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Abstract: The alpha clustering and corresponding alpha decay of 212 Po is studied within the framework 
of a multistep shell-model method. All interactions among the four nucleons that constitute the 
alpha particle are included and a large single-particle representation is used. It is found that this 
approach is not sufficient to explain the available experimental data. 

1. Introduction 

There is a renewed interest in a-decay due to the "exotic" decay modes recently 
discovered 1

), as well as the connected question of clustering of nucleons in 
nuclei 2-

5
). The study of the formation of the a-particle on the nuclear surface and 

its penetration through the Coulomb barrier have been analyzed from different 
points of view. In particular, it was argued that the Pauli principle acting among 
the nucleons in the core and those in the a-cluster is so important that one can not 
speak of "penetration" of the a-cluster as a whole 6 ). But if one is able to describe 
the formation of the a-particle well outside the daughter nucleus one can neglect 
the Pauli principle 7) and apply the old two-step mechanism proposed by Gamow 
at the very early years of quantum mechanics. This approach has been successful, 
not only in explaining a-decay but also, rather unexpectedly, the recently discovered 
emission of heavy clusters 8

). 

In the original Gamow approach it was assumed that the a-particle is already 
formed at a given point on the nuclear surface and the problem of clustering is 
disregarded. The great success of this approach was the introduction of the quantum 
mechanical concept of penetration through a potential barrier. But only later the 
concept of "formation probability" was studied in detail and properly defined 9 ). 

Together with the simultaneous appearance of the nuclear shell model, this allowed 
a complete microscopic approach to take place. Thus it was soon clear that the 
nuclear short-range interaction (pairing), acting through many shell-model configu­
rations, highly enhances the calculated a-decay width 10

). It was also found that the 
physical feature behind this enhancement was that, through the configuration mixing, 

1 Permanent address: lnstitut "Ruder Boskovic", P.O. Box 1016, Yu-41001 Zagreb, Yugoslavia. 
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the pairing interaction clusters the two neutrons and the two protons on the nuclear 
surface 11

•
12

). In these calculations large single-particle representations were used 
and through them the calculated decay widths were enhanced by several orders of 
magnitude. Even so, the corresponding experimental values were still larger by 
about one order of magnitude. One possibility for this discrepancy was that only 
the neutron-neutron and proton-proton interactions were included in the calcula­
tions. The importance of the neutron-proton interaction was recently studied in a 
rather schematic way 2

'
5
). The novel feature of this approach was the introduction 

of a high-lying pair collective mode, i.e. the giant pairing resonance 13
) which is 

now under experimental investigation 14
). The understanding of the relation between 

a-decay and a-clustering was considerably improved by using this rather schematic 
approach. But a proper treatment of the neutron-proton interaction in heavy nuclei 
requires an effort beyond the calculations of refs. 2

'
5
). One may expect that within 

such a treatment the agreement between theory and experiment would be improved. 
With this in mind it is the purpose of this paper to treat all two-body interactions 
among neutrons and protons involved in a-decay exactly within the framework of 
the shell model. 

The formalism is described in sect. 2, the application in sect. 3, and a summary 
and conclusions are given in sect. 4. 

2. Formalism 

The analysis of a system consisting of two neutrons and two protons moving 
outside a closed-shell core can conveniently be made within the framework of the 
shell model. Once the interaction among the particles has been chosen the corre­
sponding shell-model equations are not difficult to solve. However, the shell-model 
dimensions are usually very large because the interaction connects even those 
components which may be very far (in energy) from each other. As a result the 
diagonalization of the shell-modell matrix becomes a difficult and rather meaningless 
task. 

An alternative to the shell-model procedure is to use as basis elements correlated 
states. Since a large part of the correlations are then included already in the basis 
one may avoid the spreading of the wave function into many small components 
and drastic truncations of the correlated basis can be performed. But the use of 
correlated bases to describe nuclear systems may, in general, present the problem 
that the Pauli principle is not properly taken into account and, besides, one may 
count more than once the same states in the basis. There are methods to deal with 
this problem. Among these, the multistep shell-model method (MSM) 15

) has the 
advantage that one describes the system in terms of previously calculated systems. 
In our case the most general MSM basis would be that in which the basis elements 
are expressed in terms of two-proton (a2 ), two-neutron ({3 2 ) and neutron-proton 
( y 2) correlated states. The a-particle system, that is the core plus an a-particle, can 
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then be written as 

where the operators p+( a 2) create two-particle states, i.e. 

p+(a2 )=l,X(ik; a 2)c7ct, 
ik 

535 

(2) 

c + is the single-particle creation operator and X is the two-particle wave function 
amplitude. Although we use the same symbol for the amplitudes in eqs. (1) and 
(2), no confusion can arise since the arguments in the quantity X clearly indicate 
which case is being considered. 

The amplitudes X in eq. (1) are generally not well defined quantities, because 
the basis elements may not be orthogonal to each other and, moreover, they may 
span a space with a dimension which is smaller than the number of basis states. 
That is, the MSM basis may be non-orthogonal and overcomplete. To solve this 
problem within the MSM, one calculates the overlap among all the basis states (the 
so-called metric matrix). Usually the metric matrix has a form which is very similar 
to the dynamical matrix. 

The general expression given by eq. ( 1) may be useful in cases where one knows 
that some 'Yi-states play an important role. Their importance would then be 
manifested in that the corresponding MSM wave functions will have large com­
ponents in those states. However, in the case that we want to describe it would be 
more natural to restrict the basis elements to states of type a 2 and {3 2 only. In this 
way the Pauli principle is not effective and the a-particle system can be written as 

\a4)= L, X(a2f32; a4)P+(a2)P+(f32)IO). (3) 
a2f32 

Since the basis elements in eq. (3) are orthonormal to each other, the amplitudes 
X can directly be evaluated from the dynamical matrix which in this case reads 

W(a4)X(a2f32; a4)=(w(a2)+w({32))X(a2{32; a 4 

+ I M(a2f32; aif3i; a4)X(aif3i; a4), (4a) 
a2f32 

where, with standard notation, 

M(a2f32; aif3i;a4) = a2/32ai/3i I IL (ip; 'Y2I vpn\jq; 'Y2) 
Jjk pqr Y2 

x Y(ki; a 2) Y(kj; ai) Y(rp; {3 2) Y(rq; f3i), (4b) 

C(a2f32,aif3i,ijk,pqr,y2 ,a4)=~(21+1){~2 ~2 ~4} 

(4c) 
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In eq. (4) ijk (pqr) label proton (neutron) single-particle states while 

Y( ij; a 2 ) = vl + 8ij X (ij; a2 ) , 

and Vpn is the proton-neutron interaction. Throughout this paper we use the same 
symbols to denote a state as well as the corresponding angular momentum as seen 
e.g. in the 6j symbols of eq. (4c). Eq. (4) corresponds to the MSM diagram shown 
in fig. 1. 

In r-representation the a-particle wave function is 

i/J(r1r2r3r4; a4) = I X(a2f32; a4)(i/l(r1r2; a2)1/J(r3r4; /32))a4 X I/I( core), (5) 
cr2f32 

where r1, r2(r3 , r4 ) are the coordinates of the two protons (neutrons) in the correlated 
two-particle wave function. Since in the free a-particle the two neutrons and the 
two protons are both in a singlet state, in the two-particle wave function only the 
singlet component should be considered, e.g. for protons it is 

1/1( a2; r1r2) = (x1x2)0 I X(pq; a2)jp}q[ C(pq; r1r2)- (-1) p+q-A C(qp; r1r2)], (6a) 
P""q 

where, with standard notation, 

C(pq; r1r2) = RP(r)Rq(r)(-1) 1p+il2+ip+A { ~P jP 
}q lq 

and a similar expression for neutrons. 

a' 
2 
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Fig. 1. MSM diagram 15
) corresponding to the interaction between two basis elements in eq. (3). Full 

(dashed) lines correspond to proton (neutron) excitations. The crossed circle vertices are the wave 
functions amplitudes, e.g. X(ki; a 2 ), the full dot is the interaction and the one-bar vertices are the 
projections of the composed state upon the corresponding components, e.g. (a~[(c; c7Ja;f0)/Jl + 8,k. In 
this diagram the one-bar and the crossed circle vertices coincide with each other (except for a complex 

conjugate operation, which is irrelevant for real interactions). 
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For the ground state of a system with two identical particles outside a closed-shell 
core, eq. (6) shows strong clustering features if enough configurations are included 
in the two-particle representation 11

). This is a property induced by the pairing 
interaction. If only one configuration is included the absolute value of the wave 
function (6) becomes symmetrical in the angle e between the vectors r1 and r2 with 
respect to e = !1T (see fig. 2) [ref. 12)]. The physical reason for this is that the inclusion 
of only one configuration is equivalent to neglecting the interaction. In other words, 
the amplitudes X are a measure of the strength of the pairing correlation. In the 
same way, the amplitudes X(a2{32; a 4 ) in eq. (3) are a measure of the neutron-proton 
interaction. If this interaction is neglected the states a 4 would simply be the set of 
MSM basis states. For instance, the ground state of 212Po would be 

1212Po(g.s.)) = 1210Pb(g.s.)®210Po(g.s.)). (7) 

This description of the state 212Po(g.s.) was used in the past in a number of 
well-known calculations 7'

16). Although in this description the neutron-proton inter­
action is neglected, the simplicity of eq. (7) made it possible to analyze the relation 
between a-decay and a-clustering in detail and a good understanding of the a-decay 
process was obtained. But a proper (exact) treatment of all interactions with the 
shell model (TOA) requires the use of the complete basis in eq. (3). 

The clustering of the four nucleons which eventually form the a-particle would 
be produced by the interplay among the different terms in eq. (3). The neutron­
neutron and the proton-proton clustering should appear through the wave functions 
labelled by a 2 and {32. That is, one expects that all relevant correlated states entering 
eq. (3) show clustering features similar to those appearing in the ground state of 
two-particle systems 11

•
13·16-18). The neutron-proton clustering should be induced by 

a coherent contribution to the wave function la4) of all components. That is, the 
signs of the wave function amplitudes X(a2, {32, a 4 ) should be such that the 
12-dimensional function (5) strongly increases for vanishing values of the relative 
distances among neutrons and protons. 

If the description of a-clustering is valid in a region beyond the nuclear surface, 
the Pauli principle among the particles in the core and those in the a-particle is 
not effective and one can apply the two step mechanism proposed by Gamow 7). 

The alpha-decay width is then 

(8) 

where the reduced width 'YL(R) is related to the formation amplitude FL(R) at the 
point R by 

(9a) 
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The formation amplitude is 

(9b) 

where 'Pct and 'Pm are the daughter- and mother-nucleus wave functions, respectively, 
and 'Pa is the intrinsic a-particle radial wave function for which we use a standard 
form 7

). The coordinate R is the distance between the outgoing a-particle and the 
centre of the daughter nucleus. Note that in the case of the decay of 212Po the 
daughter nucleus is the core, i.e. the vacuum of excitations, so that in this special 
case eq. (9b) becomes 

FL(R) = I X(a:2f32; a:4) f dR dg" (q;"(g,,) YL(R))!.(t/l(r1r2; a:2)l/l(r3r4; /32))"'4 , 

<>2/32 

(10) 

where g,, are the 9 coordinates corresponding to the 3 relative distance vectors 
defining the a-particle. 

Finally, in eq. (8) P(R) is the penetration factor through the Coulomb barrier at 
the point R from the centre of the daughter nucleus, i.e. 

(11) 

where GL(R) and FdR) are the irregular and regular Coulomb functions, respec­
tively. 

The decay width calculated by using eq. (8) may depend strongly upon the distance 
R since the penetration factor (11) is very dependent upon R. In this case, the 
calculation would be meaningless since small changes in the distance R would be 
enough to overrun all other details of the formalism and a fitting of experimental 
data would always be possible. On the other hand, if our treatment of the a-clustering 
is adequate the decay width which is calculated by means of eq. (8) should, in 
principle, be independent of R in a region around the nuclear surface, e.g. where 
the a-particle is alredy formed. Therefore a requirement which should be fullfilled 
by our calculation is that rL is only weakly dependent on R in that region. In the 
next section we will use this as a criterion to check our calculations. 

The calculation of the 11-dimension integral in eq. (IO) may present a numerical 
problem. To avoid this we use a harmonic-oscillator representation so that the 
integrals can be performed analytically. The use of such representations have 
successfully been used in alpha decay 7) as well as in other processes where the 
continuum plays a role as, e.g. in the study of the building up and decay of giant 
resonances 19

). Moreover, in ref. 5
) it was used as representation the set of single­

particle states solutions of a Woods-Saxon potential and the integrals were per­
formed numerically. We have checked that the results of ref. 5

) are also obtained 
within the harmonic-oscillator basis that we will use in the next section. 
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3. Applications 

In this section we will consider the a-decay 212Po(g.s.)-+ a + 208Pd(g.s.) which is 
a convenient case to analyze, within our formalism, the a-clustering features in 
heavy spherical nuclei. As discussed in the previous section, the MSM representation 
that we will use consists of the set of states {210Po(a2)®

210Pb(J32 )}. The amplitudes 
X(a2J3 2 ; a 4 ) (see eq. (3)) and the four-particle energies W(a4) are calculated by 
means of eq. ( 4 ). But as the first step of the MSM we have to calculate the two-particle 
states. These we took from the calculation of ref. 20

) with the modifications discussed 
in ref. 21 

), so that most of the available two-particle experimental data are well 
described by our two-particle interaction. Our single-particle representation con­
sisted of harmonic-oscillator states up to the major shell N = 15 (14) for neutrons 
(protons). For the single-particle states which are above the first major shells of 
ref. 20

) (i.e. N = 6 (5) for neutrons (protons)) we used a surface delta interaction. 
With the two-particle energies and wave functions thus evaluated, in the second 
step we calculated the MSM matrix elements of eq. (4) and the corresponding 
four-particle energies and wave functions. For the state 212Po(g.s.) the calculated 
energy agrees with the corresponding experimental value within 100 keV. The 
corresponding wave function is given in table 1. As one would have expected, the 
most important two-particle states in table 1 are the yrast states. Therefore, the 
analysis of the clustering of the four nucleons outside the 208Pb core requires an 
understanding of the behaviour of the two-particle yrast wave functions. One knows 
that for the ground state the two particles are strongly clustered on the nuclear 
surface if a large enough number of configurations is included in the 
calculation5

•
11

-
13

'
17

'
18

). The physical reason behind this is that the continuum, which 
plays an important role in inducing the clustering, is described, albeit approximately, 
by the high-lying configurations. As a typical example of the influence of the 
continuum upon two-particle clustering we show in fig. 2 the wave function of 
210Pb(g.s.) calculated on the nuclear surface according to eq. (6). The strong 
maximum that is built up at () = 0 as the number of configurations is increased, is 

TABLE 1 

Main components of the 212 Po(g.s.) 
wave function in terms of the MSM 

basis {2 10Po( a 2 ) 0 210 Pb(/32 )} 

21op0 210Pb Amplitude 

o+ 
l 

o+ 
l 0.932 

2+ 
l 

2+ 
l -0.259 

47 4+ 
1 0.062 

67 6+ 
l 0.028 

g+ 
I 

g+ 
I -0.012 
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Fig. 2. Two-particle wave function (in units 10-s fm-~) corresponding to the state 210Pb(g.s.). The neutron 
coordinates are r1 = r2 = 8 fm. The angle () is the angle between the vectors r1 and r2 • The number of 

configurations included in the calculation is indicated in the figure. 

a result of the interplay among configurations carrying even and odd orbital angular 
momenta 12

). This characteristic feature of the pairing interaction is related to the 
enhancement of two-particle cross sections leading to pairing vibrations 13

). 

The clustering among identical particles induced by the monopole components 
of the wave function in table 1 is responsible for most of the contribution to the 
calculated alpha-decay width 5.7·

22
). Yet, if only this component is included in the 

calculation, the resulting width is too small compared with the corresponding 
experimental data 7'

16
). It is natural to assume that the reason for this shortcoming 

is the lack of the neutron-proton interaction, which is implied by neglecting the 
two-particle multipole states. In other words, the components of multipolarities 
other than monopole in table 1 are a result of the neutron-proton interaction and, 
therefore, may induce the neutron-proton interaction and, therefore, may induce 
the neutron-proton clustering missing in the monopole component. In order to 
probe this assumption we shall first analyze the degree of "clusterization" of the 
multipole two-particle states. 

The most convenient way of analyzing the clustering of multipole pairing states 
is to study their building up, as in fig. 2. We have now an additional degree of 
freedom, namely the (2A + 1) projections µ of the angular momentum in eq. (6). 
Classically one expects that only µ = 0 would show clustering features. Otherwise 
the motions of the two neutrons would occur on different planes 23

). Since we have 
spherical symmetry in our decay process, there is not any µ-dependence in the 
calculated width. It is therefore enough for us to analyze the case µ = 0 only. 
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Fig. 3. As fig. 2 for the state 210 Pb(27}. 
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Fig. 4. As fig. 2 for the state 210Pb(67}. 

In fig. 3 we present the wave function 210Pb(27) on the nuclear surface as a 
function of the angle fJ between the position vectors of the two neutrons and the 
number of configurations. By comparing with fig. 2 one sees that there is also here 
a two-particle clustering, but it is much weaker than in the case of monopole states. 
This weak clustering is about the same for all other yrast states. As an illustration 
we show in fig. 4 the case 210Pb(6~). Yet, the weak clustering among identic"l 
particles moving in multipole states may not present a problem for our a-decay 
calculation because the role of these states would be to induce the clustering of the 
non-identical particles. A necessary condition for this is that all configurations in 
table 1 contribute coherently in building up the mother wave function at the centre 
of the cluster. That is, all components in the sum of eq. (10) should have the same 
sign when all coordinates r; (i = 1, ... , 4) coincide in a point on the nuclear surface. 
We have checked that indeed this is the case, although again here the effect is not 
very dramatic. To show this enhancement as well as the clustering of the four-particle 
wave function, one may proceed as in the two-particle case and show different 
figures corresponding to the different coordinates in eq. (10). However, the number 
of relevant coordinates is now very large and since the neutron-proton clustering 
is not very impressive there is not any particlar choice of two coordinates which 
will clearly show that clustering. Another way of looking upon this is by analyzing 
the formation amplitude (9b) directly. In this case there is only one coordinate, 
namely the relative distance R between the centre of the mother nucleus and the 
a-particle. 

In fig. 5 we present the partial contributions to the formation amplitude FL from 
the two most important configurations in table 1 including only the signs of the 
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Fig. 5. Formation amplitude (in units fm- 312
) corresponding to the partial contributions of the configur­

ations {2 10Po(07}@ 210 Pb(07)} and {210 Po(27)@ 210 Pb(2tl} in eq. (IO). 

wave function amplitudes, i.e. those formation amplitudes correspond to "pure" 
configurations. The other configurations follow the same pattern as the quadrupole 
one. In particular, for all configurations the formation amplitude has its maximum 
on the nuclear surface, where the alpha particle is formed 5

'
7
). Moreover, in this 

region all configurations contribute in phase increasing the formation amplitude, 
eq. (IO). That is, the a-clustering of the mother nucleus wave function increases as 
the different multipole channels are included. This is an illustration of the role of 
the neutron-proton alignment. As discussed in the previous section, the influence 
of the neutron-proton interaction is manifested through the mixing of configurations 
in the mother nucleus wave function. If only the monopole channel is included, as 
in previous calculations 4 ·

7
), the neutron-proton interaction does not play any role 

from the point of view of clustering. In our case the monopole channel is very 
dominant and the effect of the other channels is small. The most important of the 
channels other than those in fig. 5 is the hexadecapolar, which contributes nearly 
an order of magnitude less than the quadrupole channel. Since the functions FL in 
fig. 5 have still to be multiplied by the absolute values of the wave function 
amplitudes, the dominance of the monopole channel is even larger than appears in 
fig. 5. Therefore the enhancement of the total formation amplitude with respect to 
the "pure" monopole-channel case considered before 4 -

7
) is negligible and the 

neutron-proton clustering is unfortunately small. 
Our calculated decay width presents very similar features to the one calculated 
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Fig. 6. Ratio Ra= I'exr(R)/ I',heocy(R) as a function of the distance R between the alpha particle and 
the daughter nucleus. 

upon the distance R in a region around the nuclear surface 16
), as seen in fig. 6. 

Although the more the clustering features are pronounced in the initial state, the 
better the assumptions of the Gamow theory are fulfilled, fig. 6 indicates that the 
Gamow separability of the a-decay process is still valid in our case. Yet, the 
calculated decay width on the nuclear surface is about one order of magnitude 
smaller than the corresponding experimental value. It thus seems that our way of 
treating the neutron-proton interaction does not account for the clustering of the 
non identical nucleons in the alpha particle. But we just applied in this paper the 
shell-model prescription to calculate a nucleus with two neutrons and two protons 
outside a frozen core 24

). In view of this we do not have a definite explanation of 
the reason why the calculated alpha-decay width is too small, except that our 
treatment of the continuum may still be defective. One may also argue that the Pauli 
principle among the nucleons in the core and those in the alpha particle is defective 
in our analysis 6 ). However, it was shown in ref. 7

) that this is not the case. More 
likely is that collective particle-hole correlations (core polarization), which we did 
not include in our treatment, plays a role in alpha-particle decay from spherical 
nuclei, as suggested long ago 25

). 
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4. Summary and conclusions 

In this paper we have studied the alpha clustering and corresponding alpha decay 
of a spherical normal nucleus consisting of two neutrons and two protons outside 
a frozen core. We applied the formalism to the alpha-decay process in the nucleus 
212Po. Previous calculations had shown that including only the monopole (pairing) 
interaction among identical particles and within a large single-particle representation 
the two neutrons and the two protons which eventually become the alpha particle 
are strongly clustered on the nuclear surface 11 

). The corresponding calculated decay 
width is also strongly enhanced in such calculations 7 '

16
) but its value is still smaller 

than the corresponding experimental value by about one order of magnitude. It 
thus seemed natural to assign that shortcoming to the inadequate treatment of the 
two body interaction. In this paper we have attempted to remedy this by including 
also the neutron-proton interaction within the framework of the multistep shell­
model method 15

). In our case the MSM basis consisted of the tensorial product of 
the two-particle correlated states, i.e. {210Po(a2)® 210Pb(f32 )}. The influence of the 
continuum upon the formation of the alpha particle was considered by using a large 
(harmonic oscillator) single-particle representation, as it was the case in previous 
calculations as well as in other processes where the continuum plays an important 
role (e.g. in the analysis of the formation and decay of giant resonances). The 
importance of the neutron-proton interaction in our formalism is reflected in the 
degree of mixing in the MSM basis describing the mother nucleus wave function, 
i.e. 212 Po(g.s.). But, as seen in table 1, that wave function consists mainly of the 
configuration {210Po(g.s.)® 210Pb(g.s.)}, as expected 15

'
23

). Although this may indicate 
that the influence of the interaction among non-identical particles is weak, one has 
to consider that the effect that one is looking for is not very large. Indeed, the 
inclusion of only the monopole interaction increases the value of the calculated 
decay width by about five orders of magnitude 7 '

16
) and thus the additional order 

of magnitude which is still required seems to be a relatively small percentage of the 
total value. 

We studied the clustering features of the two-particle states which are dominant 
in the description of 212Po(g.s.) shown in table 1. We found that the strong clustering 
induced by the pairing interaction upon identical nucleons moving in the ground 
states (pairing vibrations) is not very impressive for the multipole states. Yet, this 
does not necessarily mean that there is not clustering among the neutrons and 
protons which form the alpha particle. To check this point we analyzed the formation 
amplitude of the alpha particle for each MSM configuration separately. We found 
that all configurations contribute with the same phase on the nuclear surface, thus 
increasing the value of the decay width. However, the contribution of the multipole 
states is very weak and they just compensate for the smaller contribution of the 
monopole states due to the MSM configuration mixing. The final result is that the 
calculated decay width does not differ very much from the one in which only the 
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monopole interaction was considered. The positive features of those calculation are 
also present here. In particular, our decay width is weakly dependent of the distance 
between the alpha particle and the mother nucleus in a region around the nuclear 
surface 5"

16
). This is a test of the reliability of our approximations. But our decay 

width is also too small by about one order of magnitude. A reason for this shortcom­
ing may be that we did not include core polarization degrees of freedom in our 
mother nucleus wave function 25

). Another possible reason for the discrepancy 
between our calculations and the corresponding experimental data is that in the 
analysis of absolute alpha-decay width a proper treatment of the continuum, includ­
ing the possibility of single-particle decay, is required. Such a treatment is necessary 
in the analysis of particle decay of giant resonances 26

"
27

) and it might also be 
necessary here. 
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