle cluster. We have four different kinds of two-particle wave functions: NN 
(spin-singlet), PP (spin-singlet), NP(spin-singlet) and NP (spin-triplet). 
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2.3 Question of spin 

The spin state of two spin 1/2 particle system is either singlet or triplet. 

The two-particle spin-singlet wave function is expressed via the single-particle ones 

or, explicitly 

We use the following formula for C-G coefficients 

to obtain 

( 1)1-m 
(lml - mJOO) = -V-;::::

2
::;:=
1 

+=-l 

Xoo(i,i) = ~ [Xtt(i) Xt-;di) - Xt-;1 (i) Xtt(j)J. 

Taking into account that 

XsM(i,j) = (-1)1+5 XsM(i, i) 

we have 

(28) 

(30) 

(31) 

(32) 

xoo(i,j) = . ~ xi1(i) x1 -1 (i) = v2 x1 1 (i) x1 -1 (i). (33) v2 .. 2 rr 22 22 

The spin-triplet wave function may be expressed via single-particle ones as 

( . ') ( 1 -1 1 -11 ) ( ') ( ') X1-1 t,J = 22221 -1 Xt-;1 i Xt-;1 J 

and making use of 

1 -1 1 -1 
( - - - -11 - 1) = 1 

2 2 2 2 

19 
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we obtain 

x1-1(i,j) =xi -1 (i) x1 -1 (j). 
:r-r :r-r 

Similarly, for the other spin projections 

and 

Xu(i,j) = (~~~~I 11) XH_(i) Xtt(j) 

1 1 1 1 
( - - - -11 1) = 1 

2 2 2 2 

xu(i,j) = x.1.J.-(i)xu.(j) 
2.. 2 2 

(36) 

(37) 

(37.1) 

(37.2) 

1 1 1 -1 1 -1 1 1 1 
( 2 2 2 2 I l 0 ) = ( 2 2 2 2 I 1 °) = v'2 (38·1) 

x1o(i,j) = . ~ [x1 l(i) x1 -1 (j) + X1=..!.(i) x1 l(j)]. (38.2) y2 '.!2 2T 2 2 22 

Because of the Pauli principle NN and PP pairs are always in spin singlet state: 

In much the same way, the NP system can be in one of the following spin states 

x(N,P) = 

x11(N) x11(P) 
2 2 2 2 

X ~~(N) Xt-
2
i(P) 

x t-
2

1 (N) X~~(P). 

20 

(39.1) 

(39.2) 

(40) 



The spin functions corresponding to a triplet state of NP pair are 

X11(N,P) = x.u(N) x11.(P) 
2 2 2 2 

1 
x1o(N,P) = . ro [x1.!.(N) x1 -1 (P) + x1 -1 (N) x1 1 (P)] {41) y2 2 2 22 22 22 

X1-1(N,P) = X1::..!.(N) Xi::..!.(P). 
2 2 ~ 2 

The spin function corresponding to a singlet state of NP pair is 

1 
Xoo(N,P) = . ro [X.!..!.(N) X1 -1 (P) - X1 -1 (N) X.!..!.(P)]. (42) v2 22 22 2-:r- 22 

From the formulae above it follows that 

1 
Xtt(N) Xt-;1 (P) = viz [X1o(N, P) + Xoo(N, P)] 

1 
x 1 -1 (N) x.u (P) = . ro [x1o(N, P) - Xoo(N, P)]. 
22 22 v2 

( 43) 

Now we have all necessary instruments for studying the spin structure of four-particle 
cluster. 
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Possible two-particle spin functions 

fig. 2.3 Different spin couplings 

Xoo(l, 2) Xoo(3, 4) = 

2 [xu.(1) x1 _, (2)] [x.u(3) x1 -1 (4)] 
22 :fT 22 :r-r 

[xidl) x1!(3)] [X1.::l.(2) X.!..::l.(4)]+ 
:..2 22 22 22 

[XL.::l.(1) X.!..::l.(3)J[x.!..!.(2) X!-.::l.(4)] = 
'..l 2 :i 2 2 2 " :i 

xu(l,3) x1-1(2,4) + x1-1(1,3) xu(2,4) 

1 
x 1 1 (N) x 1 -1 (P) = M [x1o(N, P) + xoo(N, P)] 

22 ;r,- y2 
1 

X!.-1 (N) x 2 1 (P) = M [X1o(N, P) - xoo(N, P)] ==> 
2 -r :r:r v2 

[X11(l) X.!.=J.(4)][X.t.::l.(2) Xi-
2
1 (3)]+ 

22 22 22 "' 

[x1 -i{l) X.!..t(4)][x.t.!.{2) xj_-1 (3)] = 
2T 22 22 :IT 

1 2 [x10(1,4) + xoo(l,4)] [X10(2,3) - xoo(2,3)]+ 

1 
- [x10(1,4) - xoo(l,4)] [x10(2,3) + xoo(2,3)] = 
2 

x 10 ( 1, 4) x 10 ( 2' 3) - x 00 ( 1, 4) x 00 ( 2' 3) 
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2.4 Cluster wave function 

The antisymmetrized four-particle wave function may be written in a form of Slater 
determinant as: 

'Pll 'P12 'P13 'P14 
1 'P21 'P22 'P23 'P24 (44) w(1234) = V41 
4! 'P31 'P32 <p33 <p34 

'P41 'P42 <p43 <p44 

where <p32 denotes particle 3 on the radial position 2. After writing down the above 
determinant explicitly, one has 

(44.1) 
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fig. 2.4 The possible four-particle configurations 
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From (fig. 2.4) it is clear that there are six different four-particle configurations which 

are all equivalent to (fig. 2.3). Therefore, the four-particle cluster wave function may be 

written as 

'ilJ0 (r1r2r3r4),...., '.L XNNPP(av,air)[1/i(r1r2;av)1/i(f3r4;alf)]J0 + 
av,o:1f 

(45) 

Expressing two-particle wave functions via single-particle ones, brings that formula to 

'ilJ0 (r1r2r3r4),...., L XNNPP(av,air) 
CtvO:~ 

x [L X(pq; av){cpp(r1)'Pq(r2)} L X(rs;alf){cpr(ra)cps(r4)}]J0 

p~q r~s 

+ L XNPNP(as,as1) 
°'6 •°'6 1 

- [ L X(ps; as){cpp(ri)cps(r4)} L X(qr; as' ){cpq(r2)cpr(ra)}]J0 ]. 

p~B q~r 

(45.1) 
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2.5 (NN)-(PP) contribution 

Let me concentrate for a moment on the first contribution to the cluster wave function, 

namely the one coming from (NN)-(PP) clusterisation. Using eq. (27) the cluster wave 
function becomes 

wljaNPP(T1r2r3r4) = { L XNNPP(av, air) 
Ct'v 1<l',... 

X L (nvlvNvLvi AvJnplpnqlq; Av) 
n.,l.,N.,L., 

X L (n1fl1fN1rL1f; ,\1fJnrlrn8 l 8 ; ,\,...)[1 - (-l)S,..+T,..+l,.] 
n,..l,,N,,L" 

X [['Pn,..l,. (rir) X 'PN"L" (R1f)J,x,. X X(3, 4))J,.M,.. }} . 
Jo 

(46) 

In the above equation a coupling of the following type appears 

(47) 
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the angular part of which may be written as 

(48) 

First one recouples spherical harmonics 

I: ((l11L11)>•11 (l11"L71")>.'lf; Lcl(l11l11")lc (L11L11")Lc; Le) 
LaML0 

(49) 

to obtain 

B = I: ((>.11S11)J11 (>.11"S11")J'/I"; Jcj(>.11>.11")Lc (SvS'lf)Sc; Jc) 
JaMJ0 

(50) 

x I: ((l11L11)>-11 (l'lfL'lf)>.11"; Lcl(lvl'/l")lc (LvL'/l")Lc; Le) 
LaMLa 

Making the Moshinsky-Talmi transformation from N 11L 11 , N 71"L11" pair centre-of-mass co­
ordinates to nclc, NcLc cluster relative and centre-of-mass coordinates one obtains 

I: (nclcNcLc; JclN11L11N'lfLrr; Jc) Rncla RNaLa (Y1 0 YL 0 )L 0 • 

no la Na La 
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If we use the condition Sc = 0 S'ff = 0 Sv = 0 (PP and NN pair spin singlet 
state), we get 

B = L ((,\vO)Jv (,\irO)Jll"; Jcl(,\v,\ll")Lc (00)0; Jc)(LcML 0 00IJcMJ0 ) 

JaMJ0 

X L ((lvLv),\v (lll"Lll"),\11"; Lcl(lvlK)lc (LvLK)Lc; Le) 
LaML 0 

(52) 
or 

B = L ((,\vO)Jv (,\KO)Jll"; Jcl(,\v,\K)Lc (00)0; Jc)(LcML 0 00IJcMJ0 ) 

JaMJ0 

X L ((lvLv),\v (lll"LK),\11"; Lcl(lvlK)lc (LvLK)Lc; Le) 
LaML 0 

The first 9-J symbol is 

(53.1) 

= (-1) >..,+>.,.+La o(J ,\ ) o(J ,\ ) 
I/) I/ ll"l 'ff . 
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Thus we have 

B = L (-1)>. .. +>.,,+La 8(Jv, Av) 8(Jir, Air) (LeML 0 00jJeMJ0 ) 

JoMJ0 

X L ((lvL 11 )>.v (lirLir)>.ir; Lej(lvlir)le (LvLir)Le; Le) (54) 
LaML 0 

The whole expression for A may be thereafter written as 

A= L (-1)>. .. +>.,,+La 8(Jv, >.v) 8(Jir, Air) (LeML 0 00jJeMJ
0

) 

JaMJ0 

X L ((lvLv)>•v (lirLir)Air; Lel(lvlir)le (LvLir)Le; Le) 
LaML 0 (55) 

X ( s., =O s,, =O) R R R R X X S 0 =0 n.,l., n,,l,, N.,L., N"'L" · 

After Moshinsky-Talmi transformation (NvLv;NirLir) ---t (nele;NeLe) it reads 

A= L (-1)>..,+>.,.+La 8(Jv, >. 11 ) 8(Jir, Air) (LeML
0

00jJeMJ
0

) 

JaMJ0 

X L ((lvLv)Av (lirLir)Air; Lel(lvlir)le (LvLir)Le; Le) 
LaMLa 

X L (neleNcLe; JclNvLvNirLir; Jc) (Yi 0 YLaha Rnala RNaLa· 
no/a Na La 
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At this point we use the assumptions J A = 0 L°' = 0 ====> J B = 0, Jc = 0 and 
(Sc= 0, Brr= 0, Sv = 0) ====>Le= 0 to obtain 

(57) 

X L (ne 0 Ne O; OjNvLvNrrLrr; 0) (Yla=O YLa=Oha=O RnaO RNaO 
naNa 

and finally 

X L (ne 0 Ne O; OjNv>..vNrr>..rr; 0) 
(58) 

naNa 

Here 

(YLa=o(Re) Yia=o(re))o = (o 0 0 010 o) YLa=o(Re) Yia=o(re). (60) 
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Now we can calculate the overlap integral (19) 

F(R) = / W Jo=O Y[,ML W~a=O dr 

with the cluster wave function of the following form 

X L [1 - ( -1 )S.,+T.,+l., ]X(pq; O'.v) 

p~q j2{1 + bjpjqblp/qbnpnq) 

X L (>.vSvlJpjq) L (nvlvNv>..v; >..vlnplpnqlq; Av) 
>..,S.,=O n.,N.,>.., 

x L [1- (-1) 5"+T,,+l,.]X(rs;air) 

r~s j2{1 + bj,j.bl,l.Sn,n,) 

X L (>.,..S11"1Jris) L (n,..l,..NK>.,..; >..,..jnrlrn8 ls; >.,..) 
>.,.S,,=O n,,N">." 

X L (ncONcO; DINv>.vN,..>.,..; 0) (lvmvlirmKIOO) 
no No 

As mentioned before, the integration is made analytically. 
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2.6 Angular integration 

In order to calculate the overlap integral, one shall first perform the integration 
over angular coordinates. Using formulas 

we obtain 

1 
Yoo= --

J41f 

f Y.C:M(R) Yim(R) dR = c5(Ll) c5(M m) 

J Y.C:=o(Rc) YLaMa(Rc) dRc = c5(Lc0) c5(Mc0) 

J Y1 0 m0 (rc) di:c = ~ c5(lc0) c5(mc0) = y'4; c5(lc0) c5(mc0) 

J Y1.,m.,(rv) drv = J4; c5(lv0) c5(mv0) 

J Y1,.m...(r11") di-11" = J4; c5(ll'l"O) c5(m71"0). 

All in all, the angular integrations result in the factor 

Therefore, what remains is to calculate the integral 

00 

x I q; Ja=O wja=O rb drc r~ drv r; drl'I" 
0 

with q; Ja=O given by eq. (61) and q; J
0

=0 given by eq. (14). 

(62.1) 

(62.2) 

(63.1) 

(63.2) 

(63.3) 

(63.4) 

(64) 

As we are now discussing (NN)-(PP) contribution, it means that the pair spins 
are Sv = S'lr = 0, isospins are Tv = T'lr = 1 and orbital angular momenta are lv = 
111" = 0 (the last is the condition coming from angular integration). Subsequently, 
the phase factor appearing in eq. (61) is 

[1 - (-l)S.,+T.,+l.,j = [1 - (-1) S,. +T"+l,. j = [1 - (-l)O+I+Oj = 2 (64.1) 
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With the help of eqs. (64), (61), (14) and (64.1) the overlap integral becomes 

Fsa=o (Re)= (2/33/2)3/2 Je-~re;+e~+e;J '°' X ( ) 
NNPP (l/2)! L,; NNPP O'.v, 0'.11" 

Ov,aw 

>..-S.-=O 

x I: (ncONcO; OINvAvNn-A!f"; o) (lvmvl7rm11"100) 
no No 

X Rn.,o(rv) Rn,,o(r7r) Rn0 o(rc) RN0 o(Rc) r~ drv r; dr7r rb drc }· 

Making use of: 

((OA}A (AO)A;Oj(OO)O (00)0;0) = 1 
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one finally obtains: 

X L ("AvSv = OIJpJq)("A1fS11" = OjJrJs) 
>.., >.,, 

X L (nvONv"Av; Avlnplpnqlq; Av) L (n1rON,."A.,,; "A.,,jnrlrnsl 8 ; "A.,,) 
n.,N,, n"N" 

x L (ncONcO; OINv"AvN1r"A11"; o) (xS.,=OxS,.=0)sc=0 
naNa 

00 00 

x J eC-~ei) R o(r ) r 2 dr J eC-~e;) R 0 (r ) r 2 dr nv LI v v n,.. 1r 1f' n-

0 0 

00 

X J eC-~e~) Rn0 o(rc) r2: drc X RN0 0(4b;Rc). 
0 
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The coordinates are defined in the following way: 

fig. 2.5 The coordinates 

The definitions of e1 ,{2 and ea are given by eq.(14.1), while 

e 1 (.... .... .... .... ) 4 = 2 r1 + r2 + ra + r4 (68.1) 

and 

.... 1 (.... .... ) "i r 11" = V2 r3 - r 4 = .,, 2 

(68.2) 

R.... 1 (.... .... ) 
rr = V2 r3 + r4 . 
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We use the invariance of an oscillator potential under the transformation 

(69.1) 

With the definitions of coordinates given above, we get 

°E2 °E2 °E2 1 ( _, _, ) 2 1 ( _, _, ) 2 1 [ ( _, _, ) ( _, _, ) l 2 
i.1 + i.2 + 1,,3 = - ri - r2 + - r3 - r4 + - ri + r2 - r3 + r4 

2 2 4 

1(_, --)2 1(_, -<)2 = - ri - r2 + - r3 - r4 
2 2 

(69.2) 

(69.3) 

(69.4) 

(69.5) 

R_, 1 [_, _, _, _, l 1 "l 
c M = - r 1 + r2 + r3 + r 4 = - i.4. 

4 2 
(69.6) 

That means that we have the following relation (ref. 88.1): 

(69.7) 

or, in other words, 
(69.8) 
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2. 7 Radial integration 

In the eq. (67) there are three identical radial integrals of the form 

where 

00 

I=/ Rno(r) e<-?r2

) r2 dr 
0 

Rno(r) = 

(70) 

(71) 

is harmonic oscillator radial wave function, and L is the Laguerre polynomial. By 
inserting (71) to (70) one gets 

l= (72) 

If we use the following formula (ref. 58) 

00 

I e-st tK. L°'(t) dt = I'(K + l) r(a + n + l) s-K.-l F(-n K + 1· a+ 1· .!:.) (73) 
n n! r(a + 1) ' ' 's 

0 

where 

{3 + b 
K = 1/2, a= 1/2, s = 2b' F(-n, K; K; -z) = (1 + z)n (73.1) 

the integral I can be written as 

l= 
4b~ 

({3 + b )3 (
{3 - b) n 

{3 + b 
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n! 

(74) 



Finally, using the results of chapter 2.6, the overlap integral becomes: 

X L (>..vSv = Ojjp]q) (>..1rS1r = Oliria) 
.A.,.A,.. 

(75) 

X L (nvONv>..v; >..vlnplpnqlq; >..v) L (n1rON1r>..1r; >..1rlnrlrnal 8 ; >..fr) 
n.,N., n"N" 

x L (ncONcO; OINv>..vN1r>..11"; 0) (x 8
.,=

0x8
,,.=

0
)sa=O RN0 o(4b; Re) 

ncNc 

(nv + t)!(n1r + t)!(nc + t)! 
nv! n1r! nc! 

This is the general expression for the overlap integral for spin-singlet contribution. 
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2.8 Formation amplitude 

Up to now we have not explicitly written the LS-jj coupling coefficients. They 
appear in eq. (75) for the overlap integral and they are calculated in APPENDIX 
A. 
With LS-jj coupling coefficients taken into account the reduced width amplitude 
(75) for the (NN)-(PP) contribution if J v =/:- O and J ir =/:- O finally reads 

a3/2 
pSo=O (R ) _ ( 2/J )3/2 '"" ( ) 

NNPP C - (l/2)! a~,, XNNPP av, air 

X L V2X(pq; av) L yi2X(rs; air) 

p~q j(1+8ipiq81p1/inpnq) r~s V(l + oi.i.81.1.on.nJ 

(86) 

X L (nvONvLv; Jvlnplpnqlq; Jv) L (n'lfON'lf'L'lf; J'lf'lnrlrn 8 l 8 j J'lf') 
n.,N., n,.N,, 

X L (ncONcO;OINvLvN'lf'L'lf';O) (x 8
.,=

0x8
"=

0
)sa=O RN0 o(4b;Rc) 

no Na 
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For the case when Jv = J1f = 0 the (NN)-(PP) reduced width amplitude is 

(2J~ + 1) 
2(2/p + 1) 

(2jr + 1) 

2(2/r + 1) 

x L (nvONvO; Ojnplpnplp; o) L (n1f0N1f0; OJnrlrnrlr; 0) 
n.,N., n.,N,, 

x L (ncONcO; OJNvON1fO; o) (xS.,=OxS .. =O)Sc=O RNco(4b; Re) 
ncNc 

(nv + t)!(n?r + t)!(nc + t)! 
nv! nlf! nc! 

(87) 

In this case the weight factor XNNPP is a constant and the sum over different 
two-particle states a11", av dissapears. 
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2.9 (NP)-(NP) contribution 

So far we discussed the (NN)(PP) contribution to the four-particle cluster wave 
function and consequently to the alpha decay reduced width amplitude. In a 
complete analogy we can now describe (NP)(NP) contribution. However, this 
time we have two terms (1, 3)(2, 4) - (1, 4)(2, 3) of the same form. The cluster 
wave function analogous to eq. (46) according to eq. (15) and (fig. 2.3) is 

w:f:~c/ (r1r2r3f4) = w:f:='i/(13, 24) - w:f:3ct (14, 23) = 
L XNPNP(as,as,) 

x { L X(pr; as) L (..\sSslJpJr) 
p$r J2(1 + bjpfr[jlplr[jnpnJ ).585 

x L (nslsNsLs; ..\sjnplpnrlr; ..\s) 

X fl - (-l) 86'+Toi+loij ((<pn 6 ,161 (rs1) X <pN6,L61 (Rs1)]>. 6 , X X(2,4)JJ01M6,} 
Jo=O 

- L XNPNP(a~,a~,) 

S' +T' +I' -4 ~, } 
X [1- (-1) bi 

61 01
) [[<pn' l' (r0,) X 'PN' L' (Rt1))>. 1 X X(2, 3))J 1 M' . 

61 61 61 bl 61 bl 61 I 
Jc=O 

(88) 
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In formula (88) the expression of the type 

(89) 

x !l'Pn 6 ,16 ,(r.s1) x 'PN6 1L6 ,(R.s1)]>. 6 , x X
861 ]J6 ,=1} 

Ja=O 

appear. It includes implicitly the following couplings: 

L ((>.. 0 S0 )J0 (>. 01S01 )J01; Jcl(>. 0 >.. 01 )Le (S.sS.s, )Sc; Jc) 
JoMJ0 

After spherical harmonics recoupling 

L ((l 0 L0 )>.. 0 (l.s•L.s• )>.. 01; Lcl(l.sl.s• )lc(L0L01)Lc; Le) 
LcML 0 

and using the condition 

le = 0 Jc = 0 Sc = 0 ==> Le = 0 

(90) 

(91) 

(92) 

the cluster wave function results in two terms of the type (see eq. (88)) where 
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wJ;!;;P(l3,24) = L XNPNP(as,a.s 1 ) 

OC6 10C61 

x L (nslsNsLs; >..s/nplpn8 l8 ; >.. 6)[1 - (-I) 86 +r6 + 16
] 

n616NoL6 

(93) 

x 

The next step is to make Moshinsky-Talmi transformation, from the NvLv, NrrLrr 
pair centre-of-mass coordinates to the nclc; NcLc cluster relative and centre-of­
mass coordinates 

no lo No Lo 

(94.1) 
that is equivalent of the eq. (51) . Or 
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L (ncONcO; OINsONs10; o) Rnao(rc) RNao(Rc) (Yo Yo)o. (94.2) 
no No 

The cluster wave function after Moshinsky-Talmi transformation is built of two 
terms : (1, 3)(2, 4) - (1, 4)(2, 3) of the same form where: 

w~:3r/(13,24) = L XNPNP(as,as 1 ) 

0<6 •°'6' 

X L (nslsNsLs; ..\slnplpn8 l8 ; ..\s)[l - (-1) 86 +T6 +16
] 

n6/6N6Lo 

(95) 
x 

x L (ncONcO; OjN0 L 0 N 01L01; 0) [x86 x8
"' ]o 

no No 
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Both terms in w:J:=~P will result in the same kind of reduced width amplitude 
and after summing of the two, one gets 

( 
2{33/2 ) 3/2 

F~~~p(Rc) = (l/2)! L, XNPNP(as, a~) 
°'6 ,at 6 

x L V2X(pr;as) L V2X(qs; a6) 

p~r J(l + l5jpj,Olplr/5npnJ q~s j(l + Ojqj,O/q/,Onqn.) 

X L (.\sSs IJpJr) (.\~S~ jjqJs) 
>.6 >.~ 

X L (nsON5.\5; .\slnplpnrlr; .\s) L (n~ON~.\~; .\~lnqlqnsls; .\~) 

naNa 

XL V2X(ps;a's) L V2X(qr;a1
81) 

p~s j(l + /5fpf.15lpl•/5npn.) q~r J(l + Ojqj,Olqlr/jnqnr) 

X L (.\'sS'olJ'pJs)(.\'s 1 S's 1 licdr) 

n'6N'o n1
6 1N 1

6 1 

n'aN'a 
x (x 86 (1,4) x86'(2,3))sa=O RNao(4b;Rc) 

x ( 4b~ )3 (/3-b)n'o+n'61+n'a (n'o+~)!(n'o'+~)!(n'c+t)! 
(/3+b) 3 f3+b n's!n1

0iln'c! 
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It is evident that one can write down both terms in more compact way (as the 
summations over different indexes have the same limits). 

So the reduced width amplitude may be written as: 

X L (,\sSslJpJ
0

r)(,\~S~IJqJa) 
>.5>.~ 

x L (ncONcO; OINs,\sN~,\~; 0) RN0 0(4b; Re) 
ncNc 

(97) 

From the angular integration, which is identical to the (NN)-(PP) case, comes the 
condition 
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Taking into account the phase factor [1- (-l)So+To+l 6 ] from eq. (95),we are left 
with two possible choices for (NP) pairs: 

I) Spin-triplet for T = 0 

Ss = 1, ls = O, A.s = o, Js = 1 

2) Spin-singlet for T = 1 

Ss = 0, ls = 0, A.s = 0, Js = 0. (98) 

The later (spin-singlet) contribution is completely analogous to the (spin-singlet) 
contribution of (NN)-(PP) cluster. 
The spin part of eq. (97),(see fig. 2.3) is therefore 

{[x11(1,3)x1-1(2,4)]oo + [x1-1(1,3) xu (2, 4) ]oo} 

- {[x1o(l, 4)X10(2, 3)]oo - [xoo(l, 4)xoo(2, 3)]oo} 

= (111 -110 o)x11(1,3)x1-1(2,4) + (1 -11110 o)x1-1(1,3)x11(2,4) 

- (1 o 1 010 o) x1o(l, 4)x10(2, 3) + (o o o ojo O)xoo(l, 4)xoo(2, 3) 

1 = 
0

{x11 (1, 3)x1-i(2, 4) + x1-1 (1, 3)x11 (2, 4) + x1o(l, 4)x10(2, 3)} 

+ Xoo(l, 4)xoo(2, 3) = ~X1 (N, P)x 1 (N, P) + x 0 (N, P)x0 (N, P). 

The notation is the following (see ch.2.3): 

and 

Xu(N,P) 

Xio(N,P) 

X1-1 (N, P) 

x0 (N, P) = Xoo(N, P). 
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2.10 Spin-triplet part of (N-P)-(N-P) 

From eq. (99) it is evident that there are two different contributions, with respect 
to spin, to (NN)-(PP) cluster; spin-singlet and spin-triplet. Now we can apply 
the eq. (95) for the (NP)-(NP) cluster to the case Ss = 851 = 1, which we call for 
spin-triplet contribution (where "triplet" denotes two-particle spins). The wave 
function of the triplet contribution therefore may be written as: 

x ((01)1 (01)1;oj(oo)o (11)0;0) ((oo)o (oo)o;oj(oo)o (oo)o;o) 

x L (nc O Ne O; OINs O N 6, O; O) x [x 86 = 1 x8
61 = 1

]0 
no Ne 

(100) 
With the help of the relations 

( (01) 1(01)1; 01 (00)0(11)0; o) = 1 
(101) 

((00)0(00)0; oj(oo)O(OO)O; 0) = 1 
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it results in 

x I:: (ncONcO; OINsON510; o) x [x 86
=l x861 =1 lo 

no Na 

(102) 

This expression exactly coincides with the formula for spin-singlet (NN)-(PP) 
contribution, except for LS-jj coupling coefficients, which are this time 

compared to 

or 
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By the analogy with (NN)-(PP) derivation we write the final expression for spin­
triplet (NP)-(NP) contribution to the alpha-decay absolute reduced width as 

23/39/4 
F triplet (R ) ( ) X 

NPNP C = 7r3/4 NPNP 

x L (nsONsO; Olnplpnsls; o) L (ns10Ns10; Olnqlqnrlr; 0) 
no No n6 1N6 1 

x L (ncONcO; OINsONs10; o) RNao(4b; Re) [x 80 x80 ']0 
naNa 

where 

50 

(ns + !)!(ns1 + !)!(nc + !)! } 
ns! nsd nc! 

(2J
0

l + 1)(2h + 1) 
(2l + 1) 

(103) 

(104) 



We have now calculated all parts that contribute to the overlap integral from both 
(NN)(PP) (spin-singlet) and (NP)(NP) (spin-singlet and spin-triplet) terms. It is 
easy to see that they have essentially the same form. We can write 

x L (n€0Nl0; Olnelenhlh; 0) L (nl10Nl10; Oln 1l fnglg; o) 
n,N, n,1N,1 

x L (ncONcO;O/Nl,\lNl1,\l1;0) RNao(4b;Rc) [x8
< x8 •']o 

no No 

) 

3/2 

4b~ ((J _ b) n,+n,1+no 

(fl + b) 3 fJ + b 
(nl + -})!(nl1 + -})!(nc + -})! } 

nl! ni:d nc! 

(105) 
where 

(<, <') - { 

(v, 7r) for NNPP 

( 8, 8') for NPNP 

which helps us to express the final formula in a very compact form. 
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2.11 Alpha-decay absolute reduced width and halftife 

Finally one can collect together all the pieces that make reduced width. So in 
terms of overlap integrals 0R 0 it will be 

The factor Jh commes from the antisymmetrization of the four-particle wave 

function (notice that fig. 2.4 consists of six contributions equivalent to fig. 2.3). 
The final expression is a fairly simple and compact one. The (singlet)-(singlet) 
contribution from both NN-PP and NP-NP follows the same formula as the 
eq. (87). The (triplet)-(triplet) contribution from NP-NP is practically the same, 
except for the 6-j and spin function which are different. Radial parts are the ones 
which correspond to NN, PP, and PN pairs, respectively. 

From the overlap integral F(R) it is easy to get the alpha-decay absolute reduced 
width 

h2 R 
"!L(R) = (-) F(R) 

2µ 

and the a-decay half-life defined before by (eqs. 21.1 and 21.2) 

hln2 
T1;2 = 2 p 2 · 

L "! L 
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3. RESULTS 

The main strategy of our calculations of a-decay width as well as of those done 
before (ref. 33-36) was to divide the a-decay process into the following two steps: 

1. Cluster formation 
2. Tunnelling through the barrier 

According to that basic assumption the derivation of the a-decay absolute re­
duced widths as well as the half-lives is made. We are using harmonic oscillator 
single-particle radial wave functions which enables us to make overlap integral 
analytically. Formulas (106), i.e. (87) and (103) are used to create Fortran pro­
grams for the calculation of the 212 Po a-decay. 

It is important to remember the following two points. For quite a long time it 
was recognised that the configuration mixing plays a key role in the process of 
a-decay and a-clustering (ref. 62, 83, 113). That fact is clearly demonstrated in 
present calculation. 

Configuration mixing enables protons and neutrons otherwise filling different 
shells to interact. We are showing that the proton-neutron interaction plays a 
very significant role in the process of a-cluster formation and thereafter in the 
a-decay process. 
Calculation of the tunneling through the barrier is based on (ref. 12). To obtain 
the o:-decay half-life we have to go through the several intermediate steps: 

1. Calculate proton and neutron single-particle levels by program SPLEV 

2. Calculate two-particle PP, NN and PN states by PPSDI, NNSDI and PNSDI 
programs 

3. Calculate a-decay reduced width by program ALPHA. 

4. Calculate Coulomb wave functions (penetrability) and a-decay half-life by pro­
gram HALFLIFE 

Listings of all programs are given in APPENDIX B 
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3.1 Single-particle wave functions 

In all our earlier calculations (ref. 33-36) single-particle wave functions have the 
Woods-Saxon radial part. As a consequence, the 11-dimensional overlap integral 
was calculated numerically, what was extremely time-consuming, 10-20 hours of 
CPU-time at VAXll/780 computer. In our present work the integration was 
performed analytically using the harmonic-oscillator radial wave functions and 
Moshinsky-Talmi transformation. 
Single-partcle energies are taken from (ref. 22) or calculated by program SPLEV 
(for high-lying configurations). To test our harmonic-oscillator radial wave func­
tions we compare them with Woods-Saxon radial wave functions. Here are the 
plots of both radial wave functions for the corresponding quantum numbers. 
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' 
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H 2l 2J 
• 12 11 
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• 11 15 

N :21. 2J 
1 6 l 

N 2l 2J 

• 11 ' 

H :21. 2J 
rn 11213 

fig. 3.1.1 Proton radial wave functions for different N, L, J. Full line - harmonic 
oscillator r.w.f., dashed line - Woods-Saxon radial wave functions. 
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fig. 3.1.2 Proton radial wave functions for different N, L, J. Full line 
oscillator r.w.f., dashed line - Woods-Saxon radial wave functions. 
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fig. 3.1.3 Neutron radial wave functions for different N, L, J. Full line - harmonic 
oscillator r.w.f., dashed line - Woods-Saxon radial wave functions. 
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fig. 3.1.4 Neutron radial wave functions for different N, L, J. Full line - harmonic 
oscillator r.w.f., dashed line - Woods-Saxon radial wave functions. 
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3.2 Two-particle wave functions 

Two-particle wave functions are calculated according to ref. (26), p.113. The 
residual interaction is supposed to be Surface Delta (SDI). Our earlier calculations 
with Woods-Saxon potential show that two-particle wave functions are clustered 
in the surface region of the nucleus and that the clusterisation depends strongly on 
the number of configurations, ref.(33-36). The strength of SDI is chosen in such a 
way that the experimental 210 Po(g.s.), 210 Pb(g.s.) and 210 Bi(Oi), 210 Bi(g.s.) en­
ergies are correctly reproduced. 
The following figure shows clustering of NN pair with harmonic oscillator radial 
wave functions as a function of R and 0. The same behaviour is found for PP 
and NP pairs. These two-particle clusters serve afterwards as building blocks for 
four-particle cluster. 

fig. 3.2.1 Two-particle NN cluster 
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3.3 Cluster wave function 

The following figures illustrate how the four-particle cluster wave function de­pends on the number of configurations: 

59 

fig. 3.3.1 Probability of Q-cluster for­
mation for the main configuration : 
('lrb)max = 0.13902 X 10- 12• Coordi­
nates Ro-. E [O, 10]/m, and rp = rn E 
{o, 4]/m. 

fig. 3.3.2 Ten configurations taken into 
account. ('Itb)max = 0.18629 X 10-9. 
The rest as on fig. 3.3.1. 

fig. 3.3.3 All 90 configurations taken 
into account. ('lrb Jmax = 0.35318 x 
10-s. The rest as on fig. 3.3.1. 



The coordinates are given in the following way: 

J\x ......... ~~~~~--
10 fm 

r=r 
p n 

fig. 3.3.4 The coordinates for figs. (3.3.1-3.3.3) 

p 

From fig. (3.3.1-3.3.3) one can see what happens when the number of configura­
tions taken into account is increased. The pure configurations only produce two 
separate peaks corresponding to pair clusters. Increasing of number of configu­
rations makes it possible for protons and neutrons to form an a-cluster. Adding 
even more configurations increases clustering further. We see that: 

(w~)max(lOconf.) : (w~)max(lconf.) = 1340 

and 
(w~)max(90conf.) : (w~)max(lconf.) = 25404. 
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This is how proton-neutron interaction affects a-cluster formation probability: 

I~ 
, u_! -t-W--h-l-tt-ITTmn 

61 

fig. 3.3.5 Probability of a-cluster for­
mation for XPNPN = 0. (lltb)max = 
0.15639 X 10-9

• Coordinates Ra E 
[o, IO]f m, and Opn E fo, 180]0 , with 
the condition rp = rn = 0. 90 conf. 

fig. 3.3.6 XPNPN = 0.3 , ('1tb)max = 
0. 70664x10-9

• The rest as on fig. 3.3.5. 

fig. 3.3.7 XPNPN = 1.0 , (wb)max = 
0.35318x10- 8

. The rest as on fig. 3.3.5. 



The coordinates are given in the following way: 

e 
pn 180 

r=r 
P n 

fig. 3.3.8 The coordinates for figs. (3.3.4-3.3.6) 

Fig. (3.3.5-3.3. 7) show beautifully the importance of proton-neutron interaction. 
As a consequence of turning off proton-neutron interaction, the probability of a­
cluster formation is sphericaly symmetric, and a maximum appears at the surface 
of the nucleus. After turning on proton-neutron interaction, pronounced maxi­
mum emerges for Onp = 0 at the nuclear surface. With strong proton-neutron 
interaction delta-like shape of probability distribution becomes even more pro­
nounced 

(wb)max(XPNPN = 0.3): (w2:)max(XPNPN = 0.0) = 4.5 

and 
(wb)max(XPNPN = 1.0): (wb)max(XPNPN = 0.0) = 22.6. 

Fig. (3.3.1-3.3.7) are the results of the calculations with the Woods-Saxon radial 
part of the single particle wave functions. All the details of the calculations are 
presented in ref. (33-36). Using the harmonic oscillator radial wave functions one 
obtains the same behaviour. 
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3.4 Formation amplitude and decay half-life 

Let me now present the results of the new calculation with harmonic-oscillator 
radial wave functions. The following two figures illustrate the importance of con­
figuration mixing for the cluster formation amplitude: 

RxF(R) 

fig. 3.4.1 F(R) x R(f m- 1! 2 ) as a function of RcM for the leading PP configura­
tion and for different numbers (on the top of each curve) of NN configurations. 

Ri1F(R) 

100.10-S 

fig. 3.4.2 The same as in previous figure for the leading NN configuration and 
changing number of PP configurations. 
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As one would expect fro~ the results for w2;., fig. (3.3.1-3.3.3), where cluster wave 
function shows characteristic behaviour as a function of number of configurations, 
the formation amplitude itself defined as F(R) = J <I!Ja=O Y£ML <I!j,,=0 dr (19) 
also strongly increases in the surface of the nucleus and even outside of it. In 
figs. (3.4.1, 3.4.2) strengths A and B are those obtained from the calculation of 
the ground state energy of 212 Po. A way to see the importance of the neutron­
proton interaction in the formation of alpha-particle is to increase the value of 
B (X P NP N) maintaining the normalisation condition A 2 + B 2 = 1. 

Here is the evidence for the importance of configuration mixing as well as PN 
interaction for a-decay calculation. We see that the formation amplitude follows 
the same pattern as the cluster wave function discussed in chapter 3.3. 

R.F(R) 

-3 
12.10 

9 

B=I 

fig. 3.4.3 The dependence of F(R) x R(f m- 112) on the number of configurations 
N for R = 9 fm and different values of B=XPN p N strength. 
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We can now analyse the alpha-decay half-life and compare it with the experimental 
value. The ratio between the theory and experiment depends very much on the 
strength of neutron-proton contribution (fig. 3.4.4). The experimental values are 
taken from (ref. 32, 114-117). 

Ra 

60 

40 

20 

0.2 0.4 0.6 0.6 1.0 B 

fig. 3.4.4 Ratio Ra=T 1; 2 (theory)/T1; 2 (exp) as a function of B for R=9 fm. 
(See Table 3) 

The experimental alpha-decay half-lives given by different authors 
agreement with each other (within limits of standard deviation). 
ref. (104), for example has 

r:jf (212 Po) = (0.298 ± 0.03) µs. 

show good 
Schmorak, 

Comparison between theory and experiment for only one( all) configuration( s) 
taken into account, with different values of B is given in Table 2. 
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Here is the most interesting result which shows the importance of the NP inter­
action. The ratio between the experimental and the theoretical a-decay half-life 
shows a remarkable stability with respect to the radius if PN interaction is turned 
on. This is a natural consequence of the fact that the neutron-proton interaction 
increases the alpha-clustering. The more the clustering features are pronounced 
in the initial state, the better the assumptions of the Gamow theory eq. (21) of 
a-decay are fulfilled. 

Ra 

210 

B=O 

140 

B=0;43 

70 

B=I 

8.0 9.0 9.5 10.0 10.0 R 

fig. 3.4.5 Ra=T1;2(theory)/T1;2(exp) as function of radius R for different values 
of B= XPNPN strength. T1; 2 (exp) = 0.298 e- 6 s.(See Table 4). 

66 



Table 1 
T 1 ; 2 (th)/T1 ; 2 (exp) for different strengths B = XNPNP· 

Rc(fm) B = 1.0 B = 0.43 B = 0.0 

8.5 105.84 153.71 539.80 

8.6 56.86 93.86 381.89 

8.7 32.78 59.96 279.13 

8.8 20.12 40.00 210.47 

8.9 13.06 27.82 163.50 

9.0 8.92 20.13 130.79 

9.1 6.39 15.13 107.64 

9.2 4.79 11.80 91.06 

9.3 3.74 9.54 79.19 

9.4 3.04 7.98 70.75 

9.5 2.57 6.92 64.92 

9.6 2.25 6.19 61.15 

9.7 2.05 5.72 59.11 

9.8 1.92 5.46 58.65 

9.9 1.87 5.37 59.72 

10.0 1.88 5.45 62.38 

10.1 1.94 5.70 66.84 

10.2 2.08 6.14 73.46 

10.3 2.29 6.80 82.80 

10.4 2.59 7.75 95.69 

10.5 3.03 9.08 113.36 

10.6 3.64 10.94 137.62 

10.7 4.49 13.53 171.31 

10.8 5.70 17.20 218.47 

10.9 7.44 22.44 285.47 

11.0 9.96 30.05 382.27 

11.l 13.69 41.29 523.97 

11.2 19.31 58.15 735.70 

11.3 27.94 84.02 1057.74 

11.4 41.46 124.36 1556.46 

11.5 63.05 188.74 2346.10 

11.6 98.29 293.39 3617.26 
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Table 2 
T 1 ; 2 (th)/T1; 2 (exp) for only one configuration taken into account compared 

with all configurations taken into account, for different strengths B = X Np Np. 

B = 1.0 B = 0.43 B =0.0 

Rc(fm) one all one all one all 

8.3 l.8E+5 480.1 9.6E+4 478.5 1.6E+5 l.2E+3 

8.4 1.1E+5 214.2 7.8E+4 264.2 1.5E+5 789.5 

8.5 7.3E+4 105.8 6.5E+4 153.7 1.5E+5 539.8 

8.6 5.1E+4 56.9 5.6E+4 93.9 1.5E+5 381.9 

8.7 3.8E+4 32.8 5.0E+4 60.0 1.6E+5 279.1 

8.8 2.9E+4 20.1 4.5E+4 40.0 1.7E+5 210.5 

8.9 2.4E+4 13.1 4.3E+4 27.8 1.9E+5 163.5 

9.0 2.1E+4 8.9 4.1E+4 20.1 2.1E+5 130.8 

9.1 1.9E+4 6.4 4.1E+4 15.1 2.5E+5 107.6 

9.2 1.7E+4 4.8 4.2E+4 11.8 3.1E+5 91.1 

9.3 1.7E+4 3.7 4.4E+4 9.5 3.8E+5 79.2 

9.4 1.7E+4 3.0 4.7E+4 8.0 4.9E+5 70.8 

9.5 1.8E+4 2.6 5.2E+4 6.9 6.4E+5 64.9 

9.6 1.9E+4 2.3 5.9E+4 6.2 8.6E+5 61.2 

9.7 2.1E+4 2.0 6.9E+4 5.7 1.2E+6 59.l 

9.8 2.2E+4 1.9 8.3E+4 5.5 1.7E+6 58.7 

9.9 2.9E+4 1.9 1.0E+5 5.4 2.4E+6 59.7 

10.0 3.5E+4 1.9 l.3E+5 5.5 3.6E+6 62.4 

10.1 4.4E+4 1.9 l.7E+5 5.7 5.5E+6 66.8 

10.2 5.7E+4 2.1 2.2E+5 6.1 8.6E+6 73.5 

10.3 7.5E+4 2.3 3.0E+s 6.8 1.4E+7 82.8 

10.4 1.0E+5 2.6 4.3E+5 7.7 2.3E+7 95.7 

10.5 1.4E+5 3.0 6.1E+5 9.1 3.8E+7 113.4 

10.6 2.1E+5 3.6 8.9E+5 11.0 6.4E-H 137.6 

10.7 3.1E+5 4.5 1.3E+6 13.5 1.1E+8 171.3 

10.8 4.6E+5 5.7 2.1E+6 17.2 2.0E+8 218.5 

10.9 7.2E+5 7.4 3.3E+6 22.4 3.7E+8 285.5 

11.0 1.IE+6 10.0 5.3E+6 30.l 6.8E+8 382.3 
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Table 3 

F(R) * R as function of number of configurations taken into account, 
corresponding to fig. 3.4.4 

NcoNF B = 1.0 B = 0.43 B =0.0 

1 6.8E-04 4.8E-04 2.lE-04 

10 1.9E-03 2.4E-03 l.8E-03 

20 6.lE-03 6.2E-03 4.0E-03 

30 1.lE-02 9.8E-03 5.6E-03 

40 l.SE-02 1.3E-02 6.9E-03 

50 l.9E-02 l.SE-02 8.0E-03 

60 2.4E-02 1.8E-02 8.6E-03 

70 2.8E-02 2.0E-02 8.6E-03 

80 3.lE-02 2.lE-02 8.6E-03 

100 3.3E-02 2.2E-02 8.6E-03 
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Table ~ 

(corresponding to fig. 3.4.5). 

B Ra 

0.00 69.96 

0.02 55.58 

0.04 45.25 

0.06 37.57 

0.08 31.71 

0.10 27.14 

0.12 23.50 

0.14 20.55 

0.16 18.14 

0.18 16.13 

0.20 14.44 

0.25 11.24 

0.30 9.02 

0.40 6.20 

0.50 4.56 

0.60 3.51 

0.70 2.81 

0.80 2.33 

0.90 1.99 

1.00 1.88 
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CONCLUSIONS 

We are describing a process of a-decay of 212 Po as a disintegration of initial clus­
ter state into core and a free a-particle. 
We demonstrated the necessity of including many configurations to obtain clus­
tering of four nucleons outside the inert core. 
It was shown that alpha-cluster appears in the surf ace region of the nucleus. Once 
we allowed protons and neutrons to occupy high-lying levels, the argument that 
they do not interact because of different shells they belong to (N =126, Z=82) has 
no effect anymore. Therefore we also showed the importance of proton-neutron 
interaction for cluster formation. Even a small proton-neutron interaction im­
proves clustering and consequently the a-decay width considerably. 
Proton-neutron interaction produces cluster which fulfils assumptions of Gamow 
theory. With increasing proton-neutron interaction the stability of alpha-decay 
width f (R) with respect to channel radius is achieved in the large region on the 
nuclear surface and even beyond it. 
The next step would be to calculate some other cases of alpha-decay. 
Closely related to a-decay is heavy cluster emission. Besides one-proton and 
two-protons emission, one can observe many other charged particle radioactivi­
ties such as sHe s,9Be l2B 12,13,14C 14,15N 16,11,1s 0 21,22F 23,24Ne etc The ' ' ' ' , , ' ' . 
intensities of these processes are by many orders of magnitude weaker than those 
of the alpha-decay, of course. It would be interesting to apply our approach to 
heavy cluster emission as well. 
We have still means to improve our alpha-decay calculations. We can hope on 
the basis of our present results that the better understanding of cluster structure, 
especially proton-neutron interaction will help to remuve the remaining disagree­
ment with experiment. 
We can conclude that our results for 212 Po a-decay support the concept of clus­
tering in heavy nuclei. 
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APPENDIX A 
LS-jj coupling coefficients 

From (ref. 41) one reads 

{ 

l1 
[(2L + 1)(25 + 1)(2J1+1)(2J2 + 1)] 1/ 2 s.1 

JI 

Since s 1 = s 2 = ~' S may take values 0 or 1. If S = 0, that means 

Taking into account that Av = Jv A11'" = J11'" and Av = Arr 

(Jv Sv = OIJpJq) = (-l)IP+iq+J,,+1/2 (2Jp + l)(2Jq + 1) {JV 
2 .!. 2 

and 

(J7r S7r = OIJris) = (-1) 1·+i.+J,.+I/2 (2jr + l)(2js + 1) { J7r 
2 .!. 

2 

Jp 
lq 

Jr 
ls 

or, in more special case, when J v = 0 and J 7r = 0, Jp = Jq and Ip = lq 

and 

(76) 

(77) 

Jq} 
lp 

(78) 

Js} 
lr 

(79) 

(J7r = 0 S7r = Oliris) = (-1)1.+f.+1/2 (2jr + 1) {? Jr Jl.rs}. (81) 
VZ 2 ls 

Using the known relation (ref. 41) 

{ ~ i2 h} (-1)i1+i2+j3 

J3 i2 - J(2}2 + 1)(2)3 + 1) 
(82) 

that in our case means 

{ 
Ojp)p }-{ tlp]p}- (-1)1/2+1p+fp 

t lp lp - 0 Jp Ip - j(2/P + l)(2jp + 1) 
(83) 
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APPENDIX B 

PROGRAM SPLEV 

c 
C PROGRAM TO CALCULATE SINGLE PARTICLE LEVELS FOR RPAPH 

c 
c 
DIMENSION ESP(500), XJ(500), NN(500), nsmall(500), LJ(500), ITZ(500) 

1, JJ(500) 

11 FORMAT(/, ' NEUTRON STATES', /) 

12 FORMAT(/,' PROTON STATES',/) 

13 FORMAT(/, ' KAPPA=', lFl0.4, 'MU=', lFl0.4, /) 

15 FORMAT(/, I MASS=', 1F8.2, I CHARGE=', 1F8.2, //) 

16 FORMAT(/, 'NUMBER OF SINGLE PARTICLE STATES', I5, /) 

14 FORMAT(/, 'I, ITZ, NN, LJ, XJ, ENERGY',/) 

18 FORMAT(2X, 416, F6.l, 5X, 2Fl0.5) 

OPEN(UNIT=2, NAME='BASE.DAT', STATUS='OLD') 

C ***********DATA IN 

C AM=MASS 

C AZ=CHARGE 

C NMINN=INITIAL VALUE OF N(PRINCIPAL Q.NUM) FOR NEUTRONS 

C NMAXN=FINAL VALUE OF N(PRINCIPAL Q.NUM) FOR NEUTRONS 

C NMINP=IDEM FOR PROTONS 

C NMAXP=IDEM FOR PROTONS 

C FKAPN=KAPPA (NEUTRONS) 

C FMUN=MU (NEUTRONS) 

C FKAPP (FMUP) =IDEM FOR PROTONS 

C THESE VALUES ARE TAKEN FROM NILSSON ET AL (NUCL.PHYS.A 131(1969)1 

C AND IN THIS CODE WE HAVE REDEFINED FMU=KAPPA*MU 

READ (2, *)AM, AZ, NMINN, NMAXN, NMINP, NMAXP, FKAPN, FMUN, FKAPP, FMUP 

C ***********END DATA 

d OPEN(UNIT=3, NAME='BASE.RES', STATUS='NEW') 

C **"'*"'***UNIT (3) IS FOR INFORMATION (OUTPUT) 

C ****.,..**UNIT (4) WILL BE USED IN RADIAL.FOR 

d OPEN(UNIT=4, NAME='HOSC.BASIS', STATUS='NEW') 

OPEN(UNIT=7, NAME='HOSCPROTON.BASIS', STATUS='NEW') 

OPEN(UNIT=8, NAME='HOSCNEUTRON.BASIS', STATUS='NEW') 

d WRITE(3, 15)AM, AZ 

ICOUNT=O 

DO 100 ICH=l, 2 
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IF(ICH.EQ.1) GO TO 110 

FKAPPA=FKAPP 

FMU=FMUP*FKAPPA 

NMINl=NMINP+l 

NMAXl=NMAXP+l 

d WRITE(3, 12) 

d WRITE(3, 13)FKAPPA, FMU 

FAC=-1. 

IFAC=-1 

GO TO 112 

110 CONTINUE 

FKAPPA=FKAPN 

FMU=FMUN*FKAPPA 

NMINl=NMINN+l 

NMAXl=NMAXN + 1 

d WRITE(3, 11) 

d WRITE(3, 13)FKAPPA, FMU 

FAC=l. 

IFAC=l 

112 CONTINUE 

HOMEGA=41.*(1.+ FAC* (AM-2.* AZ)/(3. * AM))/(AM**(l./3.)) 

d WRITE(3, 2020)HOMEGA 

2020 FORMAT(/, lOX, 'OSCILLATOR ENERGY= ', Fl0.5, /) 

DO 200 Nl=NMINl, NMAXl 

N=Nl-1 

FN=N 

LO=N-2* (N /2) 

DO 210 L=LO, N, 2 

ICOUNT=ICOUNT+l 

FL=L 

FJP=FL+0.5 

EP=FN +1.5-FKAPPA *FL-FMU* (FL* (FL+l .)-0.5*FN* (FN +3)) 

EPMEV=EP*HOMEGA 

ITZ(ICOUNT)=IFAC 

NN(ICOUNT)=FN 

XJ(ICOUNT)=FJP 

LJ(ICOUNT)=L 

ESP(ICOUNT)=EPMEV 

FJP=FL-0.5 

IF(FJP.LT.0.0) GO TO 220 

rco u NT=ICO u NT+ 1 

EP=FN +I .5+FKAPPA *(FL+ 1.)-FMU* (FL* (FL+ 1.)-0.5* FN • (FN +3)) 

EPMEV=EP•HOMEGA 
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ITZ (ICOUNT)=IFAC 

NN(ICOUNT)=FN 

LJ (ICO U NT)=L 

XJ(ICOUNT)=FJP 

ESP(ICOUNT)=EPMEV 

220 CONTINUE 

210 CONTINUE 

200 CONTINUE 

100 CONTINUE 

NST=ICOUNT 

d WRITE(3, 16)NST 

d WRITE(3, 14) 

DO 300 I=l, NST 

AR=ESP(I) 

DO 400 J=I, NST 

IF(ESP(J) .GT.AR) GO TO 400 

AR=ESP(J) 

TEMP=ESP(J) 

ESP(J)=ESP(I) 

ESP(I)=TEMP 

TEMP=XJ(J) 

XJ(J)=XJ(I) 

XJ(I)=TEMP 

ITEMP=NN(J) 

NN(J)=NN(I) 

NN(I)=ITEMP 

ITEMP=LJ(J) 

LJ(J)=LJ(I) 

LJ(I)=ITEMP 

ITEMP=ITZ(J) 

ITZ(J)=ITZ(I) 

ITZ(l)=ITEMP 

400 CONTINUE 

300 CONTINUE 

d DO 500 I=l, NST 

JJ (1)=2. *XJ (I)+0.000001 

ESPO=ESP(I)/HOMEGA 

d500 WRITE(3, 18)1, ITZ(I), NN(I), LJ(I), XJ(I), ESPO, ESP(I) 

d WRITE(4, *)NST 

do 600 i=l, nst 

d WRITE(4, *)I, ITZ(I), NN(I), LJ(I), JJ(I), ESP(I) 

nsmall(i) = ( nn(i)-lj (i)) /2 

lj(i)=2"'lj(i) 
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IF(ITZ (I) .LT.O)THEN 

WRITE(7, "')I, nsmall(I), LJ(I), JJ(I), ESP(I) 

ELSE 

WRITE(8, *)I, nsmall(i), LJ(I), JJ(I), ESP(I) 

END IF 

600 continue 

STOP 

END 

BASE.DAT 

208. 82. 0 13 0 13 0.0636 0.367 0.0604 0.628 

PROGRAM PPSDI 

DIMENSION H(660, 660), NPH(l50), LPH(l50), JPH(l50), EPH(150), 

1 NPP{l50), LPP(l50), JPP(l50), EPP(l50), NPFON(660), LPFON(660), 

2 JPFON(660), OMEGA(660), NHFON(660), LHFON(660), JHFON(660), 

3 IL(660), JL(660), OM(660), WFOM(660, 660), AUX(660) 

OPEN(UNIT=S, NAME='PPSDI.IN', STATUS='OLD', READONLY) 

OPEN(UNIT=7, NAME='PROTSP.DAT', STATUS='OLD', READONLY) 

OPEN{UNIT=l, NAME='PPSDI.OUT', STATUS='NEW', CARRIAGECONTROL='LIST') 

CALL HELP 

READ(S, *)LA, IPI, IT, AT, NSPRI 

DO 5 I=l, 660 

DO 5 J=l, 660 

5 H(J, I)=O.O 

WRITE(6, 9600) 

l=O 

7 I=I+l 

READ(7, *, END=8)K, NPH(I), LPH(I), JPH(I), EPH(I) 

NPP(I)=NPH(I) 

LPP(I)=LPH(I) 

JPP(I)=JPH(I) 

EPP(I)=EPH(I) 

GO TO 7 

8 NSPPH=l-1 

NSPNP=NSPPH 
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WRITE(6, 9100) 

KN=O 

DO 30 l=l, NSPNP 

DO 30 J=I, NSPPH 

K=KOUPL(LPH(J), JPH(J), LPP(I), JPP(I), LA, IPI) 

IF(K.EQ.O) GOTO 30 

KN=KN+l 

NPFON(KN)=NPP(I) 

LPFON(KN)=LPP(I) 

JPFON(KN)=JPP(I) 

OMEGA(KN)=EPP(I)+EPH(J) 

NHFON(KN)=NPH(J) 

LHFON(KN)=LPH(J) 

JHFON(KN)=JPH(J) 

IL(KN)=I 

JL(KN)=J 

30 CONTINUE 

WRITE(6, 9200) 

WRITE(6, *)KN 

DO 70 M=2, KN 

L=M 

TAL=OMEGA(M) 

NPTAL=NPFON(M) 

LPTAL=LPFON(M) 

JPTAL=JPFON(M) 

NHTAL=NHFON(M) 

LHTAL=LHFON(M) 

JHTAL=JHFON (M) 

ITAL=IL(M) 

JTAL=JL(M) 

40 IF{TAL.GE.OMEGA(L-1)) GOTO 50 

OMEGA(L)=OMEGA(L-1) 

NPFON(L)=NPFON(L-1) 

LPFON(L)=LPFON(L-1) 

JPFON(L)=JPFON (L-1) 

NHFON{L)=NHFON(L-1) 

LHFON (L) =LHFON(L-1) 

JHFON (L)=JHFON(L-1) 

IL(L)=IL(L-1) 

JL(L)=JL(L-1) 

L=L-1 

IF(L.EQ.I) GOTO 60 

GOTO 40 
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50 OMEGA(L)=TAL 

NPFON(L)=NPTAL 

LP FON (L)=LPTAL 

JPFON(L)=JPTAL 

NHFON(L)=NHTAL 

LHFON(L)=LHTAL 

JHFON(L)=JHTAL 

IL(L)=ITAL 

JL(L)=JTAL 

GOTO 70 

60 OMEGA(l)=TAL 

NPFON(l)=NPTAL 

LPFON(l)=LPTAL 

JPFON(l)=JPTAL 

NHFON(l)=NHTAL 

LHFON(l)=LHTAL 

JHFON(l)=JHTAL 

IL(l)=ITAL 

JL(l)=JTAL 

70 CONTINUE 

WRITE(6, 9300) 

DO 100 I=l, KN 

DO 100 J=l, KN 

IF(I.EQ.J) H(I, J)=H(I, J)+OMEGA(I) 

DR=DELTA(JPFON(I), LPFON(I), JHFON(I), LHFON(I), JPFON(J), 

3 LPFON(J), JHFON(J), LHFON(J), LA, IT, AT) 

IF(IL(I).EQ.JL(I)) DR=DR/SQRT(2.) 

IF(IL(J).EQ.JL(J)) DR=DR/SQRT(2.) 

H(I, J)=H(I, J)+DR 

100 CONTINUE 

WRITE(6, 9400) 

ID1=660 

CALL EISRl(IDl, KN, H, OM, WFOM, IER, AUX) 

IF(IER.NE.O) GOTO 2000 

DO 200 l=l, KN 

IF(NSPRI.EQ.I)THEN 

WRITE(!, *)'ENERGY=', OM(I) 

DO J=I, KN 

WRITE(!, *)IL(J), JL(J), WFOM(J, I) 

END DO 

END IF 

DO 180 J=l, KN 

AUX(J)=O 
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DO 180 K=l, KN 

A=O 

IF(J.EQ.K) A=OM(I) 

180 AUX(J)=AUX(J)+(H(J, K)-A)*WFOM(K, I) 

200 CONTINUE 

GOTO 2500 

2000 WRITE(6, 7500) 

2500 CONTINUE 

END 

PPSDI.IN 

0 1 2 0.028 1 
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PROGRAM ALPHA 

*THIS PROGRAM CALCULATES ALPHA-DECAY AMPLITUDE 

* AS FUCTION OF R, 

* (INCLUDING PPNN AND PNPN CONTRIBUTION), 

* FROM RMIN TO RMAX IN STEPS OF DR. 

* SINGLE PARTICLE R.W.F.ARE HARMONIC OSCILLATOR TYPE . 
.. 
* RADIAL INTEGRATION BY SUBROUTINE XINHO 

* 
* OUTPUT: FORM-FACTOR (INTEGRAL) FOR ALPHA-DECAY 

* (GROUND STATE-GROUND STATE) 

* OF 212PO AS FUNCTION OF R, 

*ALPHA-DECAY WIDTH FOR 212PO AS FUNCTION OF R. 

* initial nucleus, final nucleus, alpha-particle and cluster 

* -all of them have spin zero.orbital momentum of alpha-particle 

* relative to the daughter L=O. 

* pairs of nucleons coupled to zero as well. 
.. 
INCLUDE 'ALPHACOMMON.FOR/LIST' 

character*9 datum 

character*8 timb 

CALL DATE(DATUM) 

CALL TIME(TIMB) 

C* READS SINGLE-PARTICLE STATES 

CALL ONE 

write(6, *)'ONE finished.single-particle data read' 

C* READS TWO-PARTICLE STATES 

CALL TWO 

write(6, *)'TWO finished.two-particle data read' 

C* CALCULATES Q-COEFFICIENT 

CALL QCOEFF 

write(6, *)' QCOEFF finished.q coefficient calculated' 

OPEN(UNIT=2, NAME='ALPHA_DAT', TYPE='OLD', READONLY) 

C OPEN(UNIT=3, NAME='ALPHA_OUT', TYPE='NEW', CARRIAGECONTROL='LIST') 

OPEN(UNIT=7, NAME='ALPHAFF _PLT', TYPE='NEW', CARRIAGECONTROL='LIST') 

OPEN(UNIT=9, NAME='ALPHAWIDTHYLT', TYPE='NEW') 

C****,... READS RADIAL POINTS AT WHICH AMPLITUDE IS CALCULATED "***" 

READ(2, *)RMIN, RMAX, DR 

C""'..,...,. ANGULAR MOMENTUM OF FOUR-PARTICLE SYSTEM J2P2N=(O)+ **"'*** 

C****** ANGULAR MOMENTUM OF PP, NN AND PN PAIRS =0 "'*"'********"'*** 

100 READ(2, *)XPNPN !READS WEIGHT FOR PPNN contribution 

xpnpnsq=xpnpn *xpnpn 
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xppnn=dsqrt(l·xpnpnsq) !CALCULATES WEIGHT FOR PNPN contribution 

DO 230 I=O, NLIMIT 

230 AMP(l)=O.DO 

C* 

C****** LIMITS FOR THE MOSHINSKY BRACKETS.SEE WRITEMBG PROGRAM 

c• 
OPEN(UNIT=B, NAME='WRITEMBG...DAT', TYPE='OLD', READONLY) 

READ(B, ")IXl, IX2, IX3 

IOK=O 

NMAX=IX2 

MAXSNU=IXl 

R=RMIN-DR 

nradpoint=O 

300 R=R+DR 

IF(R.GT.RMAX)GO TO 400 

nradpoint=nradpoint+ 1 

IF(nradpoint.GT.150)THEN 

WRITE(6, 310) 

310 FORMAT(' IN ALPHA THE ARRAY RWFA IS OUT OF DIMENSION') 

STOP 

ENDIF 

C* 

C"'***** FOUR PARTICLE H.O.R.W.F.OF C.M. COORDINATE********* 

C* 

CALL HOR(NMAX, O, 4*XNU, R, WF) 

DO N=O, NMAX 

RWFA(N, nradpoint)=WF(N) 

END DO 

GO TO 300 

400 write(6, *)' hor finished.alpha-particle h.o.radial w.f. calculated.' 

CLOSE(UNIT=B) 

C* 

*** 

cuu+ INTEGRAL OF 2P-2N (PN-PN) RADIAL FUNCTION OVER RELATIVE COORDI­

NATE ***** 

C* 

CALL XINHO(NMAX, 0.5DO) 

write(6, *)' XINHO finished.alpha particle radial function integrated.' 

c• 
C****** AMPLITUDE AS FUNCTION OF R **********•************************•••••••• 

C* 

C**H** MOSH. BRACK. (N SON BO; O/NILIN2L2; 0) 

READ FROM CMOSBG.WRI. *** 
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OPEN(UNIT=8, NAME='MOSBG_WRI', TYPE='OLD', 

1 FORM='UNFORMATTED', ACCESS='SEQUENTIAL', READONLY) 

240 READ(8, END=2000)NSA, NBA, NBNU, JNU, NBPI, JPI, XMOB 

IF (JNU.NE.O)GO TO 1000 

AUXPl=XMOB*RINT(NSA) 

AUXP2=AUXP1 "'XPPNN 

AUXP22=AUXP1 *XPNPN 

DO 900 NSNU=O, MAXSNU 

QNU=Q(2, NSNU, NBNU) 

IF(QNU.GT.l.D9)GO TO 900 

AUXP3=AUXP2*QNU 

DO 800 NSPI=O, MAXSNU 

QPI=Q(l, NSPI, NBPI) 

IF(QPl.GT.l.D9)GO TO 800 

AUXP=AUXP3*QPI 

AMP(NBA}=AMP(NBA)+AUXP 

800 CONTINUE 

900 CONTINUE 

DO 950 NSPN=O, MAXSNU 

QPN=Q(3, NSPN, NBNU) 

IF(QPN.GT.1D9)GO TO 950 

A UXP33=AUXP22*QPN 

DO 930 NSNP=O, MAXSNU 

QNP=Q(3, NSNP, NBPI) 

IF(QNP.GT.1D9)GO TO 930 

AUXPP=AUXP33*QNP 

AMP(NBA}=AMP(NBA)+AUXPP 

930 CONTINUE 

950 CONTINUE 

1000 CONTINUE 

IF((NSA+NBA).EQ.NMAX}IOK=l 

GO TO 240 

2000 IF(IOK.EQ.O)THEN 

WRITE(6, 2100) 

2100 FORMAT(' CONDITION MAX(NSA+NBA)=IX2 NOT FULFILLED') 

STOP 

END IF 

R=RMIN-DR 

write(3, *)' po212 alpha decay width' 

WRITE(3, *)' SPIN OF INITIAL NUCLEUS=O' 

WRITE(3, *)'SPIN OF FINAL NUCLEUS=O' 

WRITE(3, *)'SPIN OF ALPHA PARTICLE=O' 
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WRITE(3, *)' PP, NN AND PN PAIRS COUPLED TO ZERO ' 

WRITE(3, *) 

WRITE(3, 2140)XPPNN 

WRITE(3, 2141)XPNPN 

2140 FORMAT('XPPNN=', F5.2) 

2141 FORMAT('XPNPN=', F5.2) 

WRITE(3, 2143)NCONF(l) 

2143 FORMAT(' number of TWO-PROTON configurations= ', 13) 

WRITE(3, 2134)NCONF(2) 

2134 FORMAT(' number of TWO-NEUTRON configurations= ', 13) 

WRITE(3, 21341)NCONF(3) 

21341 FORMAT(' number of PROTON-NEUTRON configurations= ', 13) 

WRITE(3, *) 

WRITE(3, 2135)NSPS(l) 

2135 FORMAT(' number of PROTON SINGLE particle states=', 13) 

WRITE(3, 2136)NSPS(2) 

2136 FORMAT(' number of NEUTRON SINGLE particle states=', 13) 

NUHOHALF=NUH0/2 

WRITE(3, 2137)NUHOHALF 

2137 FORMAT(' MAXIMAL PRINCIPAL Q.N., NMAX=', 13) 

write(3, *) 

write(3, *) 

write(3, 2145) 

2144 FORMAT(' for L=', 13, ', parity=', 13) 

2145 format(' R(FM) INTEGRAL INT*R GAMSQ(MEV)') 

Pl=2.DO*DASIN (l.DO) 

AP=PI"'*3 

B=XNUA**2 

C=DSQRT(XNUA/ AP) 

C=DSQRT(C) 

CTE=DSQRT(S.DO)*B*C 

A=208. 

CC=8*983* A/(A+4) 

DO 2300 iradpoint=l, nradpoint 

R=R+DR 

S=O.O 

DO 2200 NBA=O, NMAX 

2200 S=S+RWFA(NBA, iradpoint)* AMP(NBA) 

S=S*CTE 

GAM=197. *DSQRT(R/CC)*S 

GAMSQ=GAM*GAM 

SS=R*S 

WRITE(3, 2250)R, S, SS, GAMSQ 
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WRITE(7, 2250)R, SS 

WRITE(9, 2250)R, GAMSQ 

2250 FORMAT(5X, F5.2, 5X, Dl0.4, 5X, Dl0.4, 5X, 010.4) 

2300 CONTINUE 

write(3, *) 

write(3, *)datum, ' ', timb 

2400 CONTINUE 

STOP 

END 

SUBROUTINE ONE 

c 
C THIS SUBROUTINE READS SINGLE-PARTICLE DATA (taken from 

C Phys.reports 30C(1977)p.305)(0R CALCULATED BY 

C SPLEV PROGRAM), 

C FIRST FOR PROTONS(M=l), AND THEN FOR NEUTRONS(M=2). 

C FORMAT:!, N, 2L, 2J, E 

C NSPS(M)-NUMBER OF SINGLE PARTICLE CONFIGURATIONS PROT./NEUT. 

C NSP(M, !)-PRINCIPAL QUANTUM NUMBER PROTON/NEUTRON 

C LSP(M, I)-2*L FOR PROTON/NEUTRON 

C JSP(M, I)-2*J FOR PROTON/NEUTRON 

c 
INCLUDE 'ALPHACOMMON.FOR' 

OPEN (UNIT=l, NAME='PROTSP_DAT', TYPE='OLD', READONLY) 

NUHO=O 

M=l 

10 1=0 

100 READ(l, *, END=200)IDUMMY, N, L, J, E 

l=I+l 

IF(I.GT.N-81NGLE_pART)THEN 

WRITE(6, 110) 

110 FORMAT(' ONE:MORE THAN N-81NGLE_PART SINGLE-PARTICLE STATES.CHANGE 

Z DIMENSIONS') 

STOP 

END IF 

NSP(M, I)=N 

LSP(M, l)=L 

JSP(M, I)=J 

N2L=4*N+L 

IF(N2L.GT.NUHO)NUHO=N2L 

GO TO 100 

200 NSPS(M)=I 

M=M+l 

IF(M.NE.2) GO TO 300 
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CLOSE (UNIT=!) 

OPEN(UNIT=l, NAME='NEUTSP_DAT', TYPE='OLD', READONLY) 

GO TO 10 

300 CONTINUE 

CLOSE(UNIT=l) 

RETURN 

END 

SUBROUTINE TWO 

c 
C THIS SUBROUTINE READS TWO-PARTICLE (PROTON-PROTON, 

C NEUTRON-NEUTRON, AND PROTON...NEUTRON) STATES. 

C Two-particle states are calculated by PPSDI, NNSDI, AND PNSDI programs 

C by diagonalysing surface-delta interaction between two particles 

C see: Glaudemans, Brussard textbook. 

C Single-particle data are taken from Phys.Reports 30C(l977)305, 

c or calculated by SPLEV program. 

C M=l (PROTON PAIRS), M=2 (NEUTRON PAIRS), M=3 (PROTON-NEUTRON PAIRS). 

C FORMAT: 

c 11, 12, x 
C ll=ITWO(M, KONF):POINTER TO THE SINGLE PARTICLE STATE 

C (NSP, LSP, JSP) FOR THE FIRST PARTICLE. 

C 12=JTWO(M, KONF):POINTER TO THE SINGLE PARTICLE STATE 

C (NSP, LSP, JSP) FOR THE SECOND PARTICLE. 

c 
C KONF:DENOTES TWO-PARTICLE CONFIGURATIONS 

C (I.E. PAIRS OF SINGLE PARTICLE STATES WITH CORRESPONDING 

C WEIGHTS X) . 

C YTWO(M, KONF):WEIGHT X OF TWO PARTICLE CONFIGURATION 

C MULTIPLIED BY CONSTANT. 

C YTWO=X*(2**1/2)*PHASE*AJP*JQA **I/2*SIXJ(JP, LP, 1/2, LQ, JQ, JNU) 

C X=WEIGHT OF GIVEN (II, I2) TWO-PARTICLE CONFIGURATION 

C X COMES FROM THE EXPRESSION FOR THE TWO-PARTICLE W.F.: 

C PSI(Rl, R2;ALPHANU)=(SUM OVER P.LE.Q)AX(P, Q;ALPHANU)* 

c APHIP(RI)"'PHIQ(R2)AA 

C NCONF(M):NUMBER OF TWO-PARTICLE CONFIGURATIONS 

c 
c 
INCLUDE 'ALPHACOMMON.FOR' 

CHARACTER *40 TWO NAME 

CALL HELP 

M=l 

10 GO TO (20, 30, 40, 2000)M 

20 TWONAME='PP_DAT' 
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GO TO 50 

30 TWONAME='NN_DAT' 

GO TO 50 

40 TWONAME='PN...DAT' 

50 OPEN(UNIT=l, NAME=TWONAME, TYPE='OLD', READONLY) 

XNORM=O. 

KONF=O 

300 READ(l, ", END=500}ll, 12, X 

IF(ll.LT.O) GO TO 500 

KONF=KONF+l 

IF(KONF.GT.N_TWO_PART)STOP 'N_TWO_PART TOO SMALL' 

IF(M.EQ.3)THEN 

MFIRST=l 

MSECOND=2 

ELSE 

MFIRST=M 

MSECOND=M 

ENDlF 

lTWO(M, KONF}=ll 

JTWO(M, KONF)=l2 

NP=NSP(MFIRST, Il} 

LP=LSP(MFIRST, Il} 

JP=JSP(MFIRST, Il} 

NQ=NSP(MSECOND, 12) 

LQ=LSP(MSECOND, 12) 

JQ=JSP(MSECOND, 12) 

JNU=O 

lF(LP.NE.LQ)GOTO 300 

lF(JP.NE.JQ)GOTO 300 

XNORM=XNORM+X*X !norm from sum(x**2)=1 

a=dfioat(2* (Ip+ 1)) 

b=dfioat(jp+l) 

c=b/a 

c=dsqrt(c) 

SYMFACT=DSQRT(2.DO) !SYMMETRIZATION FACTOR 

IF(NP.EQ.NQ)SYMFACT=l. 

f=l. 

lphalf=lp/2 

if(lphalf.ne.2• (lphalf/2))f=- l. 

YTWO(M, KONF)=X*c*SYMFACT*f !YTWO IS Y(PQ;ALPHANU), NOTES! 

GO TO 300 

500 NCONF(M)=KONF 

XNORM=DSQRT(XNORM) 
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write(6, 599)xnorm 

WRITE(6, *)TWONAME 

599 format(' TWO: xnorm='f5.3) 

DO I=l, KONF 

YTWO(M, I)=YTWO(M, I)/XNORM 

END DO 

CLOSE(UNIT=l) 

M=M+I 

GO TO 10 

2000 RETURN 

END 

SUBROUTINE QCOEFF 

C* 

C* THIS SUBROUTINE CALCULATES THE COEFFICIENTS Q 

C"' FOR PROTON PAIRS (M=l), NEUTRON PAIRS (M=2), 

C* AND PROTON-NEUTRON PAIRS(M=3)(SEE THE NOTES). 

C* Q=(SUM) ( YTWO * Z4 ) 

C* YTWO=TWO-PARTICLE WEIGHT X MULTIPLIED BY CONSTANT. 

C* Z4= MOSH.BRACKET*INTEGRALARNL(R)*EXP(-0.25*XNU*R "'*2)*R **2* DRA 

C* MOS HIN SKY BRACKETS ARE READ FROM MOSBR. WRI. 

C* RADIAL INTEGRAL THAT ENTERS Z4 IS CALCULATED IN 

C* SUBROUTINE XINHO(N, 1/4). 

C* IN NUHO MAX A2(NP+NQ)+LP+LQA. 

C* 

C* TO EXECUTE LINES WITH D-COMMENT MAKE: FOR/D­

C* 

C* 

INCLUDE 'ALPHACOMMON.FOR' 

NUSMAX=NUHO 

DO 50 13=0, NLIMIT 

DO 50 12=0, NLIMIT 

DO 50 11=1, 3 

50 Q(ll, 12, 13)=1.d20 

IF(NUSMAX.GT.NLIMIT)THEN 

WRITE{6, 90)NUHO 

90 FORMAT('QCOF: CHANGE DIMENSION, NUHO.GT.NLIMIT, NUHO=') 

STOP 

ENDIF 

C****** RADIAL INTEGRALS OF R(NSNU, 0), NEUTRON-PAIR RELATIVE COORDI­

NATE, 

C****** R(NSPI, 0), PROTON-PAIR RELATIVE COORDINATE, AND 

C****** R(NSPN, O)PROTON-NEUTRON RELATIVE COORDINATE 
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C* 

CALL XINHO(NUSMAX, 0.25DO) 

C* 

C****** range of (NS, 0, NB, LA; LAIN1, Ll, N2, L2; LA) 
C* 

OPEN(UNIT=S, NAME='WRITEM_DAT', TYPE='OLD', READONLY) 

C* 

C* LA WRM IS MAXIMUM LAMBDA 

C* Nl.LE.NPWRM, N2.LE.NPRWM 

C* 2Nl+Ll.LE.LPWRM, 2N2+L2.LE.LPWRM 

C* NBPQR.GE.2(Nl+N2)+L1+L2 

C*' FOR THE DETAILS SEE THE PROGRAM WRITEM. 

c• 
READ(S, *')LAWRM, NPWRM, LPWRM, NBPQWR 

CLOSE(UNIT=B) 

c• 
c• READS (NS, O, NB, LA;LAIN1, Ll, N2, L2;LA) 
C*' LAUB IS LAMBDA FROM UNIT=B, AND LIKE. 

C* 

OPEN(UNIT=S, NAME='MOSBR_WRI', TYPE='OLD', READONLY, 

Z FORM='UNFORMATTED', ACCESS='SEQUENTIAL') 

400 READ(S, END=2000)LAUS 

DO 430 M=l, 3 

JNU=O 

IF(JNU.GT.LAWRM)GO TO 460 

IF(JNU.EQ.LAUS)GO TO 470 

420 CONTINUE 

430 CONTINUE 

440 READ(B)NSUB, NBUB, NlUS, LlUS, N2US, L2UB, AUS 

IF(NSUS.LT.O)GO TO 400 

GO TO 440 

460 WRITE(6, 461)JNU, LAWRM 

461 FORMAT(' IN QCOF JNU, LAW RM=', 2I3) 

STOP 

470 CONTINUE 

500 READ(B)NSUB, NBUS, NlUB, LlUB, N2UB, L2UB, AUS 

IF(NSUB.LT.O)GO TO 400 

DO lSOO M=l, 3 

NSM=NSUB I NSM MEANS N SMALL 

IF(JNU.NE.LAUB)GO TO 1700 

KONF=NCONF(M) 

DO 1600 K=l, KONF 

Il=ITWO(M, K) 
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12=JTWO(M, K) 

IF(M.EQ.3)THEN 

MFIRST=l 

MSECOND=2 

ELSE 

MFIRST=M 

MSECOND=M 

END IF 

NP=NSP(MFIRST, 11) 

LP=LSP(MFIRST, 11)/2 

NQ=NSP(MSECOND, 12) 

LQ=LSP(MSECOND, 12)/2 

IS=2*(NP+NQ)+LP+LQ 

IF(NP.GT.NPWRM.OR.LP.GT.LPWRM.OR.IS.GT.NBPQWR)THEN 

WRITE{6, 550)NP, NPWRM, LP, LPWRM, IS, NBPQWR, K, N2 

550 FORMAT(' IN QCOF CONDITIONS NOT SATISFIED', 813) 

STOP 

END IF 

NBG=NBUS I NBG MEANS N BIG 

IF(NP.NE.N 1U8.0R.LP.NE.Ll US. OR.NQ.N E.N 2U8.0R.LQ.N E.L2U 8) 

Z GO TO 1600 

XM=AU8 

Z4=XM*RINT(NSM) ! Z4 OF THE NOTES 

IF{Q(M, NSM, NBG).GT.1.D19)Q(M, NSM, NBG)=O.DO 

Q(M, NSM, NBG)=Q(M, NSM, NBG)+YTWO(M, K)*Z4 

1600 CONTINUE 

1700 CONTINUE 

1800 CONTINUE 

GO TO 500 

2000 CONTINUE 

CLOSE(UNIT=S) 

RETURN 

END 

SUBROUTINE XINHO(NUSMAX, CASE) 

INCLUDE 'ALPHACOMMON.FOR' 

C"' 

C*"*'"** THIS SUBROUTINE CALCULATES THE RADIAL INTEGRAL 

CH**** INT(R"'*2*EXP((-XNU*CASE)"R**2)RNL(R), FROM N=O TO N=NUSMAX. 

C* 

C"NUSMAX=NUHO 

C* NUHO=MAXA2(NP+NQ)+LP+LQA 

C" HARMONIC OSCILLATOR RADIAL WAVE FUNCTIONS 

C" ARE CALCULATED IN HOR 
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C* INTEGRATION METHOD:GAUSS(ABRAMOWITZ, P887) 

C* 

DIMENSION XG(4), WG(4) 

DO 60 Il=O, NLIMIT 

60 RINT(ll)=O. 

XG(l)=-0.861136311594053 

XG(2)=-0.339981043584856 

XG(3)=-XG(2) 

XG(4)=-XG(l) 

WG(l )=0.347854845137454 

WG(2)=0.652145154862546 

WG(3)=WG(2) 

WG(4)=WG(l) 

RMAX=20. 

NSTEPS=25 

DR=RMAX/NSTEPS 

NMAX=NUSMAX 

B=O. 

100 CONTINUE 

A=B 

B=B+DR 

IF(B.GT.RMAX)GO TO 350 

DO 300 IG=l, 4 

YI=0.5*(DR *XG(IG)+A+B) 

YISQ=YI*YI 

AA=CAS E*XNU A *YISQ 

L=O 

CALL HOR(NMAX, L, XNU, YI, WF) 12-PARTICLE H.O.R.W.F. 

DO 200 N=O, NMAX 

DEX=DEXP(-AA) 

FUNC=YISQ*WF(N) *DEX 

RINT(N)=RINT(N)+0.5*DR *WG(IG)*FUNC 

200 CONTINUE 

300 CONTINUE 

GO TO 100 

350 CONTINUE 

RETURN 

END 

SUBROUTINE HOR(NMAX, L, XMU, R, HOWF) 

C* 

C* THIS SUBROUTINE CALCULATES ALL HARMONIC OSCILLATOR RADIAL 

C* WAVE-FUNCTIONS FOR n.LE.NMAX, WHERE n IS THE PRINCIPAL 

C* QUANTUM NUMBER (.GE.O), LIS THE ORBITAL ANGULAR MOMENTUM, 
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C"' XMU IS SIZE PARAMETER, R IS DISTANCE (IN FM) AND THE 

C* RESULTS ARE ACCUMULATED IN THE ARRAY HOWF. 

C* FORMULA FROM M.MOSHINSKY, NUCL.PHYS.13(1959)105. 

C* 

INCLUDE 'ALPHACOMMON.FOR' 

DIMENSION FDF(O:lOO), HOWF(0:50), P(0:50) 

COMMON/HEL/FN(O:lOO) 

XNORM=XMU*DSQRT(XMU) 

XNORM=DSQRT(XNORM) 

C2=DLOG(2.DO) 

CPl=2.*DASIN(l.DO) !ARC SINUS 

CPl=DLOG(CPI)*0.5 

FDF(l)=O. 

DO 1=3, 99, 2 

X=DFLOAT(I) 

FDF(I)=FDF(I-2)+DLOG(X) !FD F(I)=LN (I)!! 

END DO 

RF=DSQRT(XMU)*R 

XX= RF* RF 

IF(R.EQ.O.)THEN 

REL=O.DO 

ELSE 

REL=RF••L 

ENDIF 

ER2=DEXP(-o.s•xx) 

C CALL PLX(NMAX, L, XX, P) !PLX CALCULATES LAGUERRE POL. 

P(O)=ER2 

A=L+0.5 

P(l)=(-XX+A+l) •ER2 

DO N=O, NMAX 

IF(N.GE.2) THEN 

C=(DFLOAT(2•N- l )+A-XX) /DFLOAT(N) 

D=(DFLOAT(N-l)+A)/DFLOAT(N) 

P(N)=C*P(N-1)-D*P (N-2) 

END IF 

J=2*(N+L)+l 

SQ=0.5*(C2*DFLOAT(N +L+2) +FN (N)-FDF(J)-CPI) 

SQ=DEXP(SQ) 

C phase factor introduced to agree with Woods-Saxon 

IPHASE=(-l)**N 

c IPHASE=l. 

HOWF(N)=SQ*REL*P(N)"'XNORM"'IPHASE 

END DO 
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SUMMARY 

The microscopic derivation of the four-particle cluster formation amplitude as 
well as absolute alpha-decay width within the extended shell model is presented 
which enables us to study clustering features and the alpha-decay process. The 
half-life for the a-decay of 212 Po is calculated within a harmonic oscillator repre­
sentation. Clustering induced by the nuclear interaction appear by considering a 
large configuration space. The role of clusterisation in the alpha-decay process is 
clearly demonstrated. It was shown that as soon as four-particle cluster is formed 
on the surface of the nucleus a broad region appears in which the ratio between 
theoretical half-lives and experimental ones is independent on the channel radius. 
That is the important result itself which indicates that the old problem of strong 
dependence of alpha-decay widths on arbitrary parameter of channel radius can 
be solved by describing the alpha-decay as the disintegration of the initial state 
in which alpha clustering occurs. The role of proton-neutron interaction proved 
to be decisive in the formation of the stable four-particle cluster. 
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SAZETAK 

Na6njenje mikroskopski izvod amplitude formiranja 4-cesticnog klastera kao i ap­
solutne sirine alfa-raspada u okviru prosirenog ljuskastog modela, koji omogucuje 
proucavanje svojstava klasterizacije a zatim i a-raspada. Vrijeme polu~ivota za a­
raspad 212 Po izracunato je u reprezentaciji harmonickog oscilatora. Klasterizacija 
uzrokovana nuklearnom interakcijom pojavljuje se uzimanjem u obzir golemog 
konfiguracijskog prostora. Uloga klasterizacije u procesu alfa-raspada je jasno 
ocrtana. Pokazuje se da formiranje 4-cesticnog klastera na povrsini jezgre ima za 
posljedicu neovisnost omjera teorijskog i eksperimentalnog vremena polufivota o 
radijusu kanala. To je po sebi vafan result at koji pokazuje da se stari problem jake 
ovisnosti a-sirina o proizvoljnom parametru radiusa kanala mo~e rijesiti ako a­
raspad shvatimo kao proces dezintegracije pocetnog klasterskog stanja. Pokazano 
je da za formiranje stabilnog klastera proton-neutron interakcija igra odlucujucu 
ulogu. 
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EPILOGUE 

This is not the end. 

This is not even the beginning of the end. 

This is, perhaps, the end of the beginning. 

W .Churchill 
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