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Foreword from the Congress Chairs

For the Turing year 2012, AISB (The Society for the Study of Artificial Intel-
ligence and Simulation of Behaviour) and IACAP (The International Associa-
tion for Computing and Philosophy) merged their annual symposia/conferences
to form the AISB/IACAP World Congress. The congress took place 2–6 July
2012 at the University of Birmingham, UK.

The Congress was inspired by a desire to honour Alan Turing, and by the broad
and deep significance of Turing’s work to AI, the philosophical ramifications of
computing, and philosophy and computing more generally. The Congress was
one of the events forming the Alan Turing Year.

The Congress consisted mainly of a number of collocated Symposia on spe-
cific research areas, together with six invited Plenary Talks. All papers other than
the Plenaries were given within Symposia. This format is perfect for encouraging
new dialogue and collaboration both within and between research areas.

This volume forms the proceedings of one of the component symposia. We are
most grateful to the organizers of the Symposium for their hard work in creating it,
attracting papers, doing the necessary reviewing, defining an exciting programme
for the symposium, and compiling this volume. We also thank them for their
flexibility and patience concerning the complex matter of fitting all the symposia
and other events into the Congress week.

John Barnden (Computer Science, University of Birmingham)
Programme Co-Chair and AISB Vice-Chair

Anthony Beavers (University of Evansville, Indiana, USA)
Programme Co-Chair and IACAP President

Manfred Kerber (Computer Science, University of Birmingham)
Local Arrangements Chair



Foreword from the Symposium Chairs

Even though Turing is best known for the Turing machine and the Turing test, his
contribution is significantly wider. He was among the first to pursue what Denning
[1] calls “computing as natural science”, and thus Hodges [2] describes Turing as
natural philosopher:

“He thought and lived a generation ahead of his time, and yet the
features of his thought that burst the boundaries of the 1940s are better
described by the antique words: natural philosophy.”

Rozenberg [3] makes similar observation about Turings genuine interest in nature
seen through the prism of natural computing, as visible from his work on morpho-
genesis [4] and work on architecture of neural networks. Teuscher [5] illustrates
by the example of Turing letter to Ross Ashby, where Turing explains the connec-
tion between the biological brain and its computational model:

“The ACE is in fact, analogous to the “universal machine” described
in my paper on computable numbers. This theoretical possibility is
attainable in practice, in all reasonable cases, at worst at the expense
of operating slightly slower than a machine specially designed for the
purpose in question. Thus, although the brain may in fact operate by
changing its neuron circuits by the growth of axons and dendrites,
we could nevertheless make a model, within the ACE, in which this
possibility is allowed for, but in which the actual construction of ACE
did not alter, but only the remembered data, describing the mode of
behaviour applicable at any time.”
http://www.rossashby.info/letters/turing.html

Today we are both learning about the structures and behaviours of natural sys-
tems by modelling them as information processing networks, as well as learning
about possible ways of computation by constructing new computation models and
machinery based on natural processes understood as computation. [7]

According to the Handbook of Natural Computing [6] natural computing is
the field of research that investigates both human-designed computing inspired

http://www.rossashby.info/letters/turing.html


by nature and computing taking place in nature. In particular, natural computing
includes:

• Computational models inspired by natural systems such as neural compu-
tation, evolutionary computation, cellular automata, swarm intelligence, ar-
tificial immune systems, artificial life systems, membrane computing and
amorphous computing.

• Computation performed by natural materials such as bioware in molecular
computing or quantum-mechanical systems in case of quantum computing.

• Study of computational nature of processes taking place in (living) nature,
such as: self-assembly, developmental processes, biochemical reactions,
brain processes, bionetworks and cellular processes.

Variety of arguments for natural/unconventional computation, ranging from
technical, logical, scientific-theoretical and philosophical are proposed by Cooper
[12], MacLennan [13], Stepney [8], Burgin [14], Paun [15] and others. There
are conferences and journals on natural computing, unconventional computing,
organic computing, and similar related new fields of computing. A good overview
on non-classical computation may be found in [?] and [9].

Hypercomputation or super-Turing computation denotes models of computa-
tion that go beyond Turing machines, presenting methods for computation of non-
Turing-computable functions. The term ”super-Turing computation” appeared in
a 1995 paper by Siegelmann [10]. The term ”hypercomputation” was coined in
1999 by Copeland and Proudfoot, [11].

The notion of representation is at the basis of a lively debate that crosses phi-
losophy and artificial intelligence. This is because the comparison starts from
the analysis of mental representations. Traditionally, philosophers use the notion
of intentionality to describe the representational nature of mental states namely
intentional states are those that represent something, because mind is directed to-
ward objects.

The challenge for AI is therefore to approximate to human representations i.e.
to the semantic content of human mental states. The task to consider the similarity
between human and artificial representation could involve the risk of skepticism



about the possibility of computing this mental capacity. If we consider compu-
tationalism as defined in purely abstract syntactic terms then we are tempted to
abandon it because human representation involves real world constrains.

But, a new view of computationalism could be introduced that takes into con-
sideration the limits of the classical notion and aims at providing a concrete, em-
bodied, interactive and intentional foundation for a more realistic theory of mind.

The symposium on Natural/unconventional computing and its philosophical
significance connects the natural computation with hypercomputation and new
understanding of representation which are compatible with each other, and show
that there is mutual support between all those approaches.
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The accepted papers of the symposium address the following two main topics:

I) NATURAL/UNCONVENTIONAL COMPUTING which covers the emerg-
ing paradigm of natural computing, and its philosophical consequences with dif-
ferent aspects including theoretical and philosophical view of natural/ unconven-
tional computing with its philosophical significance; characterizing the differ-
ences between conventional and unconventional computing; digital vs. analog
and discrete vs. continuous computing; recent advances in natural computation
(as computation found in nature, including organic computing; computation per-
formed by natural materials; and computation inspired by nature); computation
and its interpretation in a broader context of possible frameworks for modelling
and implementing computation, and

II) REPRESENTATION AND COMPUTATIONALISM that highlights the
relevance of the relationship between human representation and machine repre-
sentation to analyse the main issues concerning the contrast between symbolic
representations/processing on the one hand and nature-inspired, non-symbolic
forms of computation on the other hand–with a special focus on connectionism,
including work on hybrids of symbolic and non-symbolic representations. Partic-
ular developments addressed are the ’Embedded, Embodied, Enactive’ approach
to cognitive science (Varela et al); the ’Dynamic Systems’ approach (by, say, Port
and Van Gelder); Process/procedural representations (e.g. by O’Regan) and other
representational possibilities that are clearly available: no representations or min-
imal representations;

All submitted papers have undergone a rigorous peer review process by our
programme committee. We thank the reviewers for their constructive and thor-
ough efforts. Finally we would like to thank the AISB/IACAP World Congress
organizers for the support as well as our symposium participants for good collab-
oration.

Gordana Dodig-Crnkovic (Mälardalen University, Sweden)
Raffaela Giovagnoli (Pontifical Lateran University, Italy)
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Unconventional Computer Programming
Susan Stepney1

Abstract. Classical computing has well-established formalisms for
specifying, refining, composing, proving, and otherwise reasoning
about computations. These formalisms have matured over the past
70 years or so.

Unconventional Computing includes the use novel kinds of sub-
strates – from black holes and quantum effects, through to chem-
icals, biomolecules, even slime moulds – to perform computations
that do not conform to the classical model. Although many of these
substrates can be “tortured” to perform classical computation, this is
not how they “naturally” compute.

Our ability to exploit unconventional computing is partly ham-
pered by a lack of corresponding programming formalisms: we need
models for building, composing, and reasoning about programs that
execute in these substrates. What might, say, a slime mould program-
ming language look like?

Here I outline some of the issues and properties of these uncon-
ventional substrates that need to be addressed to find “natural” ap-
proaches to programming them. Important concepts include embod-
ied real values, processes and dynamical systems, generative systems
and their meta-dynamics, and embodied self-reference.

1 Introduction
Let’s look at the genesis of conventional computing. Turing for-
malised the behaviour of real world “computers” (human clerks car-
rying out calculations [11]) following a finite sequence of discrete,
well-defined rules. This formalisation led to an abstract model: the
Turing Machine (TM) [46].

Turning to the real world, there are many processes we might want
to describe, understand, or exploit computationally: termites build-
ing complex nests following (relatively) simple rules; slime moulds
growing in the topology of road networks; chemical oscillations set
up to perform boolean operations. What are the relevant abstractions?
Are they just the discrete TM again?

At this stage in the development of unconventional (or non-Turing)
computation, I think that this is the wrong question. First, we should
investigate these processes to discover what computations they per-
form “naturally”. I would not trust a slime mould computer to spell-
check my writing, or calculate my tax return. But certain forms of
computers, for example analogue devices, can perform their com-
putations much more “naturally” (for example, much more power-
efficiently [16, p83]) than a digital version. Let’s start from this point,
discover what kinds of computation are natural to a range of systems,
and then abstract from there.

We should not worry that our unconventional computers are
ridiculously primitive compared to our smartphones: classical com-
putation has seventy years of an exponentially growing lead on us.

1 York Centre for Complex Systems Analysis, University of York, UK, email:
susan.stepney@york.ac.uk

Figure 1. Classical computation: the real world inspiration of human
computers led to an abstract model. This was realised in hardware and

exploited in software, and developed for 70 years, into a form
unrecognisable to its early developers.

Figure 2. Unconventional computation: the real world inspiration of
biological and other systems is leading to novel hardware. This must be
abstracted into a computation model, and augmented with appropriate

programming languages an tools. 70 years from now, the technology will be
unrecognisable from today’s ideas.

2 Classical history and unconventional futures

In a sense, classical computation got things backwards: theory be-
fore hardware and applications (figure 1). Unconventional computing
seems to be taking a different route: the real world inspiration is lead-
ing to novel hardware (in some cases, wetware) devices, rather than
directly to a model. Our job as computer scientists is to work out
good underlying computational models and appropriate languages



Figure 3. The wrong model (screenshot partway through a game of Not
Tetris, http://stabyourself.net/nottetris2)

that naturally fit with the hardware, and also to engineer more effi-
cient and flexible hardware (figure 2).

Getting a good abstract model is important. The wrong model (fig-
ure 3), an unnatural model, will mean that our ability to exploit the
unconventional substrates will be compromised.

3 Computational models as abstractions of physics

We know that the classical model of computation captures too lit-
tle of reality: its underlying workings formalise an essentially New-
tonian view of physics. Quantum physics allows multiple symbols
to be superposed in a single tape position [15], and entangled be-
tween positions. General relativity allows the machine’s frame and
the observer’s frame to experience different proper times; in particu-
lar a Malament-Hogarth spacetime allows an observer to experience
finite proper time whilst the machine that they are observing expe-
riences infinite proper time [24]. And these two branches of physics
are themselves a century old. What of quantum gravity computers,
or string-theoretic computers? The Turing model is unphysical.

However, some unconventional computational models capture too
much: like TMs they are unphysical, but in a different way. Analogue
computers usually use continuous physical quantities as analogues of
the value being computed. These continuous physical quantities are
modelled as real numbers. A single real number can encode a count-
ably infinite amount of information. But this does not mean that the
physical quantity that it models can encode an infinite amount of in-
formation. This has nothing to do with quantum limits to continuity.
Well before such limits, even the most accurately measured funda-
mental physical constants are not measured to more than 10 or 12
decimal places [35]. The most accurately measured physical quan-
tity, the rubidium hyperfine frequency, is known to an accuracy of
2.5 × 10−15 [36]. The value of the mathematical constant π to 39
digits can give the volume of the observable universe to the nearest
atom [4, p17]. To measure π to more precision than this, we would
need a measuring device bigger than the size of the universe. De-
spite this, π has been calculated to 10 trillion decimal places [47]:
an impressive computation, but a completely physically unmeasur-
able value. Computational models need to be based on real-world
physics: not only the laws, but also the practical constraints.

What models of computation are suitable for natural physical com-
puters? This includes not only exotic physics, but also biological sys-
tems. We need good abstractions, that not only do not impose un-
physical requirements, but that naturally fit the implementations. So,
for example, if a system is naturally noisy and non-deterministic, it
is better to find a model that can exploit this, rather than engineer the
substrate away from its natural state to one that better matches some
unnatural deterministic model.

4 Inspired by biological modelling
Let’s look at how biology is being conceptualised and modelled, in
order to get some pointers to requirements for computational models
of biological computers. We start with a pair of quotations, about
organism-centric biology.

Organic life exists only so far as it evolves in time. It is
not a thing but a process—a never-resting continuous stream of
events — Cassirer [10, p49, ch.IV]

It must be a biology that asserts the primacy of processes
over events, of relationships over entities, and of development
over structure. — Ingold [25]

A process-centric description is arguably also needed in the context
of emergence [43]. To summarise these ideas: “Life is a verb, not a
noun.” [19, p203, ch.X].

So, the emphasis from these authors is of process, dynamics, de-
velopment (which, despite themselves being nouns, describe verb-
like properties), rather than of entities, states, events. Let’s look
at these three features, how well they are captured by current for-
malisms, and what more is needed.

4.1 Process
“Process” might seem like an easy starting point, as we have pro-
cess algebras and process calculi galore [5, 9, 22, 23, 30–33] in com-
puter science. These describe the interactions between concurrently-
executing processes, and (one of) the semantics of a process is its
trace: a (“never-resting”) stream of events.

Process algebras, with their non-terminating processes, can have
their semantics modelled in non-well-founded set theory [2, 40].
NWF set theory replaces the usual axiom of foundation with the anti-
foundation axiom (AFA); many of the well-known operations of set
theory (such as union, intersection, membership) carry across. The
crucial difference is that, unlike in the better known well-founded
set theory, in NWF set theory we can have perfectly well-defined
systems with infinite chains of membership that do not bottom-out,
. . . ∈ X3 ∈ X2 ∈ X1 ∈ X0, and cycles of membership, such as
X ∈ Y ∈ X and even X ∈ X .

Using NWF set theory gives a very different view of the world.
With well-founded sets, we can start at the bottom (that is what well-
foundedness guarantees exists), with the relevant “atoms”, and con-
struct sets from these atoms, then bigger sets from these sets, induc-
tively. This seems like the natural, maybe the only, way to construct
things. But non-well-foundedness is not like this. There are perfectly
good non-well-founded sets that just cannot be built this way: there
are sets with no “bottom” or “beginning”: it can be “turtles all the
way down” [21, p1]. NWF set theory allows sets that are intrinsi-
cally circular, or self-referential, too. It might be true that “the axiom
of foundation has played almost no role in mathematics outside of set
theory itself” [7, p58], but set theory has had an enormous impact on
the way many scientists model the world. Might it be that the whole
concept of reductionism relies on the (mathematically unnecessary)
axiom of foundation? Process algebras, with their NWF basis, might
well offer a new view on how things can be constructed.

But it is not all good news. Well-founded set theory is taught to
school children; NWF set theory, coalgebra, and coinduction, are cur-
rently found only in quite densely mathematical books and papers.
We need a Coalgebra for Dummies. One of the most accessible in-
troductions currently available is Bart Jacobs’ “two-thirds of a book
in preparation” [26].



More importantly for programming unconventional computers,
most process algebras cannot exploit endogenous novelty. Processes
and communication channels are predefined; no new kinds of pro-
cesses or channels can emerge and then be exploited by the formal
system. This may require a reflective [27] process algebra. Reflection
may be a pre-requisite for describing any system displaying open-
ended novelty [42]. PiLar [12,13] is a reflective process-algebraic ar-
chitecture description language, developed to define software archi-
tectures in terms of patterns of change; reflection allows it to change
itself: to change the patterns of change. The mathematical underpin-
nings need to incorporate such features; NWF set theory, with its
allowance of circular definitions, is suitable for modelling reflective
systems that can model themselves.

4.2 Dynamics

For a formalism underpinning “dynamics”, we could consider dy-
namical systems theory [3, 8, 44]. This is a very general formalism:
a dynamical system is defined by its state space, and a rule deter-
mining its motion through that state space. In a continuous physical
dynamical system, that rule is given by the relevant physical laws.
Classical computation can be described in discrete dynamical sys-
tems terms [41], where the relevant rule is defined by the computer
program. Hence it seems that dynamical systems approach can pro-
vide a route to an unconventional computational view of physical
embodied systems exploiting the natural dynamics of their material
substrates.

Dynamical systems can be understood at a generic level in terms
of the structure of their state space: their attractors, trajectories, pa-
rameterised bifurcations, and the like [3,8,44]. Trajectories may cor-
respond to computations and attractors may correspond to computa-
tional results [41]; new attractors arising from bifurcations may cor-
respond to emergent properties [20, 43].

A dynamical systems view allows us to unify the concepts of pro-
cess and particle (of verb and noun). Everything is process (motion
on a trajectory, from transient behaviour to motion on an attractor),
but if viewed on a long enough timescale, its motion on an attractor
blurs into a particle. “An attractor functions as a symbol when it is
observed . . . by a slow observer” [1]. On this longer timescale the de-
tailed motion is lost, and a stable pattern emerges as an entity in its
own right. This entity can then have a dynamics in a state space of its
own, and so on, allowing multiple levels of emergence.

However, the mathematical underpinnings support none of these
exciting and intuitive descriptions. Classical dynamical systems the-
ory deals with closed systems (no inputs or outputs, no coupling to
the environment) in a static, pre-defined state space.

The closest the state space itself comes to being dynamic is by
being parameterised, where a change in the parameter value can lead
to a change in the attractor structure, including bifurcations. Here the
parameter links a family of dynamical systems. If the parameter can
be linked to a feature of the computational system, then it can be used
to control the shape of the dynamics.

Ideally, the control of the parameter should be internal to the sys-
tem, so that the computation can have some control its own dynam-
ics. Current dynamical systems theory does not have this reflective
component: the parameter is external to the system. A full com-
putational dynamical systems theory would need to include meta-
dynamics, the dynamics of the state space change. Currently meta-
dynamics is handled in an ad hoc fashion, by separating it out into a
slower timescale change [6, 34].

4.3 Development

The requirement for “development”, allowing (the state space of)
systems to “grow”, happens naturally in most classical programming
languages: for example, statements such as malloc(n) or new Obj(p)
allocate new memory for the computation to use, thereby increasing
the dimensionality of the computational state space. However, this
everyday usage is rarely cast in explicit developmental terms.

Explicit development is captured by generative grammars such as
L-systems [38], and by rewriting systems such as P-systems [37] and
other membrane computing systems. These discrete systems can be
cast as special cases of “dynamical systems with dynamical struc-
ture” within the MGS language [17, 18, 29], based on local transfor-
mations of topological collections.

These formalisms capture mainly the growth of discrete spaces.
There is still the interesting question of growing continuous spaces:
how does a new continuous dimension appear in continuous time?
How does a hybrid system containing both discrete and continuous
dimensions grow?

If we are thinking of systems that can exhibit perpetual novelty
and emergence, then we also need a system where the growth rules
can grow. The growing space (new dimensions, new kinds of dimen-
sions) should open up new possibilities of behaviour. One way to
do this is to embed the rules in the space itself, so that as the space
grows, the rules governing how the space grows themselves grow.
This approach can be used to program self-replicating spaces [45].
Now the computation is not a trajectory though a static state space, it
is the trajectory of the growing space itself.

4.4 Self-reference

Although “self-reference” is not one of the features identified from
the biological modelling inspiration, it has come up in the discussions
around each individual feature, and is a crucial feature of classical
computation and biological self-reproduction.

The biologist Robert Rosen claims that there is a sense in which
self-definition is an essential feature of life that cannot be replicated
in a computer [39]. He defines organisms to be “closed to efficient
causation”: Aristotle’s “efficient cause” is the cause that brings some-
thing about; life is self-causing, self-defining, autopoietic [28]. Rosen
claims that “mechanisms”, including computer programs (and hence
simulations of life) cannot be so closed, because they require some-
thing outside the system to define them: they have an arbitrary non-
grounded semantics. That is, there is an arbitrary separation of the
semantics of the program (a virtual machine) and the implementa-
tion (the physical machine); life however has only the one, physical,
semantics.

However, it is not as straightforward as that. Organic life also has
an arbitrary semantics. As Danchin points out [14, p110], there is
a level of indirection in the way organisms represent their function-
ality: the mapping from DNA codons to the amino acids they code
for is essentially arbitrary. So life too may be embodied in a virtual
machine with arbitrary semantics.

What is common to biological and computational self-reference is
that the “data” and “program” are the “same kind of stuff”, so that
programs can modify data that can be interpreted as new programs.
In biology this stuff comprises chemicals: a chemical may be passive
data (uninterpreted DNA that codes for certain proteins); it may be
an executing “program” (some active molecular machinery, possibly
manipulating DNA).

So self-referential, self-modifying code is crucial in biology. It



is achievable in classical computation through reflective interpreted
programs. It is plausible that this capability is also crucial for uncon-
ventional computation executing on the natural embodied dynamics
of physical substrates.

5 Conclusions
Unconventional computers, particularly those embodied in
biological-like substrates, may require novel programming
paradigms. By looking to biology, we see that these paradigms
should include as first class properties the concepts of: process,
dynamics, development, and self-reference.

Some existing formalisms may suggest appropriate starting points,
but much yet remains to be done. This should not be surprising: clas-
sical computation has matured tremendously over the last seventy
years, while unconventional computing is still in its infancy. If over
the next seventy years unconventional computing can make even a
fraction of the advances that classical computing has made in that
time, that new world of computation will be unrecognisably different
from today.
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The coordination of probabilistic inference in neural 
systems

William A Phillips1

1Abstract.  Life, thought of as adaptively organised complexity,  
depends upon information and inference, which is nearly always 
inductive, because the world, though lawful, is far from being 
wholly predictable. There are several influential theories of 
probabilistic inference in neural systems, but here I focus on the 
theory of Coherent Infomax, and its relation to the theory of free 
energy reduction. Coherent Infomax shows, in principle, how 
life can be preserved and improved by coordinating many 
concurrent inferences. It argues that neural systems combine 
local reliability with flexible, holistic, context-sensitivity. What 
this perspective contributes to our understanding of neuronal 
inference is briefly outlined by relating it to cognitive and 
neurophysiological studies of context-sensitivity and gain-
control, psychotic disorganization, theories of the Bayesian 
brain, and predictive coding. Limitations of the theory and 
unresolved issues are noted, emphasizing those that may be of 
interest to philosophers, and including the possibility of major 
transitions in the evolution of inferential capabilities. 

1 INTRODUCTION 

Many forms of organised complexity have arisen during nature’s 
long journey from uniformity to maximal disorder, despite the 
ever present forces of noise and disorder. Biological systems are 
able to create and preserve organised complexity, by, in effect, 
making good predictions about the likely consequences of the 
choices available to them. This adaptively organised complexity 
occurs in open, holistic, far-from-equilibrium, non-linear 
systems with feedback. Though usually implicit, probabilistic 
inference is crucial, and useful inference is only possible because 
the laws of physics are sufficiently reliable. The endless variety 
of individual circumstances and the prevalence of deterministic 
chaos and quantal indeterminacy make many things uncertain, 
however; so, to thrive, biological systems must combine 
reliability with flexibility. 

It is in neural systems that the crucial role of probabilistic 
inference is most obvious. Helmholtz correctly emphasized the 
centrality of unconscious inference to perception, and many 
examples of its use for contextual disambiguation can be given 
[1]. Furthermore, it has also now been explicitly shown how 
such unconscious inference may also be central to reinforcement 
learning, motor control, and many other biological processes [2]. 

Better formalisation of these issues is clearly needed, so 
Section 3 outlines an elementary neurocomputational perspective 
that uses information theory measures to shed light on them, i.e. 
the theory of Coherent Infomax [3, 4, 5]. A major advantage of 
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that theory is that, in addition to being formally specified and 
simulated in large artificial neural networks, it has wide-ranging 
empirical roots, being related, often in detail, to much empirical 
data from neuroanatomy, cellular and synaptic physiology, 
cognitive psychology, and psychopathology. Section 4 briefly 
discusses relations between this theory and that of free energy 
reduction [2], to which it has deep connections, and which has 
been applied to an even wider range of phenomena than has 
Coherent Infomax. Finally, in Section 5, difficulties of the theory 
and unresolved issues of possible philosophical interest are 
briefly discussed. First, the following section outlines some of 
the difficult conceptual problems to be solved by theories of 
neuronal inference. 

2 THEORIES OF NEURONAL INFERENCE 
AND DIFFICULT PROBLEMS THAT THEY 
MUST SOLVE  

The preceding arguments suggest several issues on which we 
need to make progress. What is organised complexity? What are 
the capabilities and constraints of various forms of inductive 
inference, e.g. classical versus Bayesian [6], conscious versus 
unconscious [7]? How is reliability combined with flexibility, 
i.e. how is information about reliable generalities combined with 
information about individual particularities? How is localism 
combined with holism? What forms of learning and processing 
does neural inference require, and how are they implemented at 
the synaptic, local circuit, and systems levels? Do biological 
capabilities for probabilistic inference evolve towards forms of 
inference with greater accuracy, generality, or abstraction? 
Information theory measures such as Shannon entropy and free-
energy have been applied to these issues, but how can they be 
tested and what do they contribute to our understanding? 

 Several theories of probabilistic inference in neural systems 
have been proposed, including the Bayesian brain [8, 9], 
predictive coding [10], efficient coding and Infomax [11, 12, 
13], and sensorimotor integration [14]. It has been argued that all 
can be unified via the principle of least variational free energy 
[2, 15, 16]. The free energy principle is formulated at the level of 
the interaction of the system with its environment – and 
emphasizes Bayes optimal inference using hierarchical 
architectures with backward as well as forward connections. As 
free energy theory offers a broad synoptic view of neuronal 
inference the Coherent Infomax theory will be compared to that. 

The theory of Coherent Infomax stresses the necessity of 
avoiding information overload by selecting only the information 
that is needed. This necessity arises not only from requirements 
of computational tractability, but also from an unavoidable 
property of noisy high-dimensional spaces. As dimensionality 
increases the number of possible locations in that space increases 



exponentially, with the consequence that nearly all events occur 
at novel locations. Probabilistic inference based on prior events 
then becomes impossible. This problem is well-known within the 
machine learning community, where it is referred to as the 
‘curse-of-dimensionality’. It may be avoided by selecting only 
the information that is ‘relevant’; but how? Coherent Infomax 
suggests a solution: select information that reveals latent 
statistical structure in the available data. Useful combinations of 
datasets between which to seek predictive relations may be 
found by genetic search prescribing gross system architectures 
combined with the learning algorithms of Coherent Infomax, as 
outlined in the following section. 

3 THE THEORY OF COHERENT INFOMAX: A 
BRIEF OUTLINE 

An unavoidable consequence of the curse-of-dimensionality is 
that large amounts of data must be divided into subsets that are 
small enough to make learning feasible. If they were processed 
independently, however, then relations between the subsets 
would be unobservable. Success in finding useful relations 
would then be completely dependent upon the original division 
into subsets, but that is unlikely to be adequate unless the crucial 
relations were already known. Coherent Infomax responds to this 
dilemma by dividing data at each level of an interpretive 
hierarchy into many small subsets, and searching for variables 
defined on them that are predictably related across subsets. This 
strategy allows for endlessly many ways in which the data can be 
divided into subsets and linked by modulatory coordinating 
interactions between them. 

These considerations suggest minimal requirements for local 
neural processors performing such inference. They must have a 
subset of inputs within which latent variables may be discovered 
and compressed into fewer dimensions. These are referred to as 
driving, or receptive field (RF), inputs.  They must also receive 
inputs conveying information about the activity of other 
processors with which they are to seek predictive relations. 
These are referred to as contextual field (CF) inputs. They 
control the gain of response to the driving RF inputs but cannot 
by themselves drive processor activity, because, if they did, that 
would contradict the strategy for avoiding the curse-of-
dimensionality. Given this constraint, each local processor can 
have a rich array of contextual inputs, far richer than its array of 
driving inputs. It is the contextual input that enables the local 
processor to discover relevant variables in its driving input. For 
example, the inclusion of reward signals in the context will 
enable it discover those driving variables that are predictably 
related to that kind of reward. Reward signals are not necessary 
for this kind of learning, however, as it discovers latent statistical 
structure between any inputs to the local processors. 

The theory of Coherent Infomax has grown from combining 
such considerations with much empirical data from several 
relevant disciplines [3, 4, 5]. Only a brief outline is given here. 
For full formal presentations see the original publications. The 
theory uses three-way mutual information and conditional 
mutual information to show how it is possible, in principle, for 
contextual inputs to have large effects on the transmission of 
information about the primary driving inputs, while transmitting 
little or no information about themselves, thus influencing the 
transmission of cognitive content, but without  becoming 
confounded with it. Guided by neuroanatomy, the gross system 

architecture assumed is that of at most a few tens of hierarchical 
layers of processing, with very many specialized but interactive 
local processors at each stage. Feed forward connections 
between layers are driving, whereas a larger number of lateral 
and feedback connections provide coordinating gain-control as 
shown in Figure 1. Minimally, the function of local processors is 
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Figure 1. Examples of system architectures that could be 
built from the local neural processors of Coherent Infomax, 

shown here as small cylindrical columns. Though only a few are 
shown in each region, in useful applications, as in mammalian 

cerebral cortex, there would be very many in each region. 
Receptive field connections, shown by thick lines, provide the 
input from which information is to be selected and compressed. 
Coordinating contextual field connections, shown by thin lines, 
control the gain of response, and provide the inputs with which 

predictive relations are to be sought. 
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Figure 2. The objective of local processors in Coherent Infomax. 
The ovals show the Shannon entropy in each of three probability 

distributions. Information flow through the local processor is 
shown in the small icon, bottom right. Contextual entropy can be 
greater than the other two because it is not to be transmitted in 
the output.  Thus, it enables narrowly focussed receptive field 

processing to operate within a broad context. 



to select and compress that information in their driving receptive 
field (RF) input that is relevant to the current task and situation, 
as indicated by the contextual field (CF) input that modulates 
transmission of RF information. This is formalized as an 
objective function describing the signal processing work to be 
done, as shown in Figure 2 by arrows associated with each of the 
four components of the output H(X). Outward pointing arrows 
show components that should be increased, with priority being 
shown by arrow length. Inward pointing arrows show 
components that should be decreased. In short, the objective is to 
maximise the information transmitted about the receptive field 
input subject to the constraints of substantial data reduction 
while emphasizing the mutual information between receptive 
field input and contextual field input and minimizing any 
information transmitted specifically about the context.  

To show how that objective could be met in neural systems, 
a biologically plausible activation function for idealized local 
neural processors was formulated to include the required gain-
control, and a learning rule for modifying the synaptic strengths 
of the connections between these local processors was derived 
analytically from the objective function. What most impressed us 
about the consequent learning rule is that, although it was 
deduced formally from the objective function, assuming none of 
the physiological evidence concerning the dependence of 
synaptic plasticity on current and prior activity, it is broadly in 
agreement with that evidence. The theory of Coherent Infomax 
thus shows how it is possible for neural systems to perform 
probabilistic inference in a way that combines reliability with 
flexibility, and localism with holism, while making useful 
inference feasible by selecting only information that is relevant, 
and thus avoiding the curse-of-dimensionality. It has guided 
studies of common neurobiological foundations for cortical 
computation [17], dynamic coordination in the brain [18], 
cognitive impairments in schizophrenia [19], and of relations 
between probability theory, organised complexity and brain 
function [20]. 

4 RELATIONS TO THE THEORY OF FREE 
ENERGY REDUCTION 

The current growth of interest in inference and prediction as 
possible keys to a fundamental understanding of neuronal 
systems is seen in the many groups working on ‘predictive 
coding’ and the ‘Bayesian brain’ as cited in Section 2. Those 
theories do not usually make use of gain-control or context to 
select the relevant information to be coded and used, however, 
and rarely show explicitly how the curse-of-dimensionality can 
be avoided. One theory that may be able to do so, however, is 
that proposing a unifying brain theory based on ideas from 
statistical physics and machine learning [2]. This has already 
received deep philosophical examination, and been found to 
have considerable interest from that perspective [21], even 
though it still needs further development. It interprets many 
aspects of neural structure and function as having evolved to 
reduce Helmholtz free-energy using a form of predictive coding 
in which ascending activities predicted by feedback descending 
from higher levels in the hierarchy are suppressed. In contrast to 
this, Coherent Infomax proposes that activities predicted by 
contextual input can be amplified. Thus, the form of predictive 
coding used in free energy theory seems to imply effects of 
context that are in opposition to those of Coherent Infomax. 

Furthermore, the theory of free energy reduction is formulated at 
the level of an agent in an environment with distal causes and 
parameters that are hidden from the agent; Coherent Infomax is 
formulated at the level of local neural processors operating 
within a large population of other such processors, with which 
they can communicate either directly or indirectly. 

There are at least three grounds for thinking that these two 
theories are not in essence opposed, however. First, both theories 
imply that the fundamental objective of neuronal dynamics is to 
reduce any differences between predicted and observed 
probability distributions. Indeed, it may even be possible to unify 
the two perspectives by formulating the objective of Coherent 
Infomax as the maximisation of predictive success and of free 
energy reduction as the minimisation of prediction failure 
(Phillips and Friston, in preparation). Such a common goal could 
be described as maximising the transmission of information that 
is relevant to the context, or alternatively as reducing uncertainty 
about sensory inputs given the contextual constraints. Second, 
the two theories may be complementary, rather than opposed, 
because Coherent Infomax emphasizes lateral connections 
between streams of processing dealing with distinct datasets, 
while also including some downward connectivity, whereas the 
theory of free energy reduction emphasizes downward 
connections, while also including some lateral connectivity. 
Third, it has been argued that predictive coding theories can be 
made formally equivalent to theories based on evidence for 
amplifying effects of top-down attentional inputs [22]. This was 
done by reorganising the computations required for predictive 
coding, and assuming that suppressive effects of prediction 
operate on intra-regional signals, rather than on inter-regional 
signals. Furthermore, a detailed model of that form of predictive 
coding argues that it is compatible with much of the 
neurobiological evidence [23]. These studies therefore suggest 
that some form of predictive coding may be compatible with 
both Coherent Infomax and the theory of free energy reduction. 
Deeper examination of relations between those two theories is 
therefore a major task for the future. 

5. UNRESOLVED ISSUES AND DIFFICULT-
IES OF THE THEORY 

The conceptual depth and empirical scope of the free energy and 
Coherent Infomax theories raises many unresolved and 
controversial issues, some of which may have philosophical 
significance. There is time here to mention only a few, and each 
in no more than speculative and flimsy outline. 

First, is any unified theory of brain function possible? As a 
recent philosophical examination of the free energy theory 
shows this is an issue of lasting debate, with the ‘neats’ saying 
‘Yes’, and the ‘scruffies’ saying ‘No’ [21]. As the issue cannot 
be resolved by failing to find any unifying theory, it can only be 
resolved by finding one. Some are happy to leave that search to 
others, on the assumption that Darwinian evolution is the only 
unifying idea in biology. Even if true that need not deter the 
search for unifying principles of brain function, however, 
because it can be argued that free energy theory both formally 
specifies what adaptive fitness requires and shows how neural 
systems can meet those requirements (Friston, personal 
communication). 

Second, another crucial issue concerns the possibility of 
major transitions in the evolution of inferential capabilities. 



Seven major transitions in the evolution of life have been 
identified [24], such as the transition from asexual to sexual 
reproduction. Only one of those concerned cognition, i.e. the 
transition to language. Major transitions in the evolution of 
inferential capabilities prior to language are also possible, 
however, and it is crucial to determine whether this is so because 
empirical studies of inferential capabilities will be misinterpreted 
if they are assumed to reflect a single strategy, when instead they 
reflect a mixture of strategies, either across or within species. 
One way in which work of the sort discussed here could 
contribute to this issue is by proposing various possible 
inferential strategies. They could range from those with 
requirements that are easier to meet but with severely limited 
capacities, through intermediate stages of development, to those 
having more demanding requirements but with enhanced 
capabilities. Some possible transitions are as follows: from 
predictions only of things that are directly observable to 
estimates of things not directly observable; from generative 
models averaged over various contexts to those that are context 
specific; from hypotheses determined by input data to those that 
are somehow more internally generated; from probabilistic 
inference to syntactic structure, and, finally, from hypothesis 
testing to pure hypothesizing freed from testing. Within stages 
marked by such transitions there would still be much to be done 
by gradual evolutionary processes. For example, context-
sensitive computations can make astronomical demands on 
computational resources, so they will be useful only if 
appropriate constraints are placed on the sources and size of 
contextual input, as already shown for its use in natural language 
processing [25]. Thus, even given the ability to use contextual 
information, the search for useful sources of contextual input 
could still be a lengthy process, even on an evolutionary 
timescale, and produce much diversity. 

Third, how can apparently simple objectives, such as 
specified by Coherent Infomax and free energy theory, help us 
understand the overwhelming evidence for wide individual 
differences in cognitive style and capabilities? To some extent 
answers to this question are already available as it has been 
shown that within human cognition there are wide variations in 
context-sensitivity across sex and occupation [26], culture [27], 
schizotypy [28], and developmental stage [29]. The use of these 
theories to help us understand the diversity of cognitive 
capacities both within and between species is as yet only in its 
infancy, however. 

Fourth, why are there several different neurobiological 
mechanisms for gain-control? Earlier work done from the 
Coherent Infomax perspective, both in relation to normal and 
psychotic cognition [19], emphasized only NMDA synaptic 
receptors for the predominant excitatory neurotransmitter 
glutamate, but we now realize that several other gain-control 
mechanisms are also important, particularly at the level of 
micro-circuitry involving inhibitory inter-neurons. The various 
uses, capabilities and limitations of these different mechanisms 
for gain-control remain to be determined. 

Fifth, as Coherent Infomax is formulated at the level of local 
neural processors that operate only within a population of other 
such processors, are they not doomed to imprisonment in such a 
‘Chinese room’, with no hint of a world beyond? As Fiorillo 
argues, neuroscience must be able to ‘take the neuron’s 
perspective’ [30], but how can that be done without thereby 
losing contact with the distal world beyond? Coherent Infomax 

suggests an answer to this dilemma, first, by being formulated 
explicitly at the level of the local neuronal processor, and, 
second, by searching for predictable relations between diverse 
datasets. Discovery of such interdependencies implies the 
existence of distal causes that produce them. The more diverse 
the datasets the more distal their common origins are likely to 
be. This can be seen as a neurocomputational version of Dr 
Johnson’s refutation of idealism when he kicked a stone and said 
“I refute it thus”. A distal reality is implied both by the 
agreement between what is seen and what is felt, and by the 
successful prediction of the outcomes of action. Though this 
argument seems plausible to me, I am not a philosopher, so it 
may be in need of closer philosophical examination. 

Sixth, coherence, as conceived within this theory, depends 
upon the long-term statistics of the co-occurrence of events 
defined at the highly specialized level of receptive fields, which 
convey information only about fragments of the current state as a 
whole, so how can episodic capabilities that deal with unique 
events, such as working memory and episodic memory, be 
included within such a conception? My working assumption is 
that these capabilities are closely related to the syntactic 
grammars of language and schematic structures. Though 
syntactic and statistical conceptions of cognition have long been 
contrasted, there is no fundamental conflict between them 
because, as many studies have shown, grammars can be acquired 
by statistical inference. The use of such grammars to create 
novel but relevant patterns of activity seems to be, in essence, 
close to what the theory of Coherent Infomax has to offer, but I 
know of no attempt to explore that possibility. 

Seventh, how can attention and consciousness be included 
within these theories? Within Coherent Infomax, attention is 
assumed to operate via the contextual inputs, which are purely 
modulatory as required. One psychophysical study of texture 
perception by humans used the formal information theoretic 
measures of the theory, and, indeed, in that case attention had the 
complex set of properties predicted [30]. That one study has not 
been followed-up, however, and though it has promise, far more 
needs to be done. The theory of free energy reduction has also 
been related in detail to attention [31], but in that case also far 
more is needed. 

Eighth, can the dynamics of biological systems be described 
as maximising a formally specified objective without implying 
that they have a long-term objective? This question is distinct 
from the much debated issue contrasting descriptive and 
prescriptive formulations. Instead, it concerns the temporal 
course of evolution. Is it progressive or not? Evolutionary 
biologists are divided on this issue, but Coherent Infomax 
implies that it can be progressive, provides a conceptual measure 
of the progress, i.e. as increasing organised complexity, and 
suggests ways in which neuronal systems contribute to that 
progress [20]. We can then think of life at the ecological and 
species levels, not as ‘evolved to reproduce’, but as ‘reproducing 
to evolve’; i.e. in the direction of the formally specified 
objective. From that perspective we can think of our own 
individual efforts as directed, not merely towards survival, but as 
directed towards whatever organised complexities we choose to 
create. 
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Neurobiological Computation and Synthetic Intelligence

Craig A. Lindley
1
 

Abstract.  Cognitivist approaches to the development of 

engineered systems having properties of autonomy and 

intelligence are limited in their lack of grounding and emphasis 

upon linguistically derived models of the nature of intelligence. 

An alternative approach to the synthesis of intelligence is to take 

inspiration more directly from biological nervous systems. Such 

an approach, however, must go far beyond twentieth century 

models of artificial neural networks (ANNs), which greatly 

oversimplify brain and neural functions. The synthesis of 

intelligence based upon biological foundations must draw upon 

and become part of the ongoing rapid expansion of the science of 

biological intelligence. This includes an exploration of broader 

conceptions of information processing, including different 

modalities of information processing in neural and glial 

substrates. The medium of designed intelligence must also 

expand to include biological, organic and inorganic molecular 

systems capable of realising asynchronous, analog and self-* 

architectures that digital computers can only ever simulate. 12 

1 INTRODUCTION 

Alan Turing [23] provided the definitive challenge for research 

in artificial intelligence (AI) of creating a computer program that 

could not be distinguished in communication via a remote 

interface from a human operator. This challenge has had the 

great advantage of providing a constrained and measurable 

problem for artificial intelligence, which more generally suffers 

from being highly unconstrained [9]. That is, AI seeks to make 

machines more intelligent, which immediately raises questions 

of what intelligence is and how it might be detected or measured. 

The focus of the Turing test on textual discursive capability has 

resulted in a symbolic AI paradigm that emphasizes the 

definition of formalised linguistic representations and the logic 

of high level cognitive operations that are involved in verbal and 

textual discourse. The Turing test meshes well with Newell and 

Simon‘s physical symbol system hypothesis [14] that: ―A 

physical symbol system has the necessary and sufficient means 

for general intelligent action.‖ In this conception, the 

foundations of discursive intelligence become the foundations of 

general intelligence.  

 

While this approach may lead to systems that can pass the 

Turing test within limited contexts, as a general paradigm of 

intelligence it are severe limitations, as summarised by Lindley 

[12]. Indeed, following the argument of [12], not only is the 

Turing test limited to symbolic discourse, the foundation of 

Turing‘s challenge, computing machinery, is a narrow and 

historically situated understanding of machines. In the age of 

nanotechnology and biotechnology, the distinction between 
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machines and biological organisms breaks down. This suggests 

that the realisation of intelligence by design must shift 

foundations towards the design of self-replicating, self-

assembling and self-organizing biomolecular elements or 

analogs capable of generating cognizing systems as larger scale 

assemblies, analogous to the neurobiological substrate of human 

cognition. That is, the paradigm of biomolecular engineering 

implies the construction of human level intelligence (HLI), not 

from the top-down by the manipulation of symbols, but from the 

bottom-up by the synthesis of neural architectures starting at the 

level of molecular engineering. 

 

Here this bottom-up approach will be referred to as synthetic 

intelligence (SI). SI is in contrast to symbolic AI, the latter being 

largely based upon top-down analysis of higher level cognitive 

functions with the aim of deriving an abstract symbolic 

machinery that can be implemented at a logical level 

independently of mechanisms by which representation and 

logical inference may be automated. 

 

While SI can be motivated by reflection upon the limited success 

of symbolic AI, it finds a strong and obvious demonstration of 

its principles in human neural systems, of which only limited 

abstract functions are captured by symbolic AI. However, the 

achievement of SI as a product of engineering is, of course, yet 

to be demonstrated. Moreover, the pursuit of SI immediately 

raises the question of how well we understand neurobiology. 

One of the issues to consider in this is the degree to which our 

understanding of neurobiology is conditioned by historically 

situated metaphors and current technologies, just as [12] 

describes the metaphorical construction of AI in terms of 

intelligence as computation, and of robotics as the reinvention of 

the (typically) human form in the media of twentieth century 

electromechanical engineering technologies. 

 

This paper considers the more specific question of the nature and 

role of information processing in understanding the functions of 

neurobiology, especially those functions that may appear most 

relevant to the realisation of HLI, and the implications of this for 

how SI may be achieved. A metaphor can be defined as ―a figure 

of speech in which a word or phrase is applied to an object or 

action that it does not literally denote in order to imply a 

resemblance‖  

(http://www.collinsdictionary.com/dictionary/english/metaphor, 

accessed 11 January 2012). In our discourse on neurobiology it 

is often very unclear when terms of description are metaphorical 

and when they are literal. For example, if it is claimed that the 

brain is a computer, it is clearly not being suggested that we have 

a hard disk and a motherboard in our heads. Rather, we use the 

metaphor of computation to highlight an aspect of how the brain 

might function. However, the degree to which this is a literal or a 

metaphorical description depends upon the degree to which 

specific models of computation capture more or less 



fundamental aspects of the operation of the brain associated with 

the realisation of HLI. For SI, which seeks to realise designed 

intelligence, the distinction between the literal and the 

metaphorical, and what falls within the gap, can be critical to 

success or failure. 

2 NEUROBIOLOGY: SYSTEMS, SIGNALS 

AND PROCESSES 

Understanding the brain requires understanding at many 

different spatial scales, including those of ion channels (at a 

scale around 1 pm), signalling pathways (1 nm), synapses (1 

μm), dendritic subunits (10 μm), neurons (100 μm), 

microcircuits (1 mm), neural networks (1 cm), subsystems (10 

cm) and the whole nervous system (1 m) [22]. For understanding 

intelligence, a key question is: at what levels of the hierarchy are 

information processes critical to intelligence carried out? Behind 

this question is that of what aspects of the physiology, structure 

and operation of the brain that are not captured by the concept of 

information processing may nevertheless be critical to achieving 

HLI? Or turning the last question around, which concept(s) of 

information processing are critical to achieving HLI? 

 

Symbolic AI has focussed upon behaviour, what may be inferred 

from behaviour regarding functional capacities, and the 

derivation from language constructs of more formalised models 

(e.g. taxonomies, propositions, rules, etc) of linguistic forms. 

Subsymbolic AI has focussed upon simplified models of neurons 

and neural networks characterised by different learning rules and 

topologies. Since HLI has yet been approached by any kind of 

AI system, it must be asked if these approaches are adequate, or 

whether comparison with biological brains and nervous systems 

can reveal structures, functions, processes or principles that have 

not yet been used in AI that may nevertheless be critical for the 

achievement of artificial or synthetic HLI. Since SI is concerned 

with the bottom-up creation of intelligence, the discussion here 

will focus upon the lower layers of the hierarchy, i.e. the levels 

of simple neural interconnections and below (ignoring larger 

scale circuits, network topologies and subsystems).  

 

The most ubiquitous image of the brain is that of a kind of wet 

computer with circuitry consisting of a vast network of 

interconnected neurons transmitting electrical signals among 

themselves, with each neuron summing weighted inputs and 

issuing an output signal if the sum of inputs exceeds a threshold 

(the integrate-and-fire model of neurons). This view is the 

neuronal doctrine [24], which places neurons and their synaptic 

interconnections at the centre of brain functionality.  

 

A single bipolar neuron cell (Figure 1, top) consists of a cell 

body from which there extend dendritic trees surrounding the 

cell body, and an elongated axon that also leads to a branching 

end structure. Dendrites accept inputs from other neurons in the 

form of neurotransmitters, via synapses that often occur on small 

projections referred to as dendritic spines. Any given input can 

have an additive or subtractive effect upon the summation of 

inputs at the neuron body, with different inputs having different 

strengths, as modelled at the bottom of Figure 1. When a 

sufficient balance of additive over subtractive inputs is received, 

the cell body accumulates enough of a potential difference 

between the inner and outer surfaces of its surrounding 

membrane for ion channels embedded in the membrane to open, 

leading to the movement of ions between the inside and the 

outside of the cell. This movement of ions cascades along the 

cell axon as an action potential, a voltage spike providing a 

signal that is transmitted via the terminal axonal branches to the 

dendrites of other neurons. After the passage of such an 

electrochemical pulse, the ionic balance across the neuron cell 

membrane returns to the rest potential. The details of this process 

are covered in many neuroscience texts (e.g. [2], [21], [11]). 

However, it is relevant to note that the speed of transmission of 

an action potential in the fastest, myelinated, cells of the 

peripheral nervous system is about 150 ms-1, a speed that is two 

million times slower than the transmission of an electric signal 

along a wire or a pulse of light along an optical fibre. The 

metaphor of neural transmission as an electrical signal is highly 

misleading in this respect; an action potential is a measure and 

propagator of a cascading flow of charged particles, a process of 

electrochemical diffusion. 

 

 
 

Figure 1. A simplified representation of an ―integrate-and-fire‖ 

neuron cell and its mathematical structure, from Hameroff 

(2009).   

 

The primary signal transmission connections between neurons 

occur at synapses. A synapse consists of a synaptic terminal on 

the presynaptic side, a synaptic cleft, which is a gap of ~20 nm 

width, and a postsynaptic membrane on the receiving side. A 

selection from a wide range of possible neurotransmitters are 

issued from synaptic terminals of the activated neuron. The 

neurotransmitters move across the synaptic cleft to receptors on 

dendrites on the post-synaptic side.  Hence action potentials as 

such are not directly transmitted from one neuron to another (in 

most cases), the inter-neuron connection being mediated by 

neurotransmitters passing across the synaptic cleft and into 

receptor proteins in the post-synaptic membrane. Hence 

chemical synapses actually provide electrical and physical 

isolation between interconnected neurons, another departure 

from the metaphor of an electrical signal processing network. 

However, some neurons do have electrical synaptic 

interconnections, gap junctions that are channels that allow the 



passage of ions for direct propagation of electrical signals, but 

also allowing the passage of larger molecules, thereby creating 

metabolic coupling in addition to electrochemical coupling 

between neurons [24]. There are also anterograde connections 

from post-synaptic neurons to presynaptic neurons, typically 

realised by gaseous neurotransmitters such as nitric oxide.  

 

Neurotransmitters, as well as hormones secreted by neurons, are 

not limited to local effects, but can diffuse more widely through 

extracellular space, thereby bypassing the dendritic/axonal 

network. These latter, broad diffusion processes can be referred 

to as ‗Volume Transmission‘ (VT) processes. Processing within 

the dendritic/axonal network can be referred to as ‗wiring 

transmission‘ (WT) [24]. WT is rapid (from several 

microseconds to a few seconds), highly localised, signals pass 

between two cells, and the effects are phasic (i.e. event-related). 

VT is slow (from seconds to minutes/hours), global, has one-to-

many signals, and the effects are tonic (extended over numerous 

events). VT may be the consequence of synapse leakage, open 

synapses, ectopic release (i.e. neurotransmitters released from 

the surface away from synapses), etc.. 

 

WT networks formed by neurons and their interconnections are 

the main information processing structure of the brain posited by 

the neuronal doctrine. Hence it is this interconnected structure of 

weighted links, integrators and action potential generators that 

has been regarded as the primary system of information 

processing and computation in the brain. This is also the model 

that has been adopted by simple artificial neural network models 

derived from the neuronal doctrine during the latter half of the 

twentieth century. The neuronal doctrine accommodates 

increasing sophistication in the understanding of how biological 

neurons and their networks function. Synapses are highly plastic, 

their plasticity being a major mechanism of learning, with 

synapses between co-active neurons being strengthened while 

synapses between neurons that are rarely active at the same time 

deteriorate. Most of the adult human brain does not undergo any 

significant new neuron creation (with the notable exception of 

the olfactory epithelium), but dendrites and dendritic 

connections, ion channels, dendritic spines and synapses undergo 

continuous ongoing changes. By these mechanisms, cortical 

neuron populations of a sufficient size appear to be capable of 

learning any specifiable function of an arbitrary number of 

dimensions (e.g. [5]). 

 

Information processing by action potentials, their propagation 

through neuron networks, and the integrate-and-fire operation of 

individual neurons represents a one level of computation in the 

brain. Processing of information within the dendritic trees of 

single neurons has recently been proposed to represent local 

forms of computation within the dendritic structure, together 

with back propagation of spikes from the soma via dendrites, 

spike generation in dendritic spines and shafts, and bistable 

dynamics [13]. Computations conducted within dendral 

structures may include simple arithmetic, from simple to 

complex logic functions, filtering, and even integrate and fire 

functions within dendral substructures, creating a two-layered 

‗neuron‘ model (similar to simple classic ANNs) within a single 

neuron. The extended structure of dendritic trees means that 

different spatiotemporal input patterns can have different effects 

on neuron firing, allowing for computation of directional 

selectivity, in retinal and audio processing [13]. Moreover, Rall 

and Shepherd [16] proposed that two neuronal populations 

(excitatory and inhibitory) could communicate via direct 

synapses between their dendrites, without involving axonal 

propagation (see also [17]). While these forms of computation 

may be observed within dendritic structures, as London and 

Hausser [13] note, the key question is the extent to which the 

brain takes advantage of these building blocks to perform 

computations. For SI the question is that of the extent to which 

these mechanisms may contribute to HLI. Hameroff [10] even 

suggests that dendritic cross-connections provide the foundations 

of consciousness. 

 

The changes in ion channels, dendritic and axonal tree growth 

and interconnections, and synaptic processes in response to 

network activity can be seen as another level of computation, 

and one more fundamentally associated with neural plasticity. It 

is also possible to model the internal processes of cells in terms 

of information processing and/or computation (e.g. [22]). This 

includes the effects of neurotransmitter reception, continuous 

metabolic processes, and interactions between these two. Hence 

computation/information processing occurs at the intra-cellular 

level, as well as at the WT and VT levels. 

 

This picture of the neuronal doctrine makes information 

processing, or computation, within the brain complex and multi-

levelled. In general there about 500 different types of human 

neurons. There are about 100 billion neurons in a single brain, 

each of which is connected to 1,000-10,000 others with over 

200,000 km of axons [15]. Hence the WT network is highly 

complex, even without considering detailed mechanisms of 

intercellular communication, dendritic processing, synaptic 

processing, plasticity and intra-cellular processes. 

 

However, neurons only constitute about 10% of brain cells. The 

rest consist of glial cells [24], of which 80% are astrocytes, the 

subtype of concern in this paper. For most of the time since the 

discovery of glial cells in the late 19th century they have been 

regarded as secondary support cells for neurons, e.g. providing 

nutrients and mopping up excess neurotransmitters. However, 

research over the last couple of decades has radically revised this 

understanding. It is now known that astroglia are the stems cells 

from which neurons differentiate. Those that remain as 

astrocytes form networks connected via gap junction bridges that 

provide intercellular communication, providing transfer paths for 

ions, metabolic factors and second messengers throughout the 

central nervous system (CNS). Astrocytes also engage in long 

distance communication by calcium wave propagation initiated 

by stimulation of neurotransmitter receptors in the astroglial cell 

membrane [24]. Astroglia appear to express all known forms of 

neurotransmitters, which can influence neuron activity, and they 

possess numerous ion channels that can be activated by 

extracellular and intracellular activity, such as the activity of 

neighbouring neurons [24]. Hence neurons and astroglia appear 

to form parallel and intercommunicating systems of signal 

transmission and processing. Glial cells also determine the 

differentiation, microarchitecture, synaptogenesis, and death of 

neurons and neural structures. Verkhratsky and Butt [24] 

hypothesise that neuronal networks are specialised for fast 

communication (i.e. metaphorically, they provide a kind of 

internet within the CNS), while astroglia provide the most 



substantial information processing, integration and storage 

functions of the brain. Evidence for the significance of glia is 

found in their dramatic increase, both in absolute numbers and 

relative to the numbers of neurons, on a phylogenetic scale, 

reaching the greatest complexity in the human brain [24]. 

 

One further information processing system within 

neurobiological systems that will be mentioned in this paper is 

the system of hormones that also interacts with the processes 

described above. Hormones are chemicals secreted by specific 

groups of cells that are carried by the bloodstream to other parts 

of the body where they act on other cells to produce specific 

physiological effects [2]. Neurosecretory, or neuroendocrine, 

cells in the hypothalamus are almost the same as neurons, except 

that they do not release neurotransmitters, but instead they 

secrete hormones into the blood stream [2]. The effects of 

hormones on the body include reproductive development and 

rhythms, water and salt balance, growth, the secretion of other 

hormones, metabolic rate, emotional arousal, inflammation 

reactions, digestion and appetite control [2]. Hormones 

constitute a VT system in the terms used by Verkhratsky and 

Butt [24]. Hormones act gradually, change the intensity or 

probability of behaviours, are influenced (in type and quantity 

released) by environmental factors, have a many-to-many 

relationship with cells, organs and behaviours, are secreted in 

small amounts and released in bursts, may vary rhythmically in 

levels, may be mutually interacting, and are graded in strength 

(unlike the digital nature of neuronal action potentials [2]). 

Hormones, neural systems, behaviours and their consequences, 

are highly interactive and integrated. Hence an understanding of 

the processes and consequences of the nervous system, including 

the achievement of HLI, can only be complete when understood 

together with the parallel signalling and information processing 

system mediated by hormones. 

3 NEUROPHYSIOLOGY AND COMPUTER 

SYSTEMS, ESSENTIAL DIFFERENCES 

A fundamental question in the quest for synthetic HLI is that of 

which levels of abstraction or description represent the lowest 

level necessary for the realisation of HLI. Human levels of 

intelligence are poorly defined and poorly constrained. Cognitive 

science and cognitive psychology have made some progress in 

the top-down decomposition of human intelligence into 

functional parts and facilitating capacities. Knowledge of how 

cognitive constructs map onto brain structures and processes at 

lower physiological levels are being increasingly provided by 

correlation studies with neuroimaging, lesions, etc.. But since 

there are as yet no convincing demonstrations of synthetic or 

artificial HLI, it is not yet be certain where the limits of 

necessary detail are. There is also the conceptual question of the 

degree to which constructs such as computation, information and 

information processing, and which particular understandings of 

these constructs, are helpful (or not) in creating a working model 

of the relationship between physiological processes at different 

levels of abstraction/description and the achievement of HLI. 

Answers to this question provide foundations for considering 

which technologies may provide suitable media for the 

achievement of the required forms of computation and 

information processing. However, some differences between 

biological brains and computational machines as we know them 

may make machines as such incapable of achieving the 

intelligence demonstrated by biological brains irrespectively of 

issues of abstract computation and information models. 

 

Potter [15] presents a number of differences between natural 

intelligence (NI) and AI, suggesting features that could, at least 

in principle, potentially make AI more brain-like. These include: 

 

- brains don‘t have a CPU, they are highly distributed; NI 

uses lots of parallelism 

- biological memory mechanisms are not physically 

separable from processing mechanisms 

- biological memories are dynamic and continually reshaped 

by recall 

- the brain is asynchronous and continuous; resulting phase 

differences can encode information. As noted by Crnkovic 

[4], the asynchrony of brain processing means that it does 

not conform to Turing computation. 

- brains do not separate hardware from software; i.e. 

computation and information processing are not abstracted 

from the physical level, and the physical level is 

continuously changing (e.g. in mechanisms of plasticity 

noted above) 

- NI thrives on feedback and circular causality. The nervous 

system is full of feedback at all levels, including the body 

and the environment in which it lives; it benefits in a 

quantifiable way from being embodied and situated. 

- NI uses lots of sensors 

- NI uses lots of cellular diversity 

- delays are part of the computation. The brain computes with 

timing, not Boolean logic. 

 

Further differences may also be noted, including: 

 

- the brain is analog, where computers are digital. The 

digitisation of atemporal quantities leads to quantisation 

errors, and the quantisation of time leads both to potential 

quantisation errors and aliasing (the appearance of high 

frequency content in the form of illusory low level 

frequency components) although it is unclear how critical 

these errors are in functions underlying the achievement of 

HLI.  

- neural systems are coextensive with the human body. This 

leads to layered and partially hierarchical control, achieved 

to a degree in some AI architectures (e.g. [3]). 

- power distribution is decentralised and coextensive with 

information processing; hence human metabolic processes 

are implicated in information processing 

- brains and nervous systems are intimately integrated with 

other bodily systems and processes. It may be reasonable to 

suggest that more abstract cognitive functions (e.g. abstract 

problem solving, mathematics) are understandable without 

considering parallel or underlying physiological processes. 

But even the most abstract brain operations are in practice 

constrained by factors in their physiological substrate (e.g. 

successful high level reasoning requires energy and sleep). 

- much of the organisation of the brain is topological, from 

sensory processing to the contralateral organisation of the 

cerebral hemispheres 

- physical locations can matter. A good example of this is the 

use of differential timing of the arrival of aural information 



via separate dendrites as a cue for sound localisation (see 

[13]) 

- NI systems are built from the bottom up in processes that 

are self-assembling, self-organizing, and adaptively self-

maintaining (characterised by Crnkovic [4] as self-* 

processes), based upon a ubiquitous (genetic) instruction set 

that is expressed in ways that vary according to highly local 

conditions and their recursively embedded contexts 

- the foundations of NI have not been designed, but have 

evolved 

 

The last two points are critical. There is currently no 

demonstration proof of the achievement of HLI in a way in 

which its mechanisms and contents are fully comprehensible 

within human consciousness. However, to achieve an SI that is 

capable of HLI should not require directly building a fully 

capable system. Rather, it can be based upon initiating processes 

of self-assembly and self-organisation that can create a 

sufficiently complex microstructure to achieve an adaptive, 

learning and growing nascent SI. The nascent SI must be capable 

of maturing through self-organisation in interaction with its 

environment to full HLI and beyond, just as in biological HLI. 

4 NEUROPHYSIOLOGICAL PROCESSING AS 

INFORMATION PROCESSING  

In considering the nature of the brain as an information 

processing system, it is necessary to be clear about what kind of 

information processing system it is, and according to what 

understandings of the term information. A widely used formal 

definition of information was first formulated by Shannon [19]. 

Shannon‘s concept of information can be summarised in the 

following way: if there are n possible messages, then n is a 

measure of the information produced by the selection of one 

message from the set, when all messages are equally likely. That 

information can be expressed by log2 n. This represents a 

number to the base 2 which can be represented by a sequence of 

bits (binary digits) of length log2 n, where any specific bit 

pattern of length log2 n can represent a particular message 

among the set of n possible messages.  

 

Shannon and Weaver [20] describe three levels of 

communication problems: ―A. How accurately can the symbols 

of communication be transmitted? B. How precisely do the 

transmitted symbols convey the desired meaning? C. How 

effectively does the received meaning affect conduct in the 

desired way?‖ The mathematical theory of communication is 

concerned with A. This conception of information has been used 

in many analyses of neural system function, providing methods 

of measuring probability distributions, supporting analysis of 

information bottlenecks, and providing a view of cortical 

systems as systems that maximise information [1]. Information 

maximisation includes maximising the richness of 

representations, heuristic indentification of underlying causes of 

an input, to provide economies of space, weight and energy, and 

as a reasonable heuristic for describing models [1]. Potential 

disadvantages with the use of mathematical information theory 

including the need for vast amounts of data for generating 

reliable probability distributions, the need for independent 

sources of the usefulness of an encoding scheme, the uncertain 

nature of neural encoding of information, and the assumed 

stationarity of probability distributions known to an information 

receiver [1]. Nevertheless, it has been suggested that the overall 

goal of the brain and individual neurons is to minimise 

uncertainty, which corresponds with the maximisation of 

information. The ‗neurocentric‘ approach of Fiorillo ([6], [7]) 

proposes that the activity of individual neurons can be fully 

described in Bayesian terms grounded in information theory, 

where a single neuron integrates information from molecular 

sensors to reduce uncertainty about the state of its world. In this 

case, the state of the world is the local environment of the 

neuron, where information input to the neuron is a property of 

biophysical mechanisms from the level of single molecules and 

up, rather than being inferred by a scientific observer from 

external properties of the environment. Hence the computational 

goal of the nervous system is the minimization of uncertainty (of 

the brain about its world) exclusively based upon the information 

and mechanics of the system, a view closely related to Friston‘s 

[8] theory of free energy minimization but with an internal rather 

than external view of information sources and their resulting 

probabilities. 

 

Fiorillo [6] emphasises that the neurocentric approach uses 

probabilities only to describe the biophysical information of a 

neuron. ―There is no physical step that must occur within the 

nervous system to ―calculate‖ probabilities from information. 

Probabilities are a quantitative property of information in much 

the same way that mass is a quantitative property of matter. 

Likewise, information is an intrinsic property of matter and 

energy. Information follows the rules of physics, and Bayesian 

principles allow us to quantify information using probabilities.‖ 

Crnkovic [4] goes further than this, proposing that ―Information 

may be considered the most fundamental physical structure. 

Info-computationalist naturalism understands the dynamical 

interaction of informational structures as computational 

processes.‖ This view goes much further than Shannon‘s view of 

information, which is essentially an epistemological one, to one 

that equates the epistemological with the ontological. The further 

development of this view is morphological computation, where 

biological computation is conceived as a ―computational 

mechanism based on natural physical objects as hardware which 

at the same time acts as software or a program governing the 

behavior of a computational system‖ [4]. Morphological 

computation captures many of the essential differences between 

biological brains and semiconductor-based computers noted 

earlier in this paper. 

5 CONCLUSIONS: IMPLICATIONS FOR 

SYNTHETIC INTELLIGENCE  

All of the hierarchical levels of the human nervous system have 

been simulated in detail using digital computer technology [22]. 

However, both cognitive and neural simulations have had limited 

success to date and certainly fall far short of HLI. Lindley [12] 

has argued that cognitive approaches in particular do not appear 

to be promising in isolation. Here it may be added that an 

essential problem for cognitivist AI is an implicit Cartesian 

dualism, where AI has focussed upon modelling the mind, and 

the symbol grounding problem, a central problem for AI, is the 

computationalist‘s version of the problem for dualists of the 

nature of the ‗mechanism‘ by which the mind and the body 

interact. In the spirit of Rorty [18], it is possible to shift the 



emphasis away from the nature of mind towards the 

physiological foundations of the generation and use of mentalist 

concepts. The focus then shifts to the physiological foundations 

of human intelligence, the simulation of which has also not yet 

demonstrated anything remotely approaching HLI. However, the 

physiological project has two major advantages over the neo-

Cartesian cognitivist project. Firstly, as considered in this paper, 

neural computation includes many broad frontiers of ongoing 

knowledge development, including cellular, sub-cellular and 

molecular processes, the role of dendritic computation, the role 

of astroglia, and the embedded interdependencies between brain 

systems, bodies and their contexts. Simply put, we understand 

biological intelligence so incompletely that it provides an 

ongoing wealthy source of methods, principles and foundations 

yet to be comprehensively understood, let alone transferred into 

the design of intelligence as an engineered artefact. 

 

The second great advantage of the physiological project as an 

engineering project is that it is no longer limited to twentieth 

century engineering media. It is possible to apply molecular 

regulation, transgenic and viral techniques to selectively modify 

neurons and neural populations to generate ―designer dendrites‖ 

[13] and other neural structures having specific computational 

properties and topologies. It is also possible to explore the 

creation of brain system analogs in different chemistries, 

including organic and inorganic systems different from ‗wild‘ 

neural biochemistry. These systems can implement the analog, 

asynchronous and necessarily self-* characteristics of biological 

nervous systems in ways that are not possible with digital 

simulations. In implementing the morphological computing 

foundations of biological intelligence, these systems can be 

realisations of synthetic intelligence, rather than simulations or 

metaphors. 
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Learning to 
Hypercompute? An 

Analysis of Siegelmann 
Networks  

Keith Douglas1 

Abstract. This paper consists of a further analysis (continuing 
that of [11]) of the hypercomputing neural network model of 
Hava Siegelmann ([21]).  

1 INTRODUCTION 
This paper consists of a further analysis (continuing that of 

Douglas [11]2) of the hypercomputing neural network model of 
Hava Siegelmann ([21]). It consists of three large sections. In the 
first section, a brief description of Siegelmann’s model is 
presented. This section will be followed by a discussion of the 
merits of taking this model as a factual model (pace the 
“abstract” approach of Sieg [20]). Third, a discussion of one of 
Siegelmann’s key, heretofore poorly explored, assumptions (the 
“linear precision suffices” claim) will be addressed and is the 
primary focus of the paper. This discussion will proceed along 
the following three subsections of analysis: it will discuss  (1) a 
not-fully “noticed” suggestion of Arlo-Costa ([1]) and Douglas 
([11])3 that the Siegelmann network model actually requires a 
supertask to perform; (2) the merits of treating Siegelmann’s 
proposal as one involving an idealization in the sense of Norton 
([15]). The latter two will also allow a brief discussion of a 
factual interpretation of the arithmetic, analytic and similar 
familiar hierarchies; (3) that pace Davis and Scott ([9]) “non-
recursive black boxes” are not exactly untestable, making use of 
the work of Kelly and Schulte ([16]). Subsections (2) and (3) are 
not independent and yield similar findings.  
 

I end with summary conclusions. The conclusions will largely 
be more negative and “skeptical” about the merits of the 
Siegelmann network than those of herself or some of those (e.g. 
Copeland) who have defended it, but hope to provide more 
details on the areas of the model where interested parties could 
work on improving its plausibility and (nomological) 
possibility.The paper is organized as follows.  

2 SIEGELMANN NEURAL NETWORKS 

                                                 
1 philosopher.animal@gmail.com 
2 This paper is dedicated to the memory of Horacio Arlò-Costa and, of 
course, to that of Alan Turing, who I would like to think would be 
astonished by the amount of work building on his we have today and by 
which the results are so omnipresent. 
3 I am not claiming such should have been noticed, per se, but I find it 
strange that these considerations have not made it into the discussion of 
our topic by critics of hypercomputing (or considered as a “devil’s 
advocate” objection by proponents). 

Hava Siegelmann’s monograph ([21]) is the principle source of 
detailed discussion of her model (hereafter SN), and includes 
much information about the computational strengths of various 
forms of neural networks, their properties from the perspective 
of computational complexity and much off topic for our present 
purpose. Subsequently here, we only need to focus on aspects 
that are unique or unusual in her presentation with regards to the 
question of computability. I assume the reader is familiar enough 
with usual artificial neural network models (hereafter, ANN) to 
follow the discussion involving such matters as nodes and 
weights (see, e.g., [8]).   
 
These unique/unusual aspects are: (1) the necessity of using an 
“output protocol”, (2) her claims about the (real-valued) weights 
in the network and (3) the “sensitivity” of the network, i.e., a 
matter of interpreting the activation function.  
 
This section of the paper will simply remind or inform the 
audience of these features as they do play a role later on, and not 
critically discuss them completely at this point.  I bring these up 
to show that there are additional problems with SNs not 
discussed as much as the problem of weights already familiar in 
the literature and because they will play a crucial role in the 
discussions of idealizations later on.  
 
In the case of “output protocol”, what is meant is the convention 
adopted by Siegelmann (see in particular, [21], pp. 23-24) to 
indicate when a SN is finished its computation and is returning 
the value so calculated to its users. A state flag called the “output 
validation line” is set to 1 and is held in this value for the 
duration of the significant output and is set and held at 0 at all 
other times. One can then, during the time this line is 1, read off 
the value of the output from another, more conventional, output 
line. The “hypercomputing” part of this proposal is somewhat 
significant and yet hidden in her presentation.   
 
In particular, how does this flag get set? Take the case of a 
recursively undecidable problem, for which these networks are 
supposedly useful at solving, like the halting problem for Turing 
machines (hereafter, TMs). In this case the output is a single 
encoded output, so in this case, the flag will be set to 1 at one 
“tick”4 sometime in the future while (say) 1 comes out of the 
output line if the encoded TM halts and 0 otherwise. How does 
one know how to set this flag as a “programmer” of one of the 
networks? This depends on how the function is calculated, 
presumably. One has to know that the calculation is finished, 
that whatever state the network is in is the correct one. But this 
itself is a hyper-computational task; and so a regress seems to 
threaten. Moving on then to the case of the real valued weights 
of the network. This feature is the root of the 
hypercomputational power of the SN. Siegelmann does not tell 
us how these are to be obtained; merely calculates approximately 
how many digits of precision are needed after a given amount of 
run time. Since (by hypothesis) the network does not use 
registers, it is unclear what gaining digits of precision could refer 
to. An unspecified learning procedure is appealed to for the 
source of this extra precision, but without details this is simply 

                                                 
4 This assumes the network is somehow equipped with a clock (which at 
least some ANNs do not have), but in the interest of manageability of 
this paper, I’ll simply grant this part of the SN ex hypothesi. 



an unknown as well. Notice that there are two concerns here - 
both the learning procedure and how its use gets “recorded”, 
“stored”, etc. are at stake.  As for the activation functions, their 
“embodiment” or “implementation” also raises unanswered 
questions. For example, a threshold function (as the name 
suggests) is typically understood to be some representation of a 
node’s sensitivity to its inputs. In the case of SNs, these must be 
infinitely sensitive. Take a threshold function of the form (all of 
them discussed have the same problem; but since Siegelmann 
places special emphasis on the truncated linear one I use it here): 

f(x) = 0 if x < 0     
= x if 0 <= x <= 1 
= 1 if x > 1  

To see the potential concern, consider a value of x = 0 + e, where 
e is some small value approximately (but not exactly) equal to 
zero. Represented in the usual notation, this is then some value 
0.00000000000000000...1, say. The network has to be able to be 
able to “recognize” that value, no matter how small its difference 
is from 0, because the value of the output depends on it5. 
Siegelmann emphasizes truncation or rounding reduces the value 
represented at at a node to a rational value and hence renders the 
computational properties of the network nonhypercomputational. 
I call the property of the nodes in question “sensitivity”, and as 
we have now seen, this is infinite in a real valued network 
(which allows literally any real value as a weight). Previous 
critics have pointed out the implausibility of finding (or 
knowing) that one had a hypercomputable weight in a SN (e.g., 
[9]); it is hopefully now clear that the problem is at least twice 
that, since one also needs a way for the network to make use of 
it, and that requires a “hypersensitive sensor” or something of 
the kind - subsystems that respond in infinitely precise ways to 
embody the activation functions. I might add in passing that this 
mistake or oversight is nothing new. Bunge ([5]) argues that a 
human brain is not suitably modeled by a TM because even a 
single electron can be in a continuum of states. Ignoring that this 
might prove too much, Bunge, like Siegelmann, has to argue that 
there can be an infinite number of (hyper)computationally (or, in 
Bunge’s case6, cognitively) relevant states and events (state 
transitions: [10]). 

                                                 
5 Consider the required difference in output from two nodes that differ in 
value by 2e (e.g., one 0+e and the other 0-e). One of these will have 
activation 0 and the other e. It is also interesting to reflect that a 
relatively informal presentation of ANNs like in [8] the weights are also 
described as being real-valued, but nothing in their presentation hinges 
on it. Presumably it makes explaining the mathematics easy and ensures 
that a digression about computable PDEs is irrelevant. Presumably also 
Churchland and Sejnowski regard the plausibility of any real number as 
a weight to be not worth considering. Note also that the learning 
algorithms they discuss (pp. 96 ff.) are computable as well. 
6  I will not press the point here, but from my experience in conversation 
with Bunge (in the late 1990s), he does not think human brains are 
hypercomputers: rather, he thinks that computational notions are 
inapplicable to them altogether. The view, although he would be 
horrified by the comparison, seems to be similar to that of Wittgenstein. 
But this is all for another time. 

3 SIEG (INDIRECTLY) ON SIEGELMANN  
 
Sieg ([20]) has argued (in the context of a discussion of the 
Church-Turing thesis) that one can dispense with said thesis and 
instead: 
 
“My strategy, when arguing for the adequacy of a notion, is to 
bypass theses altogether, and avoid the fruitless discussion of 
their (un-)provability. This can be done by conceptual analysis, 
i.e., by sharpening the informal notion, formulating its general 
features axiomatically, and investigating the axiomatic 
framework.”  
 
This viewpoint dispenses with the need to analyze the 
Siegelmann network in detail, at least for the present purposes - 
were it correct. It would make it clear that hypercomputation is 
doomed to failure as a subject as the axiomatic framework in 
question makes it perfectly clear that broadly computational 
devices (including potential hypercomputers7 ) do not include 
anything like the SN8.  
 
However, as has been pointed out by Stewart Shapiro ([19]), it 
does not appear that Sieg successfully dispenses with theses 
here. In other words, there is the question of whether or not the 
axioms are correct9 of the real (or non-abstract, non-Platonic, 
etc.: replace as necessary according to your favourite philosophy 
of mathematics) systems under consideration. How do we 
(hopefully) resolve this impasse? For if Sieg is right, there is 
nothing to investigate; we simply see that the SNs do not fall 
under the axioms of computing machines he has usefully 
provided and that would be the end of it. This seems too hasty 
for the present purpose, so the concern is pressing. 
 
Here is where Shapiro is mistaken; he thinks that (following 
Quine [18] and others) one is dealing with some matter which is 
both mathematical and empirical. For some (perhaps for Sieg) 
this is impossible or unlikely; instead it is like investigating 
axioms for (say) groups10. If Sieg were right it would be a matter 

                                                 
7 Nothing in the Sieg-Gandy presentation actually rules out accelerated 
Turing machines ([2]) for example. However, it is unlikely at best that 
either Sieg or Gandy would approve; the advantage to the SN over many 
models of computation is that it explicitly includes a clock (a feature it 
admittedly shares with some ANN models) and thus can be used to more 
precisely make claims for or against “tricks with time” like the 
accelerated Turing machine requires. I’d hazard a conjecture that such a 
machine also requires no lower bound on the size of its parts if described 
as a Sieg-Gandy machine, and hence runs afoul of the finiteness 
requirements that way, but such an argument would require delicate 
physical hypotheses I do not wish to address in the present work. 
8 Since I disagree with Sieg that this approach is suitable, I shall not 
investigate precisely (in the present paper) where Sieg-Gandy machines 
rule out SNs, however it seems likely they run afoul of the “finite parts” 
conditions. Sieg and Gandy represent parts by the hereditary finite sets, 
so, presumably, a similar approach to the SN would need to use 
hereditary countable sets. This seems to suggest either or both of an 
infinite number of parts or an infinite magnitude of a property of one. 
9 I suspect that Sieg would claim that there is no thesis involved here; 
one simply investigates whether or not the axioms are fruitful, lead to 
desired consequences, etc. However useful that approach is for his and 
many other very important purposes, it amounts to begging the question 
against hypercomputation without further ado. 



of getting (as he borrows a phrase from Hilbert in saying) the 
“Tieferlegung der Fundamente” right; Shapiro claims instead 
one has to look to the world too. I claim both are mistaken 
because they have overlooked the possibility that the matter is 
not about mathematics at all.   
 
I argue that the debate should be construed as one about doing 
mathematics (or at least doing calculations or computations). 
Turing, as Sieg has rightly emphasized, analyzed a human 
“computor” (in the sense of Gandy [13]). Similarly, Gandy, him, 
and others have analyzed calculations by machine as well. Using 
Bunge’s ([3]) theory of reference and Sieg’s admirable 
presentation ([20]) of “Gandy machines”, one sees that the 
theory of Gandy machines is, indeed, about computing 
machines. This makes the subject matter a factual11 one in 
Bunge’s sense12; see also Douglas [12]. In other words, it is not a 
matter of mathematics - one can (and should) use mathematics as 
a tool to describe the characteristics of the computers and 
computors, but this does not make the field mathematics 
anymore than using differential equations in the theory of 
reaction mechanisms makes chemistry a branch of mathematics.   
 
Hence Shapiro is right in his claim: Sieg does not dispense with 
theses - or, if preferred, Church’s thesis is in need of “empirical” 
confirmation  and hence SNs’ “usefulness” as a model of 
computing cannot be dismissed so hastily. Also hence in 
particular, we must address the question of whether SNs are 
empirically plausible. It is here that we run quickly into previous 
criticisms of her proposals from the likes of Martin Davis and 
Dana Scott.   
 
 Davis’ ([9]) paper quotes Scott concerning how we would 
recognize a “nonrecursive black box”. I feel this quotation is also 
slightly mistaken: it proves too much. I agree that no finite 
amount of interaction with a black box could show that it 
performs hypercomputational processes. However, no finite 
amount of observation could tell you that a black box contains a 
Turing machine. Any finite experimentation with input and 
output is consistent with the black box being a (perhaps very 
large) finite state automaton13. This is not to say Scott and Davis 
are mistaken concerning the difficulty of determining that one 
has a hypercomputer of some kind, but instead that it is 
important not to overstate this difficulty. He emphasizes how 
hard it would be to tell that one had a non- recursive “transparent 

                                                                                
10 Using an algebraic analogy here, as opposed to (say) using a geometric 
one is important. By contrast, say, analysis would lead to questions 
immediately about the “real” continuum and whether spacetime is or 
could be discrete; geometry raises similar questions about 
dimensionality, curvature, etc. 
11 Bunge ([3], [5]) is a mathematical fictionalist and contrasts factual to 
formal sciences; once again one can translate into one’s appropriate 
philosophy of mathematics idiom. The important matter is that group 
theory is not the correct analogy; instead, a theory in (say) chemistry - 
like (say) a theory of solutions - is a better comparison. Using physics 
would raise questions about “rational mechanics” that might prolong the 
debate unnecessarily and other sciences would raise equally irrelevant 
questions for our present purpose. I will use “factual” in his sense 
throughout. 
12 Bunge (see, e.g., [4]) would claim that this use of “empirical” 
(traditional in most philosophy of science) is wrong, however, I shall use 
it here to emphasize what I intend. 
13 Matters are actually not quite this simple. See below about [15]). 

box” (i.e. a black box with much of its workings well known). It 
seems to me that Scott and Davis have adopted almost an  
instrumentalist attitude towards (what Bunge would call factual) 
scientific theories here. Since instrumentalism is controversial 
amongst philosophers of science, we should be wary of this 
approach14. After all, how does (say) Newtonian dynamics (ND) 
get verified? This presumably factual theory uses continuous 
functions and such; whereas any measurement is only of finite 
precision and hence renders direct confirmation impossible. 
Davis and Scott thus “prove too much” with this approach. They 
might rejoin that one could state ND in terms of computable 
analysis. However, assuming it could be done in this case does 
not show it could be done in general. Also, since the theory is 
then different, how does one decide between the computable 
version and its (usual) noncomputable counterpart? It would 
seem one would have to apply more general principles about the 
nature of theories in (factual) science. Since these are arguably 
under debate, we are now back where we started.   
 
Nevertheless, Davis and Scott have correctly (in my view) 
treated SNs as to what sort of proposal they are - namely a 
family of factual hypotheses. I have mentioned earlier (section 1) 
that there are what one might call “nomological” areas of 
discussion (problems, conterproposals, etc.) with the SN 
approach. I now turn to three of these.  
 
3 NOMOLOGICAL CONSIDERATIONS 
ABOUT “LINEAR PRECISION SUFFICES” 

The first of these stems from Arlò-Costa ([1]) and adapts 
prior remarks of Douglas ([11]) to that end. He asks whether or 
not the SN require a supertask to implement and hence “inherit” 
the implausibility of the accelerated Turing machine (see, e.g., 
Boolos and Jeffrey [2]) which most would agree is a purely 
“notional” device. In particular, note the difficulty even in 
computing a constant function with a SN. Since the weights of 
each node in a SN are of infinite precision, outputting their value 
directly is impossible by the protocol described. This arises 
because such a constant is still an infinite precision number, and 
so outputting its value requires an infinite amount of time15, 
followed by a signal to indicate that the output is finished. At 
best this would require a supertask. A suitable re-encoding16  
would have to be found, and that is not suggested anywhere by 
Siegelmann. Moreover, such would have to handle rational 

                                                 
14 Disclosure: As may be noticed, I am a scientific realist (of a somewhat 
unnamed sort), so I have (what I take to be) good reasons against 
instrumentalisms. But to be charitable to such esteemed scholars as Scott 
and Davis, I have tried to avoid dismissing their seemingly 
instrumentalist views out of hand and tried to find a way to allow both 
them and Siegelmann the benefit of the doubt about the plausibility of 
certain hypotheses. 
15 That is, unless one could in every case “program” the Siegelmann 
network to tell when it had an irrational number and flag rationals 
appropriately. This ability itself seems to be hypercomputational. 
16 Siegelmann’s book spends a lot of time talking about Cantor sets and 
changes in number bases, etc. As far as I can tell, qua engineering 
proposal (and one does take SNs as such when one takes them factually, 
as we are doing) this is largely irrelevant without knowing what  physical 
properties does the representation in the engineering sense. Obviously no 
registers are involved, and so re-encoding is not well defined at present. 
This problem is (needless to say) another instance of the same one that 
we keep encountering: how do the weights work? 



values as well as surds, transcendental values, and even non-
Turing computable numbers, like Chaitin’s constant. Of course, 
giving a finite representation of the latter sort of value cannot in 
general be done. My earlier remarks about the “output protocol” 
loom large here.  
 
Similarly, if the precision of an infinitely precise real number is 
not available at the beginning of the run of a SN, and the 
precision increases uniformly in time (see further my discussion 
of “learning networks”) it will take an infinite amount of time for 
the network to become infinitely precise. This entails 
immediately that the networks are actually Turing-equivalent for 
any finite period of time. Here, let me note further that this puts 
Siegelmann’s model in an unfortunate dilemma much as the 
precision consideration proper above provokes. Once again, 
either the network is infinitely precise in finite time (throwing 
away the “linear precision suffices” result), in which case the 
Siegelmann network is implausible from the sensitivity 
considerations I have canvassed and from related concerns, or it 
is only infinitely sensitive in infinite time, in which case using it 
to perform super-Turing computations would again require a 
supertask. Thus, it seems that Arlò-Costa is in fact correct, 
though a proof would be nice to have - but in the interests of 
time I have omitted such. I thus turn to a question which stems 
also from [11]).  
 
This concerns the nature of idealizations and approximations. It 
might be argued that the critics of SNs are taking the model too 
literally. Instead, it should be treated as one involving either an 
idealization or an approximation. For example, a SN-fond 
opponent of the critics of hypercomputing may well point out the 
critic will ask: why should we not grant relevant idealizations to 
the Siegelmann network? after all, the TM itself (or, equally, a 
“Gandy-Sieg machine”) makes idealizations concerning 
computing agents and their resources. For example, these are 
held to have an unbounded amount of memory, do not break 
down ever, can calculate without running out of energy no 
matter how long they run, etc. So, the opponent asks, why not 
grant idealizations to the SN?  
 
One could attempt to respond to this opponent by (1) counting 
idealizations or (2) intuitively trying to evaluate their merits and 
plausibilities. In the case of (1) it is likely correct to conclude 
that the SN includes all those of the TM and then some, it does 
not seem fruitful to simply claim that the SN has more and hence 
is more implausible, for what if the TM was already regarded as 
sufficiently implausible to not merit adoption? Or, in other 
words, does this objection prove too much? Also, how does one 
know what is “too many” idealizations and approximations 
anyhow? Better to look at (2), instead.   
 
To focus attention, let us discuss one particular family of 
idealizations, that of the weights of the nodes17  in the SN. 
Norton ([15]) has circulated a manuscript on idealizations which 
is useful to apply to the present purpose (cf. also the brief 
remarks in [14] and [7]). Norton’s paper centers around what he 
has called “the problem of limits”, distinguishing between the 

                                                 
17 There is an “informal duality” between the weights and what I have 
called “sensitivity”. All the arguments I raise, as far as I can tell, apply to 
it as well. 

case when the limit property and the limit system agree on the 
one hand, and when there is no limit system on the other. I shall 
argue, based on considerations based on the arithmetic hierarchy 
(e.g., [16], pp. 362 ff.) that Siegelmann’s proposal falls into the 
latter category. This is because at any finite time, a Siegelmann 
network is equivalent to a TM in power; only “at” the limit of 
infinite time is the network super-Turing in power. 
 
To adopt Norton’s analysis, one thus has to identify the limit 
property of a SN and what the limit system could be (if there is 
one). As just suggested, the limit property is the node weight (it 
does not matter if we take all the nodes or one, as by interleaving 
their expansion one can see there is effectively only one 
“weight” anyway18). Let us also assume for definiteness that this 
weight is Chaitin’s constant, ξ19. Then the question becomes 
how the weight gets used in an idealization. Here I do not know 
what to do to proceed. The weight is still not explained: in order 
to evaluate the idealization we have to know what this property 
actually is. For the sake of definiteness again, assume that we are 
dealing with a length. Then the idealization involves that of 
limiting lengths, the idealized value of which is ξ. This is a case 
where the limit property is not a property of the limit system. 
This is because the increases in length precision do not 
correspond at all the steps on the arithmetic hierarchy: if the 
idealization here were plausible then each finite increase in 
precision would correspond to some finite n in the usual labeling 
of the hierarchy20. One simple “imaginable possibility” would be 
to think that a weight of precision n corresponded to a “strength” 

of  where f(n) is some finite (i.e., non-divergent) function 

of n so that an infinite precision would deliver  as 
required21. But this does not work, no matter how slowly the 

function f grows, as  is already the recursive functions. In 
that sense, since each finite n is still sub-recursive, the limit in 

                                                 
18 For example, taking the digits from each weight value: 0.a1a2a3a4... 
and 0.b1b2b3b4... becomes 0.a1b1a2b2a3b3a4b4... in the case of a two 
node network. A similar procedure can be done for any SN, as they all 
have a finite number of nodes. 
19 A referee asked if we know that this particular constant is calculable. 
Since it is representable as a function from natural numbers to natural 
numbers, it is. SNs can can calculate all such functions ([21],  pp. 59 ff.). 
20 It is vital not to get the order of this (very impressionistic) proposal 
wrong. Since SNs grow in computational by increasing precision, and in 
the conventional theory of computation, more computational power 
means “climbing” the arithmetic hierarchy, all I am suggesting is how 
one would have to reconcile these aspects. 
21 There is some potential confusion here, so a clarification is true. It is 
quite correct to point out that this level of the hierarchy is “infinitely 
more” than is needed to do super-Turing computations. But precisely 
what is wrong (in one way) with the SN proposal is that it skips that 
entire part of the hierarchy. Why? Because that’s precisely what a jump 
from finite precision real numbers (i.e., rational weights) to the full 
infinitely precise weights of the SN does. On the one hand one needs the 
infinite precision; on the other hand the jump is an inappropriate 
idealization for that reason. There is no way an SN, as described, can 
climb through the hierarchy over finite time and wind up, in the infinite 
limit, at the ability to calculate all functions from natural numbers to 
natural numbers. Any finite increase in precision adds at best a finite 
ability. It is not as if some magic bit, say at the 31337th decimal place, 
suddenly allows all the sigma 0 1 functions to be computed, etc. 
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question of the SNs is then the recursive functions and not the 
arithmetic ones the SN need, never mind the analytic ones (i.e. 
all the functions from natural numbers to natural numbers). 
Hence, the property of the limiting system and the limit property 
do not agree. Hence further it looks like an inappropriate 
idealization in Norton’s sense. We thus have a clearer way of 
stating the difference over the idealizations of the SN versus 
those of the TM.  
 
These brief appeals to the arithmetic hierarchy also allow an 
answer to Scott and Davis (above) and avoid protracted debates 
over operationalism. A non-recursive “oracle” is indeed hard to 
investigate, however, Kelly and Schulte ([15]) draw important 
connections between the arithmetic hierarchy and the learning of 
theories with uncomputable predictions. While I will not prove 
any results here, I suggest that rather than an “operationalist” 
response to Siegelmann, one can in principle give a learning-
theoretic answer at least for some possible uses of the network.  
The goal in this section is to answer residual worries about 
operationalism and merely gesture at an area of future 
investigation, particularly connecting the properties of 
Siegelmann network to other hypercomputing proposals as has 
been suggested by the Wikipedia contributors ([22]). 
 
Let us turn to specifics. Kelly and Schulte ([15]) classify 
(following Gold and Putnam) hypercomputational problems into 
learning theoretic classes. For example, a hypothesis of the form 

 is one which is “refutable with certainty”. However, what 
is interesting from the perspectives of this paper (and 

symposium) is that a  sentence is sufficiently “complex” 
that there is no way to investigate it in a computable way22. This 

is “infinitely far” away from the level  that 
characterizes the complete SNs. However, a brief look at 
learning again might prove useful. If the increase in precision of 
real valued weights increased through the learning-theoretic 
hierarchy in a useful way - say, some fixed bound moved the 

strength of the system from  to , that would be a useful 
finding. Unfortunately, it seems to be nowhere in offering, once 
again for the same reason. To reiterate: any finite bound in 
increase of precision of the networks preserves their behaviour 
vis-a-vis the arithmetic hierarchy. This makes it implausible, to 
say the least, that SNs could increase their precision in a relevant 
way by “learning” as she proposes (without a supertask). This is 
not to say that real valued weights in a network could not 
increase precision by external influence (learning) but rather that 
they could not do so in a relevant way that makes 
hypercomputation plausible (or nomologically possible). 
 
The lesson for this subsection is then: Scott and Davis are right 
to be skeptical of our abilities to investigate purported 

                                                 
22 Claiming to investigate it in a hypercomputable way would of course 
beg the question against the critic of the SNs and also be useless for the 

proponent of them. After all, if one has a known “ ω
0Δ  device” or 

procedure already, why use a SN? 

capabilities of a supposed non-recursive black box. However, 
they are wrong to say that it is impossible in principle, but SNs 
provide no way for this investigation to proceed. Partisans of 
hypercomputation wanting to answer Scott and Davis must look 
elsewhere (including refining their models). 

4 CONCLUSIONS 
Investigation into the arithmetic hierarchy-related properties 

of Siegelmann style networks show how they are implausible 
relative to a Turing machine model of computation for they 
invoke various versions of the same inappropriate idealization. 
In future work, I hope to discuss whether any models of 
hypercomputation meet these requirements. I also hope to 
provide more details in these areas of specific criticism and also 
more rigorously analyze the Turing machine model from the 
perspective of idealizations. 

REFERENCES 
[1] H. Arlò-Costa. Unpublished comment in discussion with the author. 

2003 
[2] G. Boolos and R. Jeffrey. Computability and Logic. (2e) New York: 

Cambridge University Press. 1980. 
[3] M. Bunge. Sense and Reference (Vol. 1 of Treatise on Basic 

Philosophy). Reidel: Dordrecht. 1974. 
[4] M. Bunge.  Epistemology and Methodology I: Exploring the World. 

(Vol. 5 of Treatise on Basic Philosophy). Reidel: Dordrecht. 1983. 
[5] M. Bunge. 1985a. Epistemology and Methodology III: philosophy of 

science and technology: Part I. Formal and Physical Sciences (Vol. 
7 of Treatise on Basic Philosophy). Reidel: Dordrecht. 1985. 

[6] M. Bunge. Epistemology and Methodology III: philosophy of science 
and technology: Part II: Life Science, Social Science and Technology 
(Vol. 7 of Treatise on Basic Philosophy). Reidel: Dordrecht. 1985b 

[7] M. Bunge. Philosophy of Science (2 vols.) New Brunswick: 
Transaction. 1998. 

[8] P. Churchland  and T. Sejnowski, Terrence. The Computational 
Brain. Cambridge: MIT Press. 1996. 

[9] M. Davis. (adopting remarks of D.  Scott). “The Myth of 
Hypercomputation”. In Christof Teuscher (ed.) Alan Turing: Life and 
Legacy of a Great Thinker. Berlin: Springer. 2006. 

[10] K. Douglas. “A Special Davidsonian Theory of Events”. 
Unpublished MA Thesis, Department of Philosophy, University of 
British Columbia. 2001. Available online at http://www.philosopher-
animal.com/papers/thesis.pdf. 

[11] K. Douglas. “Super-Turing Computation: A Case Study Analysis”. 
Unpublished M.S. Thesis, Carnegie Mellon University. 2003. 
Available online at http://www.philosopher-
animal.com/papers/take6c.PDF 

[12] K. Douglas. "What Does a Computer Simulation Have to 
Reproduce? The Case of VMWare". Unpublished paper presented at 
IACAP 2010. 

 [13] R. Gandy. “Church's Thesis and Principles for Mechanisms.” In 
Barwise, John, Keisler, H. Jerome., Kunen, Kenneth. (eds). The 
Kleene Symposium. Amsterdam: North-Holland. 1980 

[15] K. Kelly and O. Schulte. “The Computable Testability of Theories 
Making Uncomputable Predictions”. Erkenntnis 43: 29-66. 

[14] I. Niiniluoto. 2004. Critical Scientific Realism. Oxford: Oxford 
University Press. 2004 (1999). 

[15] J. Norton. “Approximation and Idealization: Why the Difference 
Matters”. 2011. Unpublished manuscript, available at 
http://www.pitt.edu/~jdnorton/  

[16] P. Odifreddi. Classical Recursion Theory:  The Theory of Functions 
and Sets of Natural Numbers. Amsterdam: Elsevier Science. 1989. 

1
0Π1

0Δ

ω
0Δ =Δ0

1( )

3
0Δ

1
0Π



[17] A. Olszewski, Adam. J Woleński and R. Janusz (eds.). Church’s 
Thesis after 70 years. Heusenstamm: Ontos Verlag. 2006. 

[18] W. V. O. Quine. "Two Dogmas of Empiricism". The Philosophical 
Review 60: 20-43. 1951 

[19] S. Shapiro. 2006. “Computability, Proof, and Open-Texture”. In 
[17]. 2006. 

[20] W. Sieg. “Calculation by Man and Machine: Mathematical 
Presentation”. Technical Report No. CMU-PHIL-105. 2000. 

[21] Siegelmann, Hava. 1999. Neural Networks and Analog 
Computation: Beyond the Turing Limit. Boston: Birkhäuser. 

[22] Wikipedia contributors. "Hypercomputation” in Wikipedia, The 
Free Encyclopedia. http://en.wikipedia.org/wiki/Hypercomputation 
(accessed January 29, 2012). 

 



Oracle Turing machines faced with the verification
problem

Florent Franchette 1

Abstract. The main current issue about hypercomputation concern
the following thesis: it is physically possible to build a hypercompu-
tation model. To prove this thesis, one possible strategy could be to
physically build an oracle Turing machine. More precisely, it is about
finding a physical theory where a hypercomputation model will be
able to use some external information from nature. Such an informa-
tion could be regarded as an oracle that provide an additional element
in order to go beyond Turing machines limits. However, there is a re-
curring epistemological problem about the physical construction of
an oracle Turing machine. This problem called “verification prob-
lem” may be worded as follows: if we assume we have such a hyper-
computation model physically built, it would be impossible to verify
that this model is able to compute a non Turing-computable function.
In this paper I will propose an analysis of the verification problem in
order to show that it does not explicitly dispute the strategy about a
physical construction of an oracle Turing machine.

1 INTRODUCTION
Alan Turing is widely known in logic and computer science to
have devised the computing model today named “Turing machine”.
In computer science because the Turing machine is the theoretical
model of modern computers and in logic because it is the formaliza-
tion of a computable function [14].

Nonetheless Turing is also behind the oracle Turing machine, a
Turing machine equipped with an “oracle”, namely a black box
whose behaviour is not specified, which is able to provide some
non computable functions results [15, p. 167]. From its architecture
and computational power, the oracle Turing machine is not a stan-
dard model according to computability theory but a hypercomputa-
tion model, term that is used to denote the possibility of computing
non Turing machine computable functions (non Turing-computable
functions) [4].

Contrary to computability theory, hypercomputation is not fully
accepted within scientific and philosophical communities. Although
numerous hypercomputation models have been devised from a logi-
cal point of view [13], current issues are more about the physical do-
main. Indeed, these issues directly concern the following claim that
I will call “the hypercomputation thesis”: it is physically possible to
build a hypercomputation model.

To prove the hypercomputation thesis, one possible strategy could
be to physically build an oracle Turing machine. More precisely, it
is about finding a physical theory where a hypercomputation model
will be able to use some external information from nature. Such an
information could be regarded as an oracle that provide an additional
element in order to go beyond Turing machines limits [1] [11].

1 University of Paris 1, France, email: florent.franchette@gmail.com

However, there is a recurring epistemological problem about the
physical construction of an oracle Turing machine [6, p. 13] [4,
pp. 490–491]. This problem called “verification problem” may be
worded as follows: if we assume we have an oracle Turing machine
physically built, it would be impossible to verify that this model is
able to compute a non Turing-computable function.

In this paper I will propose an analysis of the verification problem
in order to show that it does not explicitly dispute the strategy about
a physical construction of an oracle Turing machine.

2 HOW TO BUILD AN ORACLE TURING
MACHINE?

The oracle Turing machine as defined by Alan Turing is not very de-
tailed, it is why Jack Copeland and Diane Proudfoot have proposed
an another definition of that hypercomputation model [5]. From their
point of view an oracle Turing machine is a Turing machine which
has two other elements: firstly a device (the oracle), which is able to
make measures with an infinite precision, secondly a memory space
that contains a real number called “τ”. τ is an infinite binary string,
which represents the results of a non Turing-computable function. If
such a non Turing-computable function is denoted d, the nth symbol
of τ represents d(n), namely 0 or 1. And if we would like to have
acces to d(239208) the device measures the symbol number 239208
and provides the corresponding value. Therefore, an oracle Turing
machine that have a non Turing-computable number inside its mem-
ory is able to compute more functions than the Turing machine.

In order to build an oracle Turing machine based on non com-
putable information that comes from nature, it is necessary in the
first place to locate this information within nature. The idea of find-
ing this information from quantum randomness comes from both the
standard model of quantum physics and Richard Feynman’s works.
In the one hand, the standard model postulates quantum randomness
from the Born postulate2. On the other hand, Feynman concludes in
his paper Simulating Physics with Computers that “it is impossible to
represent the results of quantum mechanics with a classical universal
device” [8] (p. 476). More recently, Cristian Calude has proposed to
devise a hypercomputation model by using quantum randomness as
an oracle to exceed the Turing machine’s power [1].

Calude’s strategy consists of fixing on a computer a device able to
generate a string of random numbers from a quantum process. For ex-
ample, the ID quantique company3 has created a device whose name
is “Quantis”, which generates a string of random numbers from an

2 The Born Postulate is the idea that a measurement of a particle will yield a
result which follows probability distribution |ψ|2 , where ψ is the particle’s
wave function.

3 http://www.idquantique.com/.



elementary quantum optics process [10]. More specifically, photons
(light particles) are sent one by one onto a semi-transparent mirror
and detected. The exclusive events (reflection - transmission) are as-
sociated to “0”, “1” bit values and each of them have a probability at
50% to occur. The operation of Quantis is continuously monitored to
ensure immediate detection of a failure and disabling of the random
bit stream.

In theory, a computer equipped with Quantis might provide an ar-
bitrarily long string of quantum random strings. However, this com-
puter would be considered as a hypercomputation model only if the
quantum random string cannot be generated by a Turing machine,
that is to say only if the string includes an infinite number of bits.
Actually a simple consideration shows that, with probability one, the
sequence produced by the random process is not Turing-computable.
There are indeed uncountably many infinite strings of digits, but
there are only contably many Turing-computable strings. Therefore,
assuming that each infinite string has the same probability of oc-
curring as a result of a random process, the probability that a ran-
dom process would generate a Turing-computable string of digits is
zero, whereas the probability that the string of digits is not Turing-
computable is one [2]. In that case Quantis would be seen as an oracle
able to provide non computable information from nature.

Although the physical construction of an oracle Turing machine is
sufficient prima facie to prove the hypercomputation thesis, an epis-
temological problem nevertheless remains. This problem is raised in
the case where we have an oracle Turing machine and may be set
out as follows: even if we build an oracle Turing machine we will
not be able to prove the hypercomputation thesis because it would
be impossible to verify that the machine is able to compute a non
Turing-computable function. I am going to analyse this problem in
order to suggest a way to overcome it.

3 HOW TO SOLVE THE VERIFICATION
PROBLEM?

The verification problem has been set out by Jack Copeland in the
form of a thought experiment:

“ There is an epistemological problem with the idea of
hypercomputation. Suppose Laplace’s genius says ’Here is a
black box for solving the Turing-machine halting problem’
(The problem arises no matter which non Turing-machine-
computable function is considered.) Type in any integer x and
the box will deliver the corresponding value of the halting func-
tion H(x) or so Laplace’s genius assures you. Since there is
no systematic method for calculating the values of the halting
function, you have no means of checking whether or not the
machine is producing correct answers. Even simulating the Tur-
ing machine in question will not in general help you, because
no matter how long you watch the simulation, you cannot infer
that the machine will not halt from the fact that it has not yet
halted” [4, p. 471].

The verification problem as set out by Copeland is particularly rel-
evant in the case of oracle Turing machines because they are consid-
ered as black boxes whose internal behaviour is not specified. Never-
theless we can ask why the absence of a verification is a real problem
about oracle Turing machines. According to Marc Gold, it is indeed
impossible, exclusively from input-output Turing machine’s behav-
ior, to check the function that is computed by the Turing machine [9].
Intuitively, this is due to the fact that we only have at our disposal a

finite number of results, which could every time correspond to other
functions. Hence why the verification problem would be an obsta-
cle to oracle Turing machines while it seems relevant about Turing
machines?

Actually, here is the real problem about verification in hypercom-
putation: even if identification of the computing function is impossi-
ble both in effective computation and hypercomputation, we can ver-
ify in principle, that is to say regardless of computational resources,
that a standard computer provides a correct result. Since a standard
computer can be studied from its theoretical model, namely the Tur-
ing machine, we can have access to its results in principle checking
step by step the computation from input to output. By contrast, we
cannot proceed in the same manner with an oracle Turing machine
physically built because we are not able to check each computational
step of a hypercomputation model due to the absence of an effective
procedure. Therefore if we have an oracle Turing machine physically
built, we will not able to prove the hypercomputational power of the
machine.

Some authors such as Cleland [3, p. 223], Shagrir and Pitowski
[12, p. 99] brought several arguments to overcome the verification
problem. However no complete account have been proposed. I am
going to try to resume their arguments to rebuild such an account.

The central thesis of this account is to say that computation does
not presuppose verification. This thesis is based on a distinction be-
tween two types of verification:

1. The verification in principle, which disregards computational re-
sources.

2. The verification in practice, which takes into account computa-
tional resources.

The verification problem as set out by Copeland uses a verifica-
tion in principle. We have showed that such a verification could chal-
lenge oracle Turing machin because this type of verification is possi-
ble about Turing machines. Therefore, to overcome this problem we
have to consider the other type of verification, namely a verification
in practice.

Actually, it turns out that we regard a function as computed by a
standard computer even if we are not able to verify in practice the
computed results. Take a particular function as an example (the ar-
gument works no matter which function is considered). Let p the
function defined by p(n) = the nth decimal of the expansion of π.
It is easy to see that we cannot verify in practice (due to a lack of
resources) whether the 1012th decimal of π recently computed by
a computer is 5. Yet, although it is impossible in practice to verify
that a computer correctly computes p, we would tend to say nonethe-
less that the computer computes this function. But where does such
a trust come from? This trust arises from the fact that it is possible
to use some empirical methods (e.g. probabilistic causal relations,
counterfactual suppositions grounded in physical law) to claim in a
plausible way that a computer computes a function even if no perfect
verification is possible. Therefore, computation does not presuppose
verification because in practice we claim that a computer computes
although we are not able to verify this claim.

From this point a view, the verification problem should not be con-
sidered as a thought experiment as Copeland did but as an empirical
hypothesis. In other words, the problem could not be solved as long
as one will suppose the construction of an oracle Turing machine;
on the contrary we must to have an oracle Turing machine physi-
cally build to achieve empirical tests and therefore to claim that it
computes a non Turing-computable function.



To clarify this last point, take as an example the oracle Turing ma-
chine proposed by Calude. Let us recall that it uses quantum random-
ness to provide a random numbers string that cannot be generated by
a Turing machine. In theory, the main obstacle to claim whether this
hypercomputation model is able to compute a non Turing computable
function is based on the true-randomness of quantum physics that
comes from the Born postulate. More precisely, there are two types of
random processes: true-random processes and pseudo-random pro-
cesses. Pseudo-random processes generate strings of numbers from
pseudo-random methods (e.g. the linear congruence method), which
numbers “appear” random but that are actually provided by deter-
ministic formulae. Hence, if quantum processes are pseudo-random
processes, a Turing machine would be able to simulate them since
Turing machines that use pseudo-random algorithms are equivalent
to standard Turing machines [7, pp. 183–212].

To solve the verification problem in an empirical way would be to
increase the plausibility of the claim that the oracle Turing machine
computes a non Turing-computable function. It would be to achieve
tests on random strings in order to show with a high probability that
they are not pseudo-random. If such tests could be achieve and that
we conclude that a string is true-random, then we could claim that
this string represents the results of a non Turing-computable func-
tion. However, the disadvantage is that all current pseudo-random
number generators provide strings, which are in practice impossi-
ble to distinguish from true-random number strings. Nevertheless we
cannot dismiss the possibility to have some day reasonable grounds
to believe that a string is true-random. In the same manner, we can-
not dismiss the possibility to have some day reasonable grounds to
believe that an oracle Turing machine physically built is able to go
beyond the Turing machine.

4 CONCLUSION
The verification problem from a point of view in principle could be
seen as a threat to the physical construction of an oracle Turing ma-
chine. However, there is still a way to overcome this problem if we
consider it from a practical point of view. We should achieve tests on
random strings in order to show with a high probability that they are
not pseudo-random. If such tests could be achieve and that we con-
clude that a string is true-random, then we could claim that this string
represents the results of a non Turing-computable function. Yet this
solution is not entirely satisfactory from a pragmatic point of view
because even if we know that the oracle Turing machine computes
a non Turing-computable function we would not know what is this
function.
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What Makes a Computation Unconventional?

or, there is no such thing as Non-Turing

Computation

S. Barry Cooper
University of Leeds, UK

Turing’s standard model of computation, and its physical counterpart,
has given rise to a powerful paradigm. There are assumptions underlying
the paradigm which constrain our thinking about the realities of computing,
not least when we doubt the paradigm’s adequacy.

There are assumptions concerning the logical structure of computation,
and the character of its reliance on the data it feeds on. There is a corre- 
sponding complacency spanning theoretical – but not experimental – think- 
ing about the complexity of information, and its mathematics. We point to
ways in which classical computability can clarify the nature of apparently
unconventional computation. At the same time, we seek to expose the de- 
vices used in both theory and practice to try and extend the scope of the
standard model. This involves a drawing together of different approaches, in
a way that validates the intuitions of those who question the standard model,
while providing them with a unifying vision of diverse routes “beyond the
Turing barrier”.

The consequences of such an analysis are radical in their consequences,
and break the mould in a way that has not been possible previously. The
aim is not to question, invalidate or supplant the richness of contemporary
thinking about computation. A modern computer is not just a universal
Turing machine. But the understanding the model brought us was basic to
the building of today’s digital age. It gave us computability, an empowering
insight, and computing with consciousness. What is there fundamental that
unconventional computation directs us to? What is it makes a computation
unconventional? And having fixed on a plausible answer to this question, we
ask: To what extent can the explanatory power of the mathematics clarify
key issues relating to emergence, basic physics, and the supervenience of
mentality on its material host?

This article has been published as a chapter in the book Computing Nature, Dodig-Crnkovic G. 
and Giovagnoli R., Eds. SAPERE, Springer, Heidelberg, 2013



Dualism of Selective and Structural Information in 
Modelling Dynamics of Information  

Marcin J. Schroeder1 

Abstract.  Information can be defined in terms of categorical 
opposition of one and many, leading to two manifestations of 
information, selective and structural.  These manifestations of 
information are dual in the sense that one always is associated 
with the other. The dualism can be used to model and explain 
dynamics of information processes. Such dynamical processes 
are analyzed in contexts of two domains, computation and 
foundations of living systems. In conclusion, it is proposed that 
the similar dynamics of information processes allows 
considering computational systems of increased hierarchical 
complexity resembling living systems.    

1 INTRODUCTION 
The concept of information has several very different 

definitions. In this large variety, only few qualify as correct and 
intelligible. Too frequently, definitions simply refer to intuitive 
understanding of the explanatory concepts. It is quite rare that 
the formulation of the definition refers to any particular 
philosophical background. However, there are two clearly 
distinguishable tendencies in the understanding of information. 
One is referring either explicitly or implicitly to selection or 
alternatively to distinction. The other has the general idea of the 
form or structure as the focal point of explanation.  

The definition of information used in this paper was 
introduced and extensively analyzed in earlier articles of the 
author. Its desirable feature is that both ideas of selection and of 
structure can be found as alternative ways of its interpretation.  

Moreover, it turns out that the selective and structural 
manifestations of information are dual in the sense that one 
always is associated with the other. The dualism can be used to 
model and explain dynamics of information processes. 
Dynamical processes of this type are analyzed in contexts of two 
domains, computation and foundations of living systems. In 
conclusion, it is suggested that the similar dynamics of 
information processes allows considering computational systems 
of increased complexity resembling living systems.   

Due to the scope and limitation of format of this paper more 
detailed presentation of the technical issues in description of 
information dynamics will be published elsewhere.   

2 DUALISM OF SELECTIVE AND STRUCTU-
RAL INFORMATION  

The concept of information is understood here in the way it 
was defined in earlier papers of the author [1] as identification of 
a variety. Thus, starting point in the conceptualization of 
information is in the categorical opposition of one and many.  
____________________________________ 
1Akita International University, Japan, email: mjs@aiu.ac.jp 

The variety in this definition, corresponding to the “many” 
side of the opposition is a carrier of information. Its 
identification is understood as anything which makes it one, i.e. 
which moves it into the other side of the opposition. The 
preferred word “identification” (not the simpler, but possibly 
misleading word “unity”) indicates that information gives an 
identity to a variety, which does not necessarily mean 
unification, uniformization or homogeneization. However, this 
identity is considered an expression of unity, “oneness”. 

There are two basic forms of identification. One consists in 
selection of one out of many in the variety, the other of a 
structure binding many into one. This brings two manifestations 
of information, the selective and the structural. The two 
possibilities are not dividing information into two types, as the 
occurrence of one is always accompanied by the other, but not 
on the same variety, i.e. not on the same information carrier. For 
instance, information used in opening a lock with corresponding 
key can be viewed in two alternative ways. We can think about a 
proper selection of the key, out of some variety of keys, or we 
can think about the spatial structure of the key which fits the 
structure of the lock. In the first case, the variety consists of the 
keys, in the second the variety consists of material units forming 
appropriate shape of the key. Thus, we can consider selective 
and structural information as dual manifestations of one concept.  

The identification of a variety may differ in the degree. For 
the selective manifestation this degree can be quantitatively 
described using an appropriate probability distribution and 
measured using for instance entropy, or more appropriate 
measure [2]. For the structural manifestation the degree can be 
characterized in terms of decomposability of the structure [3].  

Selective-structural duality of information is reflected in a 
variety of contexts. An example of very general character can be 
found in the way how we form concepts. One way is focusing on 
the denotation and selection of objects which we want to include 
in denotation. Another way is to focus on the connotation and 
configuration of characteristics which describe it.  

Another example can be found in the analysis of scientific 
inquiry. In his philosophical analysis of the methods of science 
and history Wilhelm Windelband [4] introduced frequently 
revoked distinction, or even opposition of nomothetic and 
idiographic methodologies. The former has its starting point in 
the acknowledgement of the differences, but assumes the 
existence of similarities which produce grouping within the 
variety, and therefore it is looking for comparable aspects. The 
latter is assuming the uniqueness of the object of study and 
therefore is focused on elements which constitute this 
uniqueness. Although, the distinction is between methodologies 
of inquiry, not between manifestations of information, 
association is quite clear.  

Similar, but much more frequently used distinction in the 
context of cultural studies has been introduced more than a half 



century later by Keneth L. Pike [5]. He called his 
methodological schemata etic and emic methodologies, deriving 
their names from phonetic and phonemic studies of language. 
Here too, the distinction is based on the differences in the 
perspective of the study. In the first case the subject of study is 
viewed in a comparative manner as a member of a variety in 
which differences and similarities are used to establish its unique 
characteristics. In the second case, the subject of the study, 
whose uniqueness is already assumed, is viewed from the inside 
with the aim to reconstruct its internal structure.  

In these examples, as well as in all instances of the reflection 
of the selective-structural duality in methodological analysis, it is 
considered obvious that the choice of a particular method is 
dictated by the discipline of inquiry. Physics for instance is 
recognized always as a paradigm of the approach corresponding 
to selective information. After all, probability distributions 
describe the state of a system, collective one in classical physics, 
and individual in quantum physics. But closer look reveals that 
actually in this domain both methodological positions are 
omnipresent. It is enough to recall tendency of geometrization in 
physics continuing beyond the General Relativity Theory, or the 
special role of the field theory to recognize the presence of the 
view associated with structural information.   

The most significant is association of the selective-structural 
dualism of information with the dualism of function and 
structure in the foundation studies of living systems, which 
constitutes the central theme of the work of Humberto Maturana 
and Francisco Varela [6] on autopoiesis. Here it becomes clear 
that this dualism is not just a matter of the choice of a method of 
inquiry, but it is a characteristic of living systems. Function 
determines structure and structure determines function. Maturana 
and Varela were looking for the resolution of this convolution in 
autopoiesis, self-construction of living systems.  However, from 
the point of view of information studies, there is no need to 
restrict this dualism to living systems, as it is simply reflection of 
the universal dualism of selective and structural information. 
Functions of the elements of a system give them identity by 
distinguishing them from, and giving them their place in the 
differentiated variety. On the other hand, this distinction is a 
consequence of the specific structural characteristics that they 
posses, their internal structure allows them to play specific roles 
in the system. It is not a matter of the right or wrong perspective 
of the study, but an inherent feature of all information systems.  

Mathematics provides several different examples of dualism 
which can be very clearly associated with that of selective and 
structural information. The most fundamental can be traced back 
to the 19th Century when Felix Klein formulated in his 1872 
Erlangen Program the view of geometry as a theory of invariants 
for the group of transformations of a geometric space. Instead of 
identification of the objects of geometric studies through 
analysis of their internal structure, the structure of 
transformations of the plane or space is selected, and only then 
geometric objects appear as those subsets of points which are 
transformed into themselves, although their points may be 
exchanged. Such an approach, in which instead of inquiry of 
internal structure of objects, the structure of transformations 
preserving the identity of these objects is analyzed, has become 
commonly used in a wide range of mathematical theories leading 
to the development of the theory of categories and functors.  

In the past, the dualism of selective and structural information 
has been present in information studies only in the form of a 

competition between two, apparently conflicting views on the 
“proper” answer to the question “What is information?” [1]. The 
dominating position focusing on the selective manifestation of 
information and neglecting the structural one was supported by 
the practical success of Shannon’s quantitative characterization 
of information in terms of entropy. But the failure in establishing 
equally successful semantics for information understood 
exclusively in terms of selection was driving the efforts to shift 
studies of information to its structural manifestation.  

The dual approach achieved through the definition of 
information used in the present paper has more advantages than 
just reconciliation between adherents of competing views on 
information. It also helps to model dynamics of information in 
processes of evolution or computation.  

3 DYNAMICS OF INFORMATION IN COMPU-
TING 

The definition of information in terms of the one-many 
opposition has been a starting point for author’s attempt to 
formulate a theoretical framework for information [7]. This 
framework has a static form reminding a logical structure, at 
least in the sense of a similar mathematical formalism. However, 
the formalism can be used to model process of information 
integration [3].  

The change of the level of information integration is not a 
dynamical process, understood as transformation resulting from 
the interaction of different information systems. For this reason, 
information integration, although modelled by a theoretical 
device called a Venn gate in the earlier papers of the author 
should not be confused with computation.  

What is computation in the present conceptual framework? 
First, we have to clarify some quite common confusion related to 
the distinction between analog and digital computing. The 
distinction of “analogy and digital” principles, automata, or 
machines introduced by John von Neumann [8] at the time when 
first computers were being constructed was referring to the way 
the numbers are represented, by certain physical quantity, or by 
“aggregates of digits.”  

For von Neumann the main issue here was in handling errors. 
He wrote “Thus the real importance of the digital procedure lies 
in its ability to reduce the computational noise level to an extent 
which is completely unobtainable by any other (analogy) 
procedure.”  

Of course, von Neumann was right about practical advantages 
of “digital procedure” in handling errors, but he overlooked what 
actually constitutes the distinction. The mistake he made is being 
perpetuated even now. Of course, the numbers are always 
represented by physical quantities, even in digital computers. 
“Aggregates of digits” do not exist independently from the 
physical systems constituting machines. To that extent everyone 
will agree with Ralph Landauer [9] that information is physical.  

Thus, the actual distinction is in semantics of information. It 
is the way how we associate numbers with physical states of the 
computing machine which decides whether computing is digital 
or analog. Information itself is neither one, nor the other. To 
avoid going too far beyond the scope of this paper, simplifying 
assumption will be made that information is associated with the 
state of the physical system which is used as a computing 
machine. Then, observables will assign numbers to particular 
states, giving meaning to information [10].  



  Now, we can begin analysis of the process of computing 
modelled by Turing machines. Once again we have to be careful 
with traditional way of imagining of the process. Situation is 
similar to the way people were interpreting mechanical processes 
before Isaac Newton introduced his Third Principle of 
Mechanics. Every change in the world had to have an active 
agent (subject) and passive object of the action. Newton 
recognized that in mechanical phenomena there is no action, but 
only interaction. The Third Principle states that we cannot 
distinguish between an agent and recipient of action, as we have 
always mutual interaction. I cannot claim that my pushing the 
wall is in any way different from wall’s pushing me. 

From this point of view the interpretation of a head in Turing 
machine printing a character on the tape is an arbitrary 
assumption. We can simply talk about mutual interaction in 
which characters change (or not) on the tape in contact with the 
head, and the head is changing its state/instruction in contact 
with the tape.   

More precisely, we could describe Turing machine as a 
device consisting of two information systems, which in order to 
retain traditional terminology are called a tape and a head, each 
consisting of independent components being themselves 
information (sub)systems. For the tape, components are cells. 
For the head, subsystems are positions of instructions on the list. 
At every moment both systems have finite, but unlimited number 
of components, and the number of components can grow without 
restriction.  

 Each component (cell or position on the list of instructions) 
is capable to assume one of the finite number of states (usually 
different for components of the tape and components of the 
head). For cells on the tape the states are characters from 
traditional description of Turing machine. For components of the 
head (positions on the list of instructions), there is a finite 
number of choices of instructions which give the position 
particular state.  

Now, we have a crucial and restricting assumption, that these 
two fundamental information systems can interact only by 
contact of a single pair of active components (which corresponds 
to the traditional assumption that the head is in the state with one 
particular instruction, and it can read and act on a single cell). 

Experience from the studies of Turing machines suggests that 
the assumption is not restrictive as long as the difference 
between one pair of active components is contrasted with clearly 
defined finite number of pairs. The restrictive character appears 
when we exclude the possibility of interaction on the scale of all 
systems.  

The process of computing is described as follows. The active 
cell is changing (or not) its state (character) into one determined 
by the state of the active component of the head (particular 
instruction in the position on the list for given state). On the side 
of the head the change of the instruction depends on the state of 
the cell (character in the cell). Then both fundamental 
information systems change their active component. Again this 
change on the tape depends on the state of the active component 
of the head, the change in the head depends on the state of the 
active cell (character).  

This machine is little bit more general than Turing’s A-
machine, as the process allows changes of instructions in the 
head. This machine could be called a symmetric machine (an S-
machine) because the process consists in mutual interaction 
producing similar type of change. It is being reduced to usual 

Turing A-machine, if we additionally assume that the 
instructions in the head are not changing.  

The symmetric Turing machine describes a general dynamic 
process of the interaction of a pair of complex systems with a 
restricting assumption that the interaction is in each moment 
through exactly one pair of components (not very strong 
restriction), and additional one, that the choice of the next pair is 
determined, not random (rather strong restriction). Of course, the 
possibility of removing these restrictions could be considered, 
but it seems to destroy the algorithmic character of the process.  

Even with these two restrictions, symmetric Turing machine 
gives us a model of information dynamics applicable to a very 
wide range of information systems.  

We know that computation cannot be reduced to one 
information system. Claude Shannon [11] showed that the head 
of Turing machine has to have at least two different states. Once 
we have a variety of two states and choice between them, we 
have information.  

Now, the dynamics of the process of computation is revealed 
in the selective-structural dualism of information. For both 
fundamental information systems (tape and head) information is 
structural. The state of all tape consists of configuration of 
characters in its cells, but computation is an interaction in which 
the choice of one out of many states (characters) of the active 
component (cell) is being made. Similarly, the state of the head 
is in the configuration of instructions, but in each step of 
computation one out of many possible choices of instruction is 
being made.  

Finally, we could consider an extension of the process of 
computation using the concept of selective-structural 
information dualism. While computation considered at the level 
of active, interacting pair of components refers to the selective 
manifestation of information (e.g. selection of a character for the 
cell), each character can be understood as structural 
manifestation of information. Corresponding to this structural 
manifestation, its selective counterpart can be subject to 
interaction which results in its own dynamics. This way we can 
consider multi-level symmetric Turing machines, which 
resemble systems encountered in the study of the foundations of 
life.  

4 DYNAMICS OF EVOLUTION 
Before we enter the analysis of evolutionary mechanisms, it is 

necessary to consider more general issue of control systems. In 
this domain the most fundamental principle has been formulated 
by W. Ross Ashby as the Law of Requisite Variety “A model 
system or controller can only model or control something to the 
extent that it has sufficient internal variety to represent it” 
[12,13]. This principle in the informal, intuitive form and in 
application to the process of generation, not to the modelling or 
controlling has been until the end of the 18th Century used as an 
argument for the hierarchy of beings and the need for supremely 
intelligent creator acting intentionally to generate them [14]. 

It seemed obvious that any complex system can be generated 
only by a system of higher level of organization. This reasoning 
is based on the assumptions that creation is an action (not 
interaction) and requires a design. Following the Law of 
Requisite Variety such a design, i.e. internal model is impossible 
without higher degree of variety. Evolutionary model of the 
development of life disposed of the design putting this higher 



level of variety in the environment. Thus the species are getting 
increasingly complex by the interaction with the environment, 
which of course is a carrier of a huge amount of information.  

Let’s start from a dualistic model of relatively simple 
mechanism of feedback control. It requires interaction of two 
information systems. Selection of a state of one of them through 
interaction is accompanied by the selection of a state of the 
other, which in turn has its reflection in the structural 
manifestation of information. This structural manifestation of 
information in the second system is determining the structural 
information of the first system. And this corresponds to the 
modification of the selection of its state.  

For instance, using classical example of a governor 
controlling work of the steam machine, we have two information 
systems which can be in a variety of states. One is a valve whose 
state (described by the amount of steam coming by it) decides 
about the speed of the work of the machine. The other is a pair of 
balls hanging on arms rotating around the vertical axis whose 
rotation is propelled by the machine. Its state (velocity of 
rotation) is selected by the work done by machine. From the 
structural point of view, information is manifested by the 
geometric structures of the systems, diameter of the valve and 
extension of the arms on which the balls are attached. The higher 
is extension of arms, the smaller diameter of the valve.  

The governor is a simple case of an artefact invented by 
humans, originally with the intention to control the work of 
windmills. It is more complicated situation when we want to 
explain the dynamics of information in systems which were 
naturally generated without any intentional design.  

Now, we can proceed to the dualistic description of the 
evolutionary process. Here, in distinction from the earlier 
example where the function was a result of human invention and 
the structure followed the needs of implementation, we can 
encounter confusion which puzzled generations of biologists, but 
which can be easily resolved within the dualistic perspective. 

The mechanism of evolution is usually reduced to natural 
selection in which the fittest organisms survive and reproduce 
transmitting and perpetuating their genetic information. The 
puzzling question is about the meaning of the term “fittest”. 
Does it have any other meaning beyond the tautological 
statement that these are organisms which survived and 
reproduced?  

The answer is that the meaning of the term “fittest” is 
expressing the relationship between two manifestations of 
information. While naturally, natural selection describes the 
dynamics of information for selective manifestation in terms of 
reproduction (which obviously requires survival), the fittest 
individuals are those whose phenotype has structural 
characteristics compatible with structural characteristics of the 
environment.  

More generally, we can describe the evolutionary process as 
such in which two (or more) information systems interact. 
Interaction is determining the outcome of the selection, and 
therefore the dynamical view seems more natural in terms of 
selective manifestation. However, it is the structural 
manifestation of information which actually demonstrates the 
results of evolution. And what is most important, there is no 
point in asking which manifestation is more important, primary, 
or true. Dynamics of information has two manifestations, simply 
because information does.   

5 DYNAMICS OF INFORMATION IN LIVING 
SYSTEMS 

Thus far we were talking about biological evolution of 
species as a dynamical information process. We were concerned 
with the question how this process can be understood. There is 
another, much more difficult question why it occurs, and why in 
this particular way. To seek the answer, we have to consider 
more general issue of the dynamics of information in the living 
systems. Naturally, it is equivalent to the inquiry regarding the 
question “What is life?” We will consider here only some 
aspects of this extremely broad and deep problem. Specifically 
those related to the selective-structural dualism of information. 
The issues related to the necessity of holistic methodology in the 
study of life are presented in another article of the author [15].  

The main fallacy in answers to the question “What is life?” is 
in the attempt to explain life by distinguishing one particular 
process driving all other in the multi-level hierarchical structure 
of the biosphere. This fallacy is being perpetuated even in most 
recent publications [16]. The process chosen by the authors of 
explanations could be photosynthesis (but, what about forms of 
life which do not depend on it?), metabolism, reproduction with 
transmission of genetic information, formation of large organic 
molecules, etc.  

Another problem is in the restriction of attention to what is 
called a biosphere. In the earliest fundamental answer to the 
question Erwin Schrödinger [17] pointed at what he called 
negative entropy of the light coming from sun as the factor 
driving processes of life. It is also a fallacy perpetuated 
continuously by generations of authors who change the name of 
the factor (negentropy, entropy deficit, inhomogeneity, etc.) but 
do not notice that the light coming to earth does not have high or 
low entropy. It is a matter of the process in which incoming 
visible light, for which the atmosphere is transparent, is 
transformed by living systems and reradiated into cosmic space 
as infrared radiation of 22 times higher entropy [18].  

Thus, the driving factor is a mechanism which transcends 
biosphere and which has its source in astronomical phenomena 
of huge spatial and temporal measures. But this driving factor 
itself would not produce life processes, but is just a necessary 
condition for life. It creates conditions allowing generation of 
information participating in the dynamic processes of life at all 
of its levels. Life cannot be understood by observing only one of 
these levels, as it is usually done. To understand working of the 
clock we cannot focus on the spring or battery which powers it, 
or on one of the wheels.  

Of course, evolution of species, cycles of metabolism, 
photosynthesis, or reproduction are component processes of life. 
But neither has privileged or exclusive position. We can ask 
however about the common features for component processes of 
life. Here we can find again help in the dualistic perspective on 
information, which definitely is the common concept for all life 
processes.  

The main characteristic of life processes consists in enriching 
information in one system of smaller variety, i.e. lower 
informational volume through the dynamic interaction with the 
other. This process was already described in a general view of 
the dynamics of information in the evolution of species. We need 
in this case generation of a large variety of objects and 
interaction with the other system which selects some of them 
(the fittest) whose structural characteristics predestine them to 



survive. Thus, the collective system is increasing its organization 
(internal information) not because they have some design, but 
they fit selective information of the outer system. The crucial 
point is in inseparable dualism between the two manifestations 
of information and multi-level character of the total system.  

6 CONCLUSIONS & FUTURE WORK 
There are two domains where dualism of selective and 

structural information can be used to model dynamics of 
information, computation and living systems. Although in both 
cases dynamics is similar, there is a big contrast between the 
levels of complexity between them. In what here was described 
as a slightly more general view of Turing machines there are two 
information systems (tape and head) which are considered at the 
two levels corresponding to selective and structural information. 

Life constitutes an extremely complex system of at least 
dozens of levels and the number of component information 
systems exceeding any practical limits of calculation. However, 
the basic mechanism involving in its description the two 
manifestations of information is the same as in symmetric Turing 
machines. 

On the other hand, there is nothing which prevents us from 
designing computational systems of complexity going beyond 
two levels. This may require more complicated (multilevel) 
semantics of information (which in traditional Turing machines 
is typically an association of particular combination of the states 
of cells with natural numbers). Each cell may be considered a 
carrier of an information system with its own variety and with 
dynamical mechanisms of evolution adjusted to the conditioning 
by higher or lower levels of the hierarchical structure.   

The study of such theoretical systems and their practical 
implementation is of some interest and has a potential wide 
range of applications.  
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Abstract.  The Turing Test (TT), the Chinese Room Argument 

(CRA), and the Symbol Grounding Problem (SGP) are about the 

question “can machines think?”. We present TT, CRA and SGP 

as being also about generation of meaningful information like 

humans do. This allows addressing the question of thinking 

machines by analysing the possibility for Artificial Agents 

(AAs) to generate human-like meanings. We look at such a 

possibility by using the Meaning Generator System (MGS) 

where a system submitted to a constraint generates a meaning in 

order to satisfy its constraint. The system approach of the MGS 

allows comparing meaning generations in animals, humans and 

AAs. The comparison shows that in order to design AAs capable 

of generating human-like meanings, we need the AAs to carry 

human constraints. Transferring human constraints to AAs raises 

concerns coming from the unknown natures of life and human 

consciousness which are at the root of human constraints. 

Implications for the TT, the CRA and the SGP are highlighted. It 

is shown that designing AAs capable of thinking like humans 

needs an understanding about the natures of life and human mind 

that we do not have today. Following an evolutionary approach, 

we propose as a first entry point an investigation about 

integrating a living entity in an AA in order to extend her “stay 

alive” constraint to the AA. 

Ethical concerns are raised from the relations between human 

constraints and human values.  

Continuations are proposed. 

1 PRESENTATION   

 The question “Can machines think?” has been addressed in 

1950 by Alan Turing with a proposed test, the Turing Test (TT), 

where a computer is to answer questions asked by humans. If the 

answers from the computer are not distinguishable from the ones 

coming from humans, the computer passes the TT [1]. The 

validity of the TT has been challenged in 1980 by John Searle 

with a thought experience, the Chinese Room Argument (CRA), 

aimed at showing that a computer cannot understand human 

language [2]. The possibility for computers to attribute meanings 

to words or symbols has been formalized by Steven Harnad in 

1990 through the Symbol Grounding Problem (SGP) [3].   

With the question “can machines think?” understood as “can 

machines think like human beings think?” [4], we propose to 

look at these approaches to Artificial Intelligence (AI) by 

showing that they all address the possibility for Artificial Agents 

(AAs) to generate meaningful information (meanings) as humans 

do. The Initial question about thinking machines is then 

____________________________ 
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reformulated as “can AAs generate meanings like humans do?”  

In order to compare meaning generation in humans and in AAs 

we use an existing system approach to meaning generation: the 

Meaning Generator System (MGS) where a system submitted to 

a constraint generates a meaning when it receives information 

that has a connection with the constraint [5]. We first look at TT 

and CRA where relations with meaning generation can be 

considered as rather explicit. The case of SGP is addressed 

separately as its relations with meaning generation deserve more 

details. These analysis show that AAs cannot today generate 

human-like meanings because human constraints cannot be 

transferred to AAs. This because we do not understand the 

natures of life and human mind which are the base ground of 

human constraints. Consequently, today AAs cannot think as 

humans do. A better understanding about the natures of life and 

human mind is needed for designing really intelligent AAs 

capable of thinking like humans do. We propose an entry point 

to be investigated: the integration of living entities into AAs. 

This in order to allow the extension of the “stay alive” constraint 

into AAs.  

Ethical concerns are also raised as the coverage of human values 

by human constraints in terms of meaning generation is to be 

explored. 

Continuations are proposed in order to develop with more details 

several points used here.  

2 TURING TEST, CHINESE ROOM 

ARGUMENT AND MEANING GENERATOR 

SYSTEM 

The TT is about the capability for a computer to understand 

questions formulated in human language and to answer these 

questions as well as humans would do. Regarding human 

language, we can consider that understanding a question is to 

grasp the meaning of the asked question. And answering a 

question also goes with generating the meaning of the answer. 

So we can consider that the TT is about meaning generation. 

The CRA challenges the TT by showing that a computer can 

pass the TT without understanding symbols. A person not 

speaking Chinese and exchanging Chinese symbols with people 

speaking Chinese can make them believe she speaks Chinese if 

she chooses the symbols following precise rules written by 

Chinese speaking persons. The person not speaking Chinese 

passes the TT. A computer following the same precise rules 

would also pass the TT. In both cases the meaning of the 

Chinese symbols is not understood. The CRA wants to show that 

the TT is not valid for testing machine thinking capability as it 

can be passed without associating any meaning to the exchanged 

information. The TT does not ensure understanding. Here also, 

the understanding of the symbols goes with generating the 



meanings related to the symbols. So we can consider that the TT 

and the CRA are about the possibility for AAs to generate 

human-like meanings. This brings the question about machines 

capable to think to a question on meaning generation. Can AAs 

generate meanings as we humans do?  

In order to compare the meanings generated by humans and by 

AAs, we use the Meaning Generator System (MGS) [5]. The 

MGS models a system submitted to a constraint that generates a 

meaning when it receives information that has a connection with 

the constraint. The generated meaning is precisely the 

connection existing between the received information and the 

constraint, and it is used to determine an action that will be 

implemented in order to satisfy the constraint. The MGS is 

simple. It can model meaning generation in elementary life. A 

paramecium moving away from acid water can be modelled as a 

system submitted to a “stay alive” constraint that senses acid 

water and generates a meaning “presence of acid not compatible 

with the “stay alive” constraint”. That meaning is used to trigger 

an action from the paramecium: get away from acid water. It is 

clear that the paramecium does not possess an information 

processing system that would allow her to have access to an 

inner language. But a paramecium has usage of sensors that can 

participate to a measurement of the acidity of the environment. 

The information made available with the help of these sensors 

will be part of the process that will generate the move of the 

paramecium in the direction of less acid water. So we can say 

that the paramecium has overall created a meaning related to the 

hostility of her environment in connection with the satisfaction 

of her vital constraint. Fig 1 illustrates the MGS with this 

example.  

The MGS is a simple tool modelling a system submitted to a 

constraint. It can be used as a building block for higher level 

systems (agents) like animals, humans or AAs, assuming we 

identify clearly enough the constraints corresponding to each 

case 2.  

 
 

             Figure 1. The Meaning Generator System 

___________________________ 

 
2 The MGS approach is based on meaning generation for constraint 

satisfaction. It is different from “action oriented meaning”. In the MGS 

approach, the constraint to be satisfied is the cause of the generated 
meaning. The action is a consequence of the meaning and comes after it. 

More on this at [6]. 
 
3”Anxiety limitation” has been proposed as a constraint feeding an 

evolutionary engine in a human evolutionary scenario [12, 14]. 

The MGS is also usable to position meaning generation in an 

evolutionary approach. The starting level is basic life with a 

“stay alive” constraint (for individuals and for species). The 

sight of a cat generates a meaning within a mouse, as well as a 

passing by fly within a hungry frog. We however have to keep in 

mind that staying alive refers to life, the nature of which is 

unknown as of today. We can easily identify and understand the 

actions implemented to satisfy a “stay alive” constraint without 

accessing the nature of the constraint. For humans, the 

constraints are more difficult to identify as they are linked to 

human consciousness and free will which are both mysterious 

entities for today science and philosophy. Some human 

constraints are however easy to guess like “look for happiness” 

or “limit anxiety” 3. Reference to the Maslow pyramid can also 

be used as an approach to human constraints [6].  

In all cases the action implemented to satisfy the constraint will 

modify the environment, and so the generated meaning. 

Meanings do not exist by themselves. They are agent related and 

come from generation processes that link the agents to their 

environments in a dynamic mode.  

Most of the time agents contain several MGSs related to 

different sensorimotor systems and different constraints to be 

satisfied. An item of the environment generates different 

interdependent meanings that build up networks of meanings 

representing the item to the agent. These meaningful 

representations embed the agent in its environment through  

constraints satisfaction processes [6].  

To see if AAs can generate meanings like humans do, we have to 

look at how human meaning generation processes could be 

transferred to AAs. Fig 1 indicates that the constraint is the key 

element to consider in the MGS. The other elements deal with 

data processing that is transferrable. When looking at 

transferring constraints to AAs, we have to consider that the 

natures of human and animal constraints are unknown as of 

today. Take for instance the basic “stay alive” constraint that we 

share with animals. We know the actions that are to be 

implemented in order to satisfy that constraint, like keep healthy 

and avoid dangers. But we do not really know what life is. We 

understand that life came out of matter during evolution, but we 

do not know how life could be today built up from inanimate 

matter. We have many definitions for life, but the nature of life 

is today a mystery. Consequently, we cannot transfer a “stay 

alive” constraint to AAs. The same applies for human specific 

constraints which are closely linked to human consciousness. We 

do not know exactly what is “look for happiness” or “limit 

anxiety”. We know (more or less) the physical or mental actions 

that should be implemented in order to satisfy these complex 

constraints, but we do not know the nature of the constraints. 

And this is because we do not know the nature of human mind 

which is, as is the nature of life, a mystery for today science and 

philosophy. So we have to face the fact that the transfer of 

human constraints to AAs is not today possible as we cannot 

transfer things we do not understand. 

We cannot today build AAs able to generate meanings as we 

humans do because we cannot transfer human constraints to 

AAs. The computer in the TT cannot be today in a position to 

generate meanings like humans do. The computer cannot 

understand the questions nor the answers as humans do. It cannot 

pass the TT. Consequently, the CRA is right. Today AAs cannot 

think like humans think. Strong AI is not possible today. A better 

understanding about the nature of life and human mind is 



necessary for a progress toward the design of AAs capable of 

thinking like humans think. Important research activities are in 

process in these areas [8, 9]. Some possible short cuts may 

however be investigated, at least for the transfer of animal 

constraints (see hereunder). 

3 SYMBOL GROUNDING PROBLEM AND 

MEANING GENERATOR SYSTEM 

The Symbol Grounding Problem is generally understood as 

being about how an AA computing with meaningless symbols 

could generate meanings intrinsic to the AA. ”How can the 

semantic interpretation of a formal symbol system be made 

intrinsic to the system, rather than just parasitic on the meanings 

in our heads? How can the meanings of the meaningless symbol 

tokens, manipulated solely on the basis of their (arbitrary) 

shapes, be grounded in anything but other meaningless 

symbols?” [3]. 

This is again about asking how AAs can generate meanings as 

humans do. The conclusions reached in the previous paragraph 

apply: AAs cannot today generate meanings as we humans do 

because we are not in a position to transfer human constraints to 

AAs. The SGP cannot today have a solution 4.  

Some researchers tend to disagree on the fact that a solution to 

the SGP can be sufficient for providing meaningful mental 

states. They consider that meaningful thoughts have to be at the 

same time conscious mental states [7]. 

This position can be addressed with the MGS approach where 

human constraints have to be transferred to AAs so that the AAs 

can generate meanings like humans do. Such meanings go with 

human constraints, closely linked to human consciousness. 

The requested intrinsic aspect of the semantic interpretation also 

brings argument in favour of no solution to the SGP when using 

the MGS approach. Putting aside metaphysical perspectives, we 

can say that the generation of meaningful information appeared 

on earth with the first living entities. There is no meaning 

generation in a world of inanimate matter. Life is submitted to an 

intrinsic and local “stay alive” constraint that exists only where 

life is. Today AAs are made with inanimate matter. The 

constraints that AAs can carry come from the designer of the 

AA. The constraints are derived from the designer and cannot be 

intrinsic to the AA where there is no life [6]. Consequently, it is 

only for living entities that the meaning of the symbols can be 

“intrinsic to the system”. Symbol grounding in a material world 

does not bring intrinsic meaning generation. This comment on 

the notion of intrinsicness confirms the position expressed 

above: in the today world of material AAs, the SGP cannot have 

a solution. We need a better understanding about the nature of 

life in order to address the possibility for intrinsic meaning 

generations in AAs. As said, many researches are currently on 

going on these subjects and there are perspectives for progresses 

[9]. 

Another area of investigation for intrinsic constraints in AAs is 

to look for AAs capable of creating their own constraints. 

Whatever the possible paths in this area, it should be clearly 

highlighted that such approach would not be enough to allow the 

design of AAs able to think like humans do. The constraints that 

___________________________ 
 
4 Several proposals have been made as solutions to the SGP. Most have 

been recognized as not providing valid solutions [13]. 

the AAs might be able to generate by themselves may be 

different from human ones or managed differently by the AAs. 

These future AAs may think, but not like humans think. This 

also brings up ethical concerns for AI where AAs would not be 

managing constraints and meanings the same way humans do. 

4 ARTIFICIAL INTELLIGENCE, ARTIFICIAL  

LIFE AND MEANING GENERATION  

The above usage of the MGS with the TT, the CRA and the SGP 

has shown that machines cannot today think like humans do 

because human constraints are not transferrable to AAs.  

It is worth recalling that the basic “stay alive” constraint is part 

of these constraints. And not being able to transfer a “stay alive” 

constraint to AAs implies that we cannot design AAs managing 

meanings like living entities do. We can only imitate some 

performances of life. So not only can’t we design AAs able to 

think like humans think, we can’t even design AAs able to live 

like animals live. As shown, the blocking points are relative to 

our lack of understanding about the natures of life and human 

consciousness. 

In terms of increasing complexity, these subjects can be 

positioned following an evolutionary approach. It is agreed that 

life came up on earth before human mind. So it looks logic to 

address first the problem of the “stay alive” constraint not 

transferrable to AAs. Even if we do not know the nature of life, 

we are able to manipulate it. And we could, instead of trying to 

transfer the performances of life to AAs, look at how it could be 

possible to extend life with its performances to AAs. Somehow 

bring life in AAs. Sort of “meat in the computer”. The AA 

would then be submitted to the “stay alive” constraints brought 

in by the living entity, while keeping some control on that living 

entity. Such approach is different from trying to get organic 

elements obeying computer logic [10] or trying to use within 

AAs the sensori-motor performances of living entities, like 

insect-machine hybrids [11]. 

The idea of Cyborgs is not new. What we propose to look at is 

about the possibility to have a living entity resident in an AA and 

bringing in it a “stay alive” constraint to which the AA would be 

submitted. This would allow the AA to generate meanings like 

animals do and interface with its environment like animals do. 

Such possible progresses in having AAs submitted to resident 

animal constraints does not bring much about AAs submitted to 

human constraints. We can however take this as a first step in an 

evolutionary approach to AAs containing human constraints. 

5 MEANING GENERATION, CONSTRAINTS, 

VALUES AND ETHICAL CONCERNS   

 The MGS approach has shown that our current lack of 

understanding about the nature of life and human consciousness 

makes impossible today the design of AAs able to think or feel 

like humans do. This because we do not know how to transfer to 

AAs the human constraints that we do not understand. These 

human constraints are closely related to free will and 

consciousness which are mysteries for today science or 

philosophy. But human constraints do not a priori include human 

values. Some find happiness with the suffering of others. The 

way by which human constraints can take into account human 



values is not obvious, nor clear. This brings to highlight here 

ethical concerns that address two directions at least. 

First, researches about the nature of human consciousness should 

consider how human values could be linked to human 

constraints. This is a challenging subject as human values are not 

universal. But the nature of human consciousness is still to be 

discovered and we can hope that its understanding will shed 

some light on the diversity of human values. 

As addressed above, another case is the one about AAs 

becoming capable of generating by themselves their own 

constraints. Such approach should be careful keeping human 

values in the background of these constraints so such AAs are 

not brought in a position to generate meanings and actions too 

distant from human values.  

6 CONCLUSIONS 

Meaning generation for constraint satisfaction shows that we 

cannot today design AAs capable of generating meanings like 

humans do. Our lack of understanding about the natures of life 

and human mind makes impossible the transfer of human 

constraints to AAs. The consequence is that human-like meaning 

generation is not today possible within AAs. Considering the TT, 

the CRA and the SGP as being about meaning generation, we 

can say that today AAs cannot think like we humans do, they 

cannot pass the TT. The CRA is correct, and the SGP cannot 

have a solution. Strong AI is not possible. Only weak AI is 

possible. Imitation performances can be almost perfect and make 

us believe that AAs generates human-like meanings, but there is 

no such meaning generation as AAs do not carry human 

constraints.  AAs do not think like we do and have no feeling 

about what is going on as they do not carry human constraint and 

cannot generate meanings like we do. Another consequence is 

that it is not possible today to design living machines, as we do 

not know the nature of life. True AL is not possible today. 

Understandings about the nature of life and human 

consciousness are needed to design AAs capable of behaving 

like animals and thinking like humans. As life is less complex 

and easier to understand than consciousness, the transfer of a 

“stay alive” constraint should be addressed first. An option could 

be to extend life with its “stay alive” constraint to AAs. The AA 

would then be submitted to the constraints brought in by the 

living entity. 

7 CONTINUATIONS  

We have proposed here that TT, CRA and SGP can be 

understood as being about the capability for AAs to generate 

human like meanings. The question “can machines think?” is 

then reformulated as “can AAs generate human-like meanings?”  

The focus is then on meaning generation in animals, humans and  

AAs. The MGS approach applied to TT, CRA and SGP has 

shown that the constraints to be satisfied are at the core of a 

meaning generation process. We feel that an evolutionary 

approach to the nature of constraints could allow an interesting 

perspective on their nature. Identifying the origin of biological 

constraints relatively to physico-chemical laws may allow to 

introduce an evolutionary theory of meaning. Work is in process 

on these subjects [6, 16]. But human constraints remain ill-

defined and not really understood. As said, they are tightly 

linked to self-consciousness and free will which are mysteries 

for today science and philosophy. Significant work is to be done 

in this area, where a better understanding of human mind is 

needed. 

The MGS approach also offers the possibility to define 

meaningful representations that embed agents in their 

environments [6]. Such representations can be used as tools in an 

evolutionary approach to self-consciousness where the human 

constraints play a key role. Work is in process in this area also 

[12].  

An evolutionary approach to human constraints brings to focus 

first on the ones shared with animals, and more precisely on the 

“stay alive” constraint. As introduced above, we feel it could be 

interesting to look at extending life with its performances to AAs 

in order to bring the “stay alive” constraint to AAs. Some living 

entity in the AA, with the AA keeping control on it and being 

submitted to the “stay alive” constraint, like animals are. 

Investigating such an approach calls for developments which are 

beyond the scope of this paper. 

Ethical concerns have been raised through the possible relations 

between human constraints and human values. If AAs can 

someday carry human constraints, they may not carry human 

values. An evolutionary approach to human consciousness could 

bring some openings on that perspective by positioning an 

evolutionary background for constraints and values. Such 

concern applies also to the possibility of AAs creating their own 

constraints that may be different from human ones and 

consequently not linked to human values.  
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Alan Turing’s Legacy:  
Info-Computational Philosophy of Nature

Gordana Dodig-Crnkovic1

Abstract. Alan Turing’s pioneering work on computability, and 
his ideas on morphological computing support Andrew Hodges’ 
view of Turing as a natural philosopher. Turing’s natural 
philosophy differs importantly from Galileo’s view that the book 
of nature is written in the language of mathematics (The 
Assayer, 1623). Computing is more than a language of nature as 
computation produces real time physical behaviors. This article 
presents the framework of Natural Info-computationalism as a 
contemporary natural philosophy that builds on the legacy of 
Turing’s computationalism. Info-computationalism is a synthesis 
of Informational Structural Realism (the view that nature is a 
web of informational structures) and Natural Computationalism 
(the view that nature physically computes its own time 
development). It presents a framework for the development of a 
unified approach to nature, with common interpretation of 
inanimate nature as well as living organisms and their social 
networks. Computing is understood as information processing 
that drives all the changes on different levels of organization of 
information and can be modeled as morphological computing on 
data sets pertinent to informational structures. The use of info-
computational conceptualizations, models and tools makes 
possible for the first time in history the study of complex self-
organizing adaptive systems, including basic characteristics and 
functions of living systems, intelligence, and cognition. 

1 Turing and Natural Philosophy1 
Andrew Hodges [1] describes Turing as a Natural philosopher: 
“He thought and lived a generation ahead of his time, and yet the 
features of his thought that burst the boundaries of the 1940s are 
better described by the antique words: natural philosophy.” 
Turing’s natural philosophy differs from Galileo’s view that the 
book of nature is written in the language of mathematics (The 
Assayer, 1623). Computation is not just a language of nature; it 
is the way nature behaves. Computing differs from mathematics 
in that computers not only calculate numbers, but more 
importantly they can produce real time physical behaviours. 

Turing studied a variety of natural phenomena and proposed 
their computational modeling. He made a pioneering 
contribution in the elucidation of connections between 
computation and intelligence and his work on morphogenesis 
provides evidence for natural philosophers’ approach. Turing’s 
1952 paper on morphogenesis [2] proposed a chemical model as 
the basis of the development of biological patterns such as the 
spots and stripes that appear on animal skin. 
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Turing did not originally claim that the physical system 
producing patterns actually performs computation through 
morphogenesis. Nevertheless, from the perspective of info-
computationalism, [3,4] argues that morphogenesis is a process 
of morphological computing. Physical process, though not 
computational in the traditional sense, presents natural 
(unconventional), physical, morphological computation.  

An essential element in this process is the interplay between the 
informational structure and the computational process – 
information self-structuring. The process of computation 
implements physical laws which act on informational structures. 
Through the process of computation, structures change their 
forms, [5]. All computation on some level of abstraction is 
morphological computation – a form-changing/form-generating 
process, [4]. 

In this article, info-computationalism is identified as a new 
philosophy of nature providing the basis for the unification of 
knowledge from currently disparate fields of natural sciences, 
philosophy, and computing. An on-going development in 
bioinformatics, computational biology, neuroscience, cognitive 
science and related fields shows that in practice biological 
systems are currently already studied as information processing 
and are modelled using computation-theoretical tools [6,7,8]. 

Denning declares: “Computing is a natural science” [9] and info-
computationalism provides plenty of support for this claim. 
Contemporary biologists such as Kurakin [10] also add to this 
information-based naturalism, claiming that “living matter as a 
whole represents a multiscale structure-process of energy/matter 
flow/circulation, which obeys the empirical laws of 
nonequilibrium thermodynamics and which evolves as a self-
similar structure (fractal) due to the pressures of competition and 
evolutionary selection”. [11, p5]  

2 Universe as Informational Structure 

The universe is, from the metaphysical point of view, "nothing 
but processes in structural patterns all the way down" [12, p228]. 
Understanding patterns as information, one may infer that 
information is a fundamental ontological category. The ontology 
is scale-relative. What we know about the universe is what we 
get from sciences, as "special sciences track real patterns" [12, 
p242]. This idea of an informational universe coincides with 
Floridi’s Informational Structural Realism [13,14]. We know as 
much of the world as we explore and cognitively process: 

“Reality in itself is not a source but a resource for knowledge. 
Structural objects (clusters of data as relational entities) work 
epistemologically like constraining affordances: they allow or 
invite certain constructs (they are affordances for the 



information system that elaborates them) and resist or impede 
some others (they are constraints for the same system), 
depending on the interaction with, and the nature of, the 
information system that processes them.” [13, p370]. 

Wolfram [15] finds equivalence between the two descriptions – 
matter and information: 

“[M]atter is merely our way of representing to ourselves things 
that are in fact some pattern of information, but we can also say 
that matter is the primary thing and that information is our 
representation of that. It makes little difference, I don’t think 
there’s a big distinction – if one is right that there’s an ultimate 
model for the representation of universe in terms of 
computation.” [16, p389]. 

More detailed discussion of different questions of the 
informational universe, natural info-computationalism including 
cognition, meaning and intelligent agency is given by Dodig 
Crnkovic and Hofkirchner in [17]. 

3 The Computing Universe – Naturalist 
Computationalism 
Zuse was the first to suggest (in 1967) that the physical behavior 
of the entire universe is being computed on a basic level, 
possibly on cellular automata, by the universe itself, which he 
referred to as "Rechnender Raum" or Computing Space/Cosmos. 
Consequently, Zuse was the first pancomputationalist (natural 
computationalist), [18]. Chaitin in [19, p.13] claims that the 
universe can be considered to be a computer “constantly 
computing its future state from its current state, constantly 
computing its own time-evolution account!” He quotes Toffoli, 
pointing out that “actual computers like your PC just hitch a ride 
on this universal computation!”  

Wolfram too advocates for a pancomputationalist view [15], a 
new dynamic kind of reductionism in which the complexity of 
behaviors and structures found in nature are derived (generated) 
from a few basic mechanisms. Natural phenomena are thus the 
products of computation processes. In a computational universe 
new and unpredictable phenomena emerge as a result of simple 
algorithms operating on simple computing elements such as 
cellular automata, and complexity originates from the bottom-up 
emergent processes. Cellular automata are equivalent to a 
universal Turing Machine. Wolfram’s critics remark, however, 
that cellular automata do not evolve beyond a certain level of 
complexity; the mechanisms involved do not produce 
evolutionary development. Wolfram meets this criticism by 
pointing out that cellular automata are models and as such 
surprisingly successful ones. Also Fredkin [20] in his Digital 
philosophy builds on cellular automata, suggesting that particle 
physics can emerge from cellular automata. For Fredkin, humans 
are software running on a universal computer.  

Wolfram and Fredkin, in the tradition of Zuse, assume that the 
universe is, on a fundamental level, a discrete system, and is thus 
suitably modelled as an all-encompassing digital computer. 
However, the computing universe hypothesis (natural 
computationalism) does not critically depend on the discreteness 
of the physical world, as there are digital as well as analog 
computers. On a quantum-mechanical level, the universe 
performs computation on characteristically dual wave-particle 

objects [21], i.e. both continuous and discrete computing. Maley 
[22] demonstrates that it is necessary to distinguish between 
analog and continuous, and between digital and discrete 
representations. Even though typical examples of analog 
representations use continuous media, this is not what makes 
them analog. Rather, it is the relationship that they maintain with 
what they represent. Similar holds for digital representations. 
The lack of proper distinctions in this respect is a source of much 
confusion on discrete vs. continuous computational models. 

Moreover, even if in some representations it may be discrete 
(and thus conform to the Pythagorean ideal of number as a 
principle of the world), computation in the universe is performed 
at many different levels of organization, including quantum 
computing, bio-computing, spatial computing, etc. – some of 
them discrete, others continuous. So computing nature seems to 
have a use for both discrete and continuous computation, [23]. 

4 Information Processing Model of Computation 
Computation is nowadays performed by computer systems 
connected in global networks of multitasking, interacting 
devices. The classical understanding of computation as syntactic 
mechanical symbol manipulation performed by an isolated 
computer is being replaced by the information processing view 
by Burgin, [24]. Info-computationalism adopts Burgin definition 
of computation as information processing. 

In what follows, I will focus on explaining this new idea of 
computation, which is essentially different from the notion of 
context-free execution of a given procedure in a deterministic 
mechanical way. Abramsky summarizes this changing paradigm 
of computing as follows:  

“Traditionally, the dynamics of computing systems, their 
unfolding behaviour in space and time has been a mere means to 
the end of computing the function which specifies the algorithmic 
problem which the system is solving. In much of contemporary 
computing, the situation is reversed: the purpose of the 
computing system is to exhibit certain behaviour. (…)  

We need a theory of the dynamics of informatic processes, of 
interaction, and information flow, as a basis for answering such 
fundamental questions as: What is computed? What is a 
process? What are the analogues to Turing completeness and 
universality when we are concerned with processes and their 
behaviours, rather than the functions which they compute?”  
[25, p483] 

According to Abramsky, there is a need for second generation 
models of computation, and in particular there is a need for 
process models such as Petri nets, Process Algebra, and similar. 
The first generation models of computation originated from 
problems of formalization of mathematics and logic, while 
processes or agents, interaction, and information flow are 
genuine products of the development of computers and 
Computer Science. In the second generation models of 
computation, previous isolated systems with limited interactions 
with the environment are replaced by processes or agents for 
which interactions with each other and with the environment are 
fundamental.  



As a result of interactions among agents and with the 
environment, complex behaviour emerges. The basic building 
block of this interactive approach is the agent, and the 
fundamental operation is interaction. The ideal is the 
computational behaviour of an organism, not mechanical 
machinery. This approach works at both the macro-scale (such 
as processes in operating systems, software agents on the 
Internet, transactions, etc.) and on the micro-scale (from program 
implementation, down to hardware).  

The above view of the relationship between information and 
computation presented in [25] agrees with ideas of info-
computational naturalism of Dodig-Crnkovic [3] which are 
based on the same understanding of computation and its relation 
to information. Implementation of info-computationalism, 
interactive computing (such as, among others, agent-based) 
naturally suits the purpose of modelling a network of mutually 
communicating processes/agents, see [3,4,5]. 

5 Natural Computation 
Natural computing is a new paradigm of computing which deals 
with computability in the natural world. It has brought a new 
understanding of computation and presents a promising new 
approach to the complex world of autonomous, intelligent, 
adaptive, and networked computing that has emerged 
successively in recent years. Significant for Natural computing is 
a bidirectional research [7]: as natural sciences are rapidly 
absorbing ideas of information processing, computing is 
concurrently assimilating ideas from natural sciences.  

The classical mathematical theory of computation was devised 
long before global computer networks. Ideal, classical theoretical 
computers are mathematical objects and they are equivalent to 
algorithms, Turing machines, effective procedures, recursive 
functions or formal languages. Compared with new computing 
paradigms, Turing machines form the proper subset of the set of 
information processing devices, in much the same way as 
Newton’s theory of gravitation presents a special case of 
Einstein’s theory, or Euclidean geometry presents a limited case 
of non-Euclidean geometries, [5]. 

Natural/Unconventional computing as a study of computational 
systems includes computing techniques that take inspiration 
from nature, use computers to simulate natural phenomena or 
compute with natural materials (such as molecules, atoms or 
DNA). Natural computation is well suited for dealing with large, 
complex, and dynamic problems. It is an emerging 
interdisciplinary area closely related to artificial intelligence and 
cognitive science, vision and image processing, neuroscience, 
systems biology and bioinformatics, to mention but a few.  

Computational paradigms studied by natural computing are 
abstracted from natural phenomena such as self-* attributes of 
living (organic) systems (including -replication, -repair, -
definition and -assembly), the functioning of the brain, 
evolution, the immune systems, cell membranes, and 
morphogenesis.  

Unlike in the Turing model, where the Halting problem is 
central, the main issue in Natural computing is the adequacy of 
the computational response (behaviour). The organic computing 
system adapts dynamically to the current conditions of its 

environments by self-organization, self-configuration, self-
optimization, self-healing, self-protection and context-
awareness. In many areas, we have to computationally model 
emergence which is not algorithmic according to Cooper [26] 
and Cooper and Sloman [27]. This makes the investigation of 
computational characteristics of non-algorithmic natural 
computation (sub-symbolic, analog) particularly interesting.  

In sum, solutions are being sought in natural systems with 
evolutionary developed strategies for handling complexity in 
order to improve complex networks of massively parallel 
autonomous engineered computational systems. Research in 
theoretical foundations of Natural computing is needed to 
improve understanding of the fundamental level of computation 
as information processing which underlies all computing. 

6 Information as a Fabric of Reality 
 “Information is the difference that makes a difference. “ [29] 

More specifically, Bateson’s difference is the difference in the 
world that makes the difference for an agent. Here the world also 
includes agents themselves. As an example, take the visual field 
of a microscope/telescope: A difference that makes a difference 
for an agent who can see (visible) light appears when she/he/it 
detects an object in the visual field. What is observed presents a 
difference that makes the difference for that agent. For another 
agent who may see only ultra-violet radiation, the visible part of 
the spectrum might not bring any difference at all. So the 
difference that makes a difference for an agent depends on what 
the agent is able to detect or perceive. Nowadays, with the help 
of scientific instruments, we see much more than ever before, 
which is yet further enhanced by visualization techniques that 
can graphically represent any kind of data.  

A system of differences that make a difference (information 
structures that build information architecture), observed and 
memorized, represents the fabric of reality for an agent. 
Informational Structural Realism [13] [30] argues exactly that: 
information is the fabric of reality. Reality consists of 
informational structures organized on different levels of 
abstraction/resolution. A similar view is defended in [12]. Dodig 
Crnkovic [3] identifies this fabric of reality (Kantian 'Ding an 
sich') as potential information and makes the distinction between 
it and actual information for an agent. Potential information for 
an agent is all that exists as not yet actualized for an agent, and it 
becomes information through interactions with an agent for 
whom it makes a difference. 

Informational structures of the world constantly change on all 
levels of organization, so the knowledge of structures is only half 
the story. The other half is the knowledge of processes – 
information dynamics. 

It is important to note the difference between the potential 
information (world in itself) and actual information (world for an 
agent). Meaningful information, which is what in everyday 
speech is meant by information, is the result of interaction 
between an agent and the world. Meaning is use, and for an 
agent information has meaning when it has certain use. Menant 
[31] proposes to analyze relations between information, meaning 
and representation through an evolutionary approach. 



7 Info-Computationalism as Natural Philosophy 
Info-computationalist naturalism identifies computational 
process with the dynamic interaction of informational structures. 
It includes digital and analog, continuous and discrete, as 
phenomena existing in the physical world on different levels of 
organization. Our present-day digital computing is a subset of a 
more general Natural computing. In this framework, 
computational processes are understood as natural computation, 
since information processing (computation) is not only found in 
human communication and computational machinery but also in 
the entirety of nature. 

Information represents the world (reality as an informational 
web) for a cognizing agent, while information dynamics 
(information processing, computation) implements physical laws 
through which all the changes of informational structures unfold.  

Computation, as it appears in the natural world, is more general 
than the human process of calculation modelled by the Turing 
machine. Natural computing takes place through the interactions 
of concurrent asynchronous computational processes, which are 
the most general representation of information dynamics [5]. 

8 Conclusions 
Alan Turing’s work on computing machinery, which provided 
the basis for artificial intelligence and the study of its 
relationship to natural intelligence, together with his 
computational models of morphogenesis, can be seen as a 
pioneering contribution to the field of Natural Computing and 
the Computational Philosophy of Nature. Today’s info-
computationalism builds on the tradition of Turing’s 
computational Natural Philosophy. It is a kind of epistemological 
naturalism based on the synthesis of two fundamental 
cosmological ideas: the universe as informational structure 
(informationalism) and the universe as a network of 
computational processes (pancomputationalism/naturalist 
computationalism).  

Information and computation in this framework are two 
complementary concepts representing structure and process, 
being and becoming. Info-computational conceptualizations, 
models and tools enable the study of nature and its complex, 
dynamic structures, and uncover unprecedented new possibilities 
in the understanding of the connections between earlier unrelated 
phenomena of non-living and living nature [28]. 
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Natural Computation—A Perspective from the
Foundations of Quantum Theory

Philip Goyal1

Abstract. The framework of classical physics is based on a me-
chanical conception of nature, a conception which is mirrored in the
Turing model of computation. Quantum theory has, however, funda-
mentally challenged this conception. The mathematical formalism of
quantum theory consists of a set of postulates, most of which are at
odds with the corresponding postulates of classical physics. For ex-
ample, quantum measurements may have a finite number of possible
outcomes, are probabilistic, are disturbing of the measured system,
and in general only yield information about a fraction of the state
of the measured system. Moreover, the quantum formalism does not
specify what kind of physical process constitutes a measurement. In
the eighty-five years since its creation, these and other non-classical
features have defied any coherent understanding in terms of a new
conception of nature. In recent years, there have been numerous at-
tempts to derive the mathematics of quantum theory from a small
number of informationally-inspired physical postulates, and this is
providing a new, clearer perspective on just what physical ideas are
implicit in the quantum postulates. In this paper, I will outline one
such derivation, describe some of its implications for the assump-
tions implicit in Turing’s model of computation.
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Nature-Like Computation and a Measure of
Programmability1

Hector Zenil 2

Abstract. I will propose an alternative behavioural definition of
computation based on whether a system is capable of reacting to the
environment—the input—as reflected in a measure of programma-
bility. This will be done by using a phase transition coefficient
previously defined in an attempt to characterise the evolution of
cellular automata and other systems. This transition coefficient
measures the sensitivity of a system to external stimuli and will be
used to define the susceptibility of a system to being (efficiently)
programmed in the context of a nature-like definition of computation.

Keywords: Nature-like computation; programmability; cellular au-
tomata; compressibility; philosophy of computation; Turing univer-
sality.

1 APPROACHES TO THE QUESTION OF
COMPUTATION

What is (a) computation? What does it mean to compute something
and how much sense does it make to talk about computation outside
of mathematics? These fundamental questions have not yet received
a satisfactory answer according to [23], and despite the well-known
“Church-Turing thesis” (CT thesis).

The most important notion of computation, however, is the no-
tion of digital computation, and its most important feature is that of
programmability. Turing’s abstract idea of a universal computer has
turned out to be technologically feasible, showing that if physics does
not compute, it at least supports computation as we can build con-
crete devices whose behaviour, despite being governed by the laws
of physics, effectively implement general-purpose digital computa-
tion. More formally, given a fixed description of Turing machines,
we say that a Turing machine U is universal if for all input s and a
Turing machine M , U applied to (< M >, s) halts if M halts on
s and provides the same result as M with input s, and does not halt
if M does not halt for s. In other words, U is capable of simulating
M with input s, with M and s an arbitrary Turing machine and an
arbitrary input for M .

So far the study of the limits of computation has succeeded in
offering us insight into what computation might be. The borderline
between the decidable and the undecidable has provided an essential
intuition in our search for a better understanding of computation. One
can, however, wonder just how much can be expected from such an
approach, and whether other, alternative approaches to understanding

1 Invited Talk. Symposium on Natural/Unconventional Computing and its
Philosophical Significance, AISB/IACAP World Congress 2012 - Alan
Turing 2012.

2 Behavioural and Evolutionary Theory Lab, Department of Computer Sci-
ence, The University of Sheffield, UK, email: h.zenil@sheffield.ac.uk

computation may complement the knowledge and intuition it affords,
specially in modern uses of the concept of computation in the context
of nature and physics corresponding to situations in which objects or
events are seen as computers or computations.

One such approach involves not the study of systems lying “be-
yond” the uncomputable limit (also called the Turing limit), but
rather the study of the minimum requirements for reaching univer-
sal computation, through a focus on the ‘smallest’ possible systems
capable of universal computation—how easy or complicated it is
to build a universal Turing machine, and how efficient such ma-
chines may be. This minimalistic bottom-up approach is epitomised
by Wolfram’s programme [27] in its quest to study simple programs.
The question behind is what enables universality in a computational
setup. Does it originate from a rich supply of basic operations? Is uni-
versality a pervasive property of computational systems As Wolfram
[27] has captured in his Principle of Computational Equivalence, and
as more recently other authors (e.g. Davis [6]) has adopted? Meaning
that it takes little to reach universality.

According to the semantics approach, a computation is a function
that maps input onto output [17]. In most accounts of computational
processes as realised by physical mechanisms, it is also often as-
sumed that there is a one-to-one correspondence between the causal-
ity of the physical states and the states of a computation, as defined
by some abstract model in which these can be represented. The tradi-
tional mapping-states definition of physical computation is probably
inspired by formal semantics, in that it requires that a mapping be es-
tablished between a model and a physical system, meaning that states
and events in the model are used to label states and events observed
in the system treated as mathematical objects. Nature, however, is not
like standard computation. One cannot, for example, assign a mean-
ing to a natural phenomenon to be mapped to the concept of a halt-
ing state without making arbitrary choices, nor is it always known
what path nature has taken to produce a given outcome, regardless of
whether we see this path as constituting a computation or not.

Usually in computation a system is prepared in an initial state, and
is allowed to evolve through a trajectory of events occurring within
the space of successive states, until it eventually reaches a state la-
beled as final. In nature, however, there is usually no such thing as
an initial or final state; everything is part of a causal chain of other
events, much more like cellular automata that do not naturally halt
(other than in reaching some stable configuration, for example) un-
less they are arbitrarily stopped, and more in the context of random
initial configurations rather than infinite blank tapes.

This more nature-like approach to defining computation is closely
related to the common view that computation is information process-
ing. David Deutsch [8], for one, has often claimed that the theory
of computation has traditionally been studied almost entirely in the



abstract, as a topic in pure mathematics. Deutsch argues that com-
puters are physical objects, and computations are physical processes,
hence both computers and computations are governed by the laws of
physics and not by pure mathematics.

Computation has, however, traditionally been defined in terms of
mathematical functions or in terms of how a function is calculated.
This has motivated to view computation either as the outcome of a
mathematical function or as the study of the time that an algorithm
takes to compute a function, which has been evidently extremely suc-
cessful. Nevertheless, a purely behavioural definition of computation
(and of a computer) in terms of whether a system is capable of re-
acting to the environment–the input–and proceeding to do something
with it, may provide a definition that focuses on whether a system is
capable of (efficiently) transferring information from its input to its
output, which is in a strong sense what it means to program a system.
It is this capacity for efficiently transferring information which will
serve to indicate the system’s susceptibility to being programmed.
Clearly, by this definition one may not call something a computer
if it takes in the input but leaves it unchanged, or if for any input
one gets always the same output, but my claim is that between these
two cases there is room for a behavioural definition. It will be, thus,
whether one can program a system what makes it a computer.

2 A BEHAVIOURAL APPROACH TO
NATURE-LIKE COMPUTATION

Significant effort has been invested in definitions of computation in
denotational, operational and axiomatic terms. For example, most
approaches prove that a computation and its object denotationally
coincide (leading to the CT thesis), some have adopted operational
approaches [7] with questions of whether their definitions are just too
broad. The axiomatic approach has also been developed with some
interesting results [11, 19]. Nevertheless, some authors have ex-
tended the definition of computation to physical objects and physical
processes at different levels of physical reality [25, 9, 10, 27, 8, 21]
ranging from the digital to the quantum. In [27], for instance, Wol-
fram states that “. . . all processes, whether they are produced by hu-
man effort or occur spontaneously in nature, can be viewed as com-
putations.”

Klaus Sutner [20] has this to say in regards to Wolfram’s con-
ception of computation in nature: “This [Wolfram’s] assertion is not
particularly controversial, though it does require a somewhat relaxed
view of what exactly constitutes a computation—as opposed to an ar-
bitrary physical process such as, say, a waterfall.” However, the work
of several of the aforementioned physicists and computer scientists
does indeed permit us to claim that a waterfall is (or can be viewed
as) a computational process.

Whether one regards the universe as performing a computation
or all natural processes as computations, when something is identi-
fied in a particular way because it has a specific property, the aim is
to construct a category that includes certain things which share that
property and exclude those things that do not, so that one can dis-
tinguish one thing from another and claim that one has established a
concept with a finite extension which is set apart within the domain
of discourse.

But to make sense of the term “computation” in these contexts
(modern views of physics), I propose a behavioural notion of nature-
like computation (similar in spirit to the way the term physics-like
computation has been coined [22, 20]) compatible with digital com-
putation but meaningful in broader contexts independent of repre-
sentations and possible carriers. This will require a measure of the

degree of programmability of a system by means of a compressibil-
ity index ultimately rooted in the concept of algorithmic complexity.
I ask whether two computations are the same if they look the same
and I try to answer with a specific tool possessing the potential to
capture a notion of qualitative behaviour.

The fact that we need hardware and software is an indication that
we need a programmable substratum that can be made to compute
something for us but Turing’s main contribution vis-à-vis the con-
cept of computational universality is that data and programs can be
stored together in a single memory without any fundamental distinc-
tion. One can always write a specific-purpose machine with no input
to perform any computation, and one can always write a program
describing that computation as the input for a (universal) Turing ma-
chine, so in a strong sense there is a non-essential distinction between
program and data. This is crucial, in that the same void distinction
holds between hardware and software, as software can be seen as
both data and program, and hardware can always be emulated in a
program (even if it may appear obvious that hardware is ultimately
needed to undertake a computation).

A programmer uses memory space and cpu cycles in a regular
computer to perform a computation, but this is by no means an indi-
cation that computation requires a computer (say a PC), only that it
needs a substratum. The behaviour of the substratum is the underly-
ing property that makes something a computation, and what carries
out the computation a computer.

The behavioural approach takes this abstraction from the substra-
tum to the extreme (keeping it physical as opposed to mathematical),
with its central question being whether one can program a system to
behave in a desired way. This approach that bases itself on the ex-
tent to which a system can be programmed tells us to what degree a
given system resembles a computer. It can therefore serve as an epis-
temological framework for interpreting the computational nature of
a system in the broader modern sense of computation, particularly in
a physical context.

As suggested by Sutner [20], it is reasonable to require that any
definition of computation in the general sense, rather than being a
purely logical description (e.g. in terms of recursion theory), should
capture some sense of what a physical computation might be. While
Sutner’s suggestion [20] has similar motivations to ours, it differs
from ours in that his aim is to map the behaviour of a system to the
theory of computation, notably computational degrees. Sutner aligns
his approach with his reading of the following claim made by Searle:
[18] “Computational states are not discovered within the physics,
they are assigned to the physics.” Sutner adds “A physical system
is not intrinsically a computer, rather it is necessary to interpret cer-
tain features of the physical system as representing a computation.”
This obliges Sutner to take into consideration the act of interpreta-
tion of a physical system and the observer. Sutner’s observer’s lan-
guage maps the physical object to an interpretation of what the ob-
ject does as a computational process. In Sutner’s view the observer
may in the process of interpretation slightly modify the computation
without adding to or carrying out the computation attributed to the
physical object. One can see Sutner’s model as consisting of a pair
of coupled automata, where one is the physical object and the other
the observer. The observer is defined as an automaton constrained in
computational power, capable of mapping (interpreting)–by way of
a transducer–a physical object onto a computational process using
electrical signals.

Sutner’s approach [20] is dependent on aspects of the traditional
theory of computation in that it requires a mapping, and strong as-
sumptions are made as regards the physical object, the observer and



the mapping itself. We don’t focus on these mappings but on the qual-
itative behaviour of a system, regardless of whether the mapping is
known, can be known or even exists, although such a mapping should
in principle exist under certain (strong) assumptions, but it only cares
about the qualitative character of a computational process and not its
inner workings.

We know that systems that nobody ever designed as computers
are able to perform universal computation, for example Wolfram’s
Rule 110 [27, 4], and that this like other remarkably simple systems
are capable of universal computation (e.g. Conway’s game of Life or
Langton’s ant). These systems may be said to readily arise physically,
as they have not been deliberately designed. There is, however, no
universal agreement as regards the definition of what a computer may
or may not be, or as to what exactly a computation might be, even
though what computation is and what a computer may be are well
grasped on an intuitive level.

A program can be defined as that which turns a general-purpose
computer into a special-purpose computer. This is not a strange def-
inition, since in the context of computer science a computation can
be regarded as the evolution undergone by a system when running
a program. However, while interesting in itself, and not without a
certain affinity with our approach, this route through the definition
of a general-purpose computer is a circuitous one to take to define
computation. For it commits one to defining computational univer-
sality before one can proceed to define something more basic, some-
thing which ideally should not depend on such a powerful (and even
more difficult-to-define) concept. Universal computation is without a
doubt the most important feature of computation, but every time one
attempts to define computation in relation to universal computation,
one ends up with a circular statement [computation is (Turing) uni-
versal computation], thus merely leading to a version of a CT thesis.

It encompasses minds and computers while excluding almost ev-
erything else, investing minds and computers with a special status
while viewing most of the rest of reality as computationally vacu-
ous. I think this approach is weak, however. Think of the billiard ball
computational model. It is designed to perform as a computer and
can therefore be trivially mapped onto the states of a digital com-
puter. Yet it is a counterexample of what the semantic account sets
out to do, viz. to cordon off minds and computers (believed capa-
ble of computation) from things like billiard balls, tables and rocks
(believed to be incapable of computation).

3 CASE STUDY: CELLULAR AUTOMATA

A cellular automaton (CA) is a computational model that has been
shown to be an interesting object of study both as a computational
device per se and for modelling all kinds of phenomena [27, 13]. A
CA consists of an array of cells where each takes a value from a finite
set of states. Every cell updates its value depending on the state of
its neighbouring cells. Hence the global behaviour of the automaton
depends on the local interaction of its cells.

But what does a CA compute? As shown by Wolfram [27], the
evolution of a system like a cellular automaton can be viewed as a
computation. As shown in [27] (page 638), ECA Rule 132 (R132) is a
simple cellular automaton whose evolution effectively computes the
remainder after division of a number by 2. Starting from a row of n
black cells, 0 black cells survive if n is even, and 1 black cell survives
if n is odd. So in effect this cellular automaton can be viewed as
computing whether a given number is even or odd. Wolfram provides
other CA examples computing functions in the traditional sense (e.g.
R94 as enumerating even numbers; R62 that can be thought of as

enumerating numbers that are multiples of 3; the central column of
the pattern of R129 that can be thought of as enumerating numbers
that are powers of 2; or a CA, with 16 states, as capable of computing
prime numbers).

The CA community has developed a strong intuition for determin-
ing the ability of a CA to transmit information and eventually be
considered a candidate for universal computation. Evident properties
of rules like the game of life [5] (a 2-dimensional cellular automa-
ton proven to be computationally universal) and of rules like R110
[27], (a one-dimensional nearest neighbourhood) simple cellular au-
tomata, are structures persisting over time but sensitive to perturba-
tions. These structures transmit information through a system, for
example, in the form of characteristic gliders and all sorts of other
well-known structures. These structures are unpredictable in a fun-
damental way if the system is capable of universal computation (as
we will learn below from the work of Gödel and Turing). Predictable
rules, or rules with no persistent structures, are often discarded as in-
capable of carrying messages and behaving as universal computers.
Nevertheless, CAs computing in a one-dimensional space, with only
2 states and nearest neighbour have already sufficient internal rich-
ness, in spite of this simplicity, to simulate a cyclic tag system for
implementing a universal computing device [4, 27].

Wolfram noticed [27] this richness, and by careful visual inspec-
tion of the evolution of two-dimensional space-time orbits, he was
able to classify all the various behaviours into 4 general classes for
systems starting with a random initial condition. Wolfram provided
a 4-group classification of behaviour (particularly for cellular au-
tomata, specially the so-called elementary i.e. 1-range neighbour-
hood). His classes can be regarded as reflecting how information
from the initial state is retained in the final configuration in a sys-
tem (e.g. a cellular automaton). Class I, for example, is either unable
to transfer any information to future states or simply transfers all
or a portion of the information exactly as it came in. For Class II,
however, information always remains completely localised into rigid
patterns (e.g. fractals). On the other hand, Class III can be seen as
scrambling the information from the input, allowing little chance to
recover the information from the output because it generates a sort
of noise (what Wolfram calls intrinsic randomness) even from the
simplest inputs (e.g. a single black cell). Class IV, however, transfer
information from the input through the system, interacting with other
structures, but neither unfolding into simple structures such as those
in Class II nor scrambling the information as happens in Class III.

A measure based on the change of the asymptotic direction of the
size of the compressed evolutions of a system for different initial
configurations (following a proposed Gray-code enumeration of ini-
tial configurations) was presented in [28]. It gauges the resiliency
or sensitivity of a system vis-à-vis its initial conditions. This phase
transition coefficient led to an interesting characterisation and classi-
fication of systems, which when applied to elementary CA, yielded
exactly Wolfram’s four classes of systems behaviour, with no human
intervention. The coefficient works by compressing the changes of
the different evolutions through time, normalised by evolution space,
and it is rooted in the concept of algorithmic complexity.

3.1 A measure of programmability

Based on the principles of algorithmic complexity, one can use the
result of the compression algorithms applied to the evolution of a
system to characterise the behaviour of a system [28] by comparing
it to its uncompressed evolution as it is captured in eq. 1. If the evo-
lution is too random, the compressed version won’t be much shorter



than the length of the original evolution itself. It is clear that one can
characterise systems by their behaviour [28]: if they are compressible
they are simple, otherwise they are complex (random-looking). The
approach can be taken further and used to detect phase transitions,
as shown in [28], given that one can detect differences between the
compressed versions of the behaviour of a system for different ini-
tial configurations. This second measure allows us to characterise
systems by their sensitivity to the environment: the more sensitive
the greater the variation in length of the compressed evolutions. A
classification places at the top systems that can be considered to be
both efficient information carriers and highly programmable, given
that they react succinctly to input perturbations. Systems that are too
perturbable, however, do not show phase transitions and are grouped
as inefficient information carriers. The efficiency requirement is to
avoid what is known as Turing tarpits [14], that is, systems that are
capable of universal computation but are actually very hard to pro-
gram. This means that there is a difference between what can be
achieved in principle and the practical ability of a system to perform
a task. This approach is therefore sensitive to the practicalities of pro-
gramming a system rather than to its potential theoretical capability
of being programmed.

The transition coefficient is derived from a characteristic exponent
and is defined as follows: Let the characteristic exponent ctn be de-
fined as the mean of the absolute values of the differences between
the compressed lengths of the outputs of the system M running over
the initial segment of initial conditions ij with j = {1, . . . , n} fol-
lowing the numbering scheme devised in [28] based on the Gray-
code, and running for t steps in intervals of n. Formally,

ctn =
|C(Mt(i1))− C(Mt(i2))|+ . . .+ |C(Mt(in−1))− C(Mt(in))|

t(n− 1)
(1)

Let C denote the transition coefficient defined as C(U) = f ′(Sc),
the derivative of the line that fits the sequence Sc by finding the least-
squares as described in [28] with Sc = S(cnt ) for a chosen sample
frequency n and running time t. S(cnt ) is simply a sequence of cnt for
increasing t and fixed n. That is, to capture the asymptotic behaviour
of Mt. The value Ct

n(U) (simply C until the discussion of definitions
in the next section) will be therefore an indicator of the degree of
programmability of a system U relative to its external stimuli (input).
The larger the derivative, the greater the change of U and therefore
the possibility of program U to perform a task encoded in some form.

For example, according to this coefficient (or index) C, cellular
automata (CA) with rule numbers 0 and 30 are close to each other
because they remain the same despite the change of initial condi-
tions (despite the choice of t and n), and they are hardly perturbable.
The measure indicates that rules like rule 0 or rule 30 (denoted from
now on as R0, R30, etc.) are incapable of transmitting information,
given that they do not react to changes in the input. In this sense
they are alike because there is no change in the qualitative behaviour
of these CA when fed with different inputs, regardless of how dif-
ferent the inputs may be–and this is what C measures. Rule 0, for
example, remains entirely blank, while R30 remains mostly random-
looking, with no apparent emergent coherent propagating structures
(other than the regular and linear pattern on one of the sides).

On the other hand, rules such as 122 and 89 have C close to
each other because they are sensitive to initial conditions. As is
shown in [28], they are both highly sensitive to initial conditions and
present phase transitions which dramatically change their qualitative
behaviour when starting from different initial configurations. This
means that rules like 122 and 89 can be used to transmit information

through the system, from the input to the output.
Values of C for the subclass of CA referred to as elementary

(the simplest one-dimensional closest neighbourhood, also known as
ECA [27]) have been calculated and published in [28], and a further
investigation of the relation between this transition coefficient and
the computational capabilities of certain known (Turing) universal
machines has been undertaken in [30]. We will refrain from exact
evaluations of C to avoid distracting the reader with numerical ap-
proximations that may detract from our particular goal in this paper.
The aim here is to propose a behavioural definition of computation
based on this measure rather than to evaluate specific values that have
already been calculated in [30].

This transition coefficient will be used to dynamically define com-
putation based on the degree of programmability of a system. The
advantage of using the transition coefficient C is that it is indiffer-
ent to the internal states, formalism or architecture of a computer or
computing model; it doesn’t even specify whether a machine has to
be digital or analog, or what its maximal computational power is. It
is only based on the behaviour of the system in question. It allows us
to minimally characterise the concept of computation on the basis of
behaviour alone.

Figure 1. ECA R255 (equivalent by colour inversion to R0, R255 is used
here for visual convenience) is stuck, unable to perform any computation– it
does not react to any external stimulus. This is an illustration of aC-computer
for C close (or equal) to zero [28]. The picture shows a series of evolutions
for 12 random inputs (3 per row) next to the cellular automaton rule (top).

Let’s denote as a C-computer (see Fig. 3.1) a system with
programmability coefficient C capturing the capability of the system
to transfer information from its input towards its output. Under this
notation, R255 in Wolfram’s one-dimensional elementary cellular
automata (ECA) enumeration (Fig. 1), for example, is a 0-computer,
that is a computer unable to carry out any operation because it cannot
transfer any information from the input to the output (another way to
say this is that R255 does not compute). ECA R255 cannot by any
means be programmed to perform any task, despite the input. We
have then captured the sense of what it means not to be a computer
with the following definition:

Definition 1. A 0-computer is not a computer in any intuitive
sense because it is not capable of carrying out any calculation.

A system capable of (Turing) universal computation (see Fig. 3.1)
would therefore have a non-zero C limit value. C also captures some
of the universal computational efficiency of the computer in that it
has the advantage of capturing not only whether it is capable of re-



Figure 2. ECA R110 is efficient at carrying information through persistent
local structures through the output reacting to external stimuli. Its Ct

n value
for sensible choices of t and n [28] is compatible with the fact that it has
been proven that R110 is capable of universal computation (it has been proven
[27, 4] for a particular semi-periodic initial configuration).

acting to the input and transferring information through its evolution,
but also the rate at which it does so. So C is an index of both capabil-
ity in principle and ability in practice. A non-zero C means that there
is a way to codify a program to make the system behave (efficiently)
in one fashion or another, i.e. to be programmable. Something that is
not programmable cannot therefore be taken to be a computer.

One can also see that things that seemed to behave like comput-
ers but were not called computers can indeed be considered comput-
ers under this approach. Mathematical functions, for example, can
be considered C-computers for some C determined by the domain
of the function. That a function can be considered a computer does
not controvert the theory wherein a computer is defined in terms of
a function and a domain, and a function in terms of an algorithm
having the input as its arguments and the output as its function eval-
uation. A function, however, seems to require a carrier. Usually that
carrier is a piece of paper and a pencil being wielded by a person,
but it can also be a physical computer. Can the simple description
of the function be considered a computer or a C-computer? I think
it should not be. Something static shouldn’t be considered to have a
behaviour, and I think it can be captured by C. To evaluate C one
needs to actually run a program, otherwise it remains unevaluated.

This makes for a clear distinction between, for example, a vision of
the universe as a mathematical structure and a vision of the universe
as a computer. While the latter may account for the physical carrier,
implying that the computation is being carried out by the universe
itself, it does not seem clear how a mathematical structure can come
equipped with the carrier on which it should be executed, unless it
becomes a computer program and therefore a computer.

Toy computers (e.g. Fig. 3) can also be considered C-computers,
as indeed can everyday things like fridges or lamps. When one turns
on a lamp the lamp is programmed to do something, in this case to
turn on. Likewise when it is turned off. Even if trivial, it reacts to the
input by producing light as the outcome. A fridge can be seen as cool-
ing objects that are introduced into it, the output being the cooling–
after an interval– of the objects in question. That both a lamp and
a fridge can be viewed as C-computers for a very limited C, given
that they have limited programmability (to perform a single, specific
task), should not be surprising, at least not in light of the definition
of a C-computer. With the advantage that one can now ask whether
a lamp or a fridge is or isn’t a computer without trivialising either

Figure 3. ECA R4 is a kind of program filter that only transfers bits in
isolation (i.e. when its neighbours are both white). It is clear that one can
perform some very simple computations with this automaton. One could not,
for example, implement a typical logic gate based on its particular behaviour.
It cannot clearly carry (Turing) universal computation. it has a low C for
random chosen n and t [28].

the question or the answer. Under our formal and precise definition
they are, as long as it is stated that they are limited in scope, as in-
dicated by their behaviour as captured by the coefficient C, while an
ordinary static table may be some kind of C-computer, certainly for
C very close to 0, if it is thought to be computing anything at all. On
the other hand, the universe as a whole can now legitimately be seen
and treated in this context as a computer, as it is a C-computer for
maximal C given that it contains all possible C-computers.

Figure 4. It is an open question whether ECA R30 can be programmed to
perform computations. Its C value is low [28], meaning that it is not efficient
for transferring information because it always behaves in the same fashion–
too randomly–without reacting differently to external stimuli.

3.2 Reversibility, 0-computers and conservation
laws

In [22], Margolus asserts that reversible cellular automata can actu-
ally be used as computer models embodying discrete analogues of
classical notions in physics such as space, time, locality and micro-
scopic reversibility. He suggests that one way to show that a given
rule can exhibit complicated behaviour (and eventually universality)
is to show (as has been done with the game of Life [5] and R110



[4, 27]) that “in the corresponding ‘world’ it is possible to have com-
puters” starting these automata with the appropriate initial states,
with digits acting as signals moving about and interacting with each
other to, for example, implement a logical gate for digital computa-
tion. Wolfram reinforces this vision by suggesting, through his Prin-
ciple of Computational Equivalence, that it is indeed the case that
non-trivial behaviours inevitably lead to universal computation.

This does not mean that a system must necessarily be bijective
(hence reversible) in its input/output mapping in order to be univer-
sal. But it is actually reversible CA with high entropy (number of pos-
sible states) which will tend to show the greatest behavioural richness
and therefore be considered the best candidates for being classified as
computers. In other words, the greater the richness a system is capa-
ble of, the greater C coefficient it will have. A reversible CA (RCA)
has the property that starting it from a random state is like starting
from a maximum entropy state in a thermodynamical system, be-
cause the RCA is not allowed to get simpler in its evolution, the only
way to get simpler being to collapse the number of states, making it
irreversible. Entropy in a randomly initiated RCA can only increase,
but if it reaches maximum entropy it can’t get any more complicated,
and so nothing much happens. This is also captured by C, in that the
RCA always look the same and are immune to evolutionary changes,
presenting homogeneous local entropy everywhere.

RCA are interesting because they allow information to propagate,
and in some sense they can be thought of as perfect computers–
indeed in the sense that matters to us. If one starts an RCA from
a non-uniformly random initial state, the RCA evolves, but because
it cannot get simpler than its initial condition (for the same reason
given for the random state) it can only get more complicated, pro-
ducing a computational history that is reversible and can only lead to
an increase in entropy. The RCA, however, is only reshaping the mes-
sage that it got at the beginning in the form of an initial configuration,
and so the amount of information in the RCA evolution remains the
same. Which makes it a perfect example of a system with increasing
entropy but consistent complexity over time. The algorithmic com-
plexity of the RCA is the same because one can track the RCA back
to the original information content represented by its initial config-
uration. So the state of the CA at any time always carries the same
information content. In non-reversible CA, however, information can
be lost, and even though the algorithmic complexity of the evolution
of a CA is always the same, one cannot recover it a posteriori from
any later state. In reversible CA, entropy, like information content,
may increase or decrease over time. As Margolus himself states, it
is one thing to know that a gas was in one corner at a given state,
and another to return the gas from its expanded condition to its orig-
inal position. It may thus seem that RCA in Wolfram’s class III may
all be chaotic, but Wolfram [26] offers examples of one-dimensional
reversible cellular automata exhibiting three types of behaviour of
local structures as they propagate in space.

In nature-like computation, conservation laws are important be-
cause the physical carrier on which a computation will be performed
is governed by physical conservation laws (laws that conserve physi-
cal invariants such as mass, energy, momentum, etc.). In RCA, there
are cases in which the simplest locally-computable invariants are
cells whose values never change, and which are analogous to nature-
like conservation laws. That is, laws such that for any given prop-
erty, the physical state of the system does not change as the system
evolves. The simplest RCA capable of doing this are those that ignore
their neighbouring cells and only look at the central one, reproducing
it identically. One may have doubts about calling these computers be-
cause there is no transformation of information whatsoever, with the

system just letting pass through it anything that it is fed. Even worse,
there are systems that may look as if they are computing the identity
function while in fact performing a series of intermediate transfor-
mations which lead to the same output a few steps later. From the
behavioural perspective based on the transition coefficient, under the
qualitative definition the two would be behaving differently if they
deliver their richness at different rates even if they produce the same
output. This discussion helps us to see how close these computa-
tional systems are to physical phenomena and to purely behavioural
descriptions, but also to address some potential concerns raised by
the qualitative approach proposed herein.

4 PROGRAMMABILITY AND BEHAVIOURAL
EQUIVALENCE

We can then define a system performing computation based on its
behaviour simply as follows:

Definition 2. A system U computes if Ct
n(U) > 0 for some

t, n > 0

Meaning that U can be programmed. Whether U can perform only
certain computations or all computations will not depend only on C
but on the details of U that escape the behavioural definition. Yet
this definition suits a much broader sense of nature or physics-like
computation as used in, for example, modern models of physics (to
mention but a few examples [10, 25, 27, 8, 21]). One can see that
there are systems that are not computers under this definition, simple
ones such as R0 and R255 Elementary Cellular Automata (see Fig.
3.1). Notice that C depends on two parameters, t and n, from the
original coefficient definition 1 indicating the number of steps that
a system has run (t), and the sampling frequency (n). This is of
course a downside of any a posteriori behavioural approach, and
it is precisely what makes this empirical approach a difficult one.
Nevertheless, one can do better and ideally define:

Definition 3. A system U has programmability
limt→∞ Ct

n=1(U) = m

Meaning that the sampling frequency is n = 1 (i.e. the compres-
sion comparison is applied at every step for every initial condition
at a time) and for all steps. Evidently this limit cannot be calculated
in finite time (t → ∞) by, say, a Turing machine. This is ultimately
related to a problem of induction, that is, how to characterise the be-
haviour of a system that can start from a countable infinite number of
possible states by looking only at a finite sample of them. If O′ is an
oracle Turing machine, however, then m can be computed, and fully
describes the qualitative behaviour of U .

This means that equivalence in the theoretical sense is ultimately
undecidable. In the empirical sense it can only be approached, given
that the transition coefficient on which the qualitative definition of
computation is based is limited by finite resources (reflected in the
parameters t and n), providing only an approximate indication of the
behavioural programmability of a system.

Notice that this is consistent with the behavioural approach, be-
cause if two systems have about the same Ct

n for n and t fixed it
means that it does react to changes at about the same rate, so it may
not only transfer or not information but if it does so or not it does
so at the same rate if they both have the same Ct

n for that n and that
t. By varying n and t one can also define rates of convergence to C
making a refinement to the original definition (perhaps a subject for



a future continuation of this approach).
Clearly, under this definition, behaviour space is less dense

than algorithm and program space because there may be different
programs implementing different algorithms but leading to the same
behaviour. So one can only define two behaviourally equivalent
systems as follows:

Definition 4. A system U and U ′ are computationally equivalent
in behavioural terms if C(U) = C(U ′).

Simple examples of a behavioural computational class are C-
computers for C = 0, i.e. they cannot be programmed, and are be-
haviourally equivalent. Under Def. 1 and 2, systems that are identi-
fied as 0-computers do not compute, as they are not capable of being
programmed.

Experience tells us that something that behaves in a certain
way will continue doing so, as we have empirically established in
[29]. This can be justified by algorithmic probability, because the
longer the observation time of a computing system the smaller the
chance that the behaviour in question will radically change. So even
though one cannot guarantee a behaviour ad infinitum, algorithmic
probability may provide the stability required to make reliable
generalisations. So one can weak Def. 4 by allowing C(U) to be
close enough to C(U ′) as follows:

Definition 5. A system U and U ′ are c computationally equivalent
if |C(U)− C(U ′)| < c.

It is worth stressing that two systems (or computers) are not the
same in any other sense if they have the same coefficient C. C is a
measure of sensitivity (what I take as how programmable the system
is); it cannot on its own indicate whether two computers compute the
same function, and is therefore a different measure than that provided
by traditional computability and formal semantics. It can tell when
two computers diverge in their behaviour, because for two comput-
ers to be the same, a necessary but not sufficient condition is that
they must both have the same transition coefficient (or to differ by
a desired c), which would mean that they have the same capability
of reacting to external stimuli, and transmit information at about the
same rate. Because C itself depends on two parameters (n and t),
this also means that C can only make comparisons for fixed t and
n (the same runtime and the same sampling frequency) between two
systems. So two C-computers are behaviourally equivalent if they
have the same C.

For the same reason that one cannot tell whether a machine will
halt for a given input, one cannot decide whether two computers
compute the same function, but one can relate nature-like com-
putation and abstract computation by means of Turing machines
as follows: for every C-computer U , there exists a program P
behaviourally equivalent to U , that is, with transition coefficient
C(U) = C(M) independent of n and t, because there exists a uni-
versal Turing machine T capable of reproducing the exact behaviour
of U .

It is worth also noting that this behavioural definition is cumula-
tive (but not additive), in the sense that a C-computer can be em-
bedded in the workings of another C′-computer for C 6= C′. If the
C′-computer does not impose any behavioural restriction on the C-
computer, then clearly C′ ≥ C, given that the new computer will
be capable of at least C-computation. This is the sense in which one
may see R255 as a program in the context of a C-computer with
C 6= 0 capable of running R255. If the C-computer is, for example,

a universal computer, R255 would be a program but cannot by itself
be a computer.

5 DISCUSSION
The topic and content of Nature-like computation is, on purpose, re-
lated to the question of whether the universe can be said to compute.
It does, for we know there are C-computers in it capable of uni-
versal computation, but we don’t really know whether the universe
(e.g. as represented by its physical laws) constrains C, a limit broad
enough to encompass every possible C-computer for a maximal C
contained in the physical universe. One can think of the law of grav-
itation as carrying out some sort of computation, with the degree of
programmability of such a system limited to performing a particular
task (in this case pulling objects toward each other and keeping them
in their gravitational trajectory). Classical mechanics guarantees that
the system is deterministic, even if that doesn’t mean one can predict
the system for any specific parameters (e.g. 3 bodies). There is no
fundamental reason, however, for following the approach described
herein when assessing whether a system can compute based on its
degree of programmability. Still, the fact that one can coarse grain
what computation may mean by way of the parameter C, and guar-
antee that there are both systems with maximal C and C = 0 for
systems that can be programmed to do something, and others that
cannot be programmed at all and show no reaction to any external
stimulus (e.g. see Fig. 3.1), imbues this approach and its definition of
computers and computation with sense, particularly in the context of
nature-like computation as proposed by some of the aforementioned
authors. There are also C-computers for small values of C, meaning
that the system can hardly be programmed because it does not trans-
fer information efficiently enough (this may be the case, for example,
with R30, see Fig. 3.1).

5.1 The question of scale
So far, the object of this behavioural approach to computation has
been to provide a reasonable framework for assertions connecting
the notion of computation to nature, and how nature may or may not
compute, in light of current uses of the term ‘compute’. Lloyd [21],
for example, claims that since the universe is computing itself, things
in the universe would therefore also be computing themselves. Think
of the example of a still physical object (e.g. a desk or a sheet of pa-
per). These objects would hardly compute anything at their macro-
scopic level, say an addition between any 2 numbers, yet they may
be constituted at a molecular or atomic scale of particles capable of
carrying out all sorts of computations, which unlike the objects, may
be programmed, either as part of another system or in themselves. It
is clear then that the span of behaviour at that scale is greater than
at the scale of the object itself. But does it make sense to say that
something computes itself? [21]. It may or it may not.

In the real world, things are constituted by smaller elements un-
less they are elementary particles. One therefore has to study the be-
haviour of a system at a given scale and not at all possible scales,
otherwise the question becomes meaningless, as elements of a physi-
cal object are molecules, and ultimately atoms and particles that have
their own behaviour, about which too the question about computa-
tion can be asked. This means that a C-computer may have a low
or null C at some scale but contain C′-computers with C′ > C at
another scale (for which the original object is no longer the same as a
whole). A setup in which C′ ≤ C is actually often common at some
scale for any computational device. For example, a digital computer



is made of simpler components, each of which at some macroscopic
level but independently of the interconnected computer is of lower
behavioural richness and may qualify for a C of lower value. In other
words, the behavioural definition is not additive in the sense that a C-
computer can contain or be contained in another C′-computer such
that C 6= C′.

Can R255, for example, be thought of as computing itself as it
evolves? Under the qualitative definition, even if R255 is computing
itself it cannot be programmed, and so is a 0-computer under our ap-
proach, a computer not capable of computation and therefore hardly
a computer at all. On the other hand, R255 does not present any prob-
lem of scale as it represents itself at all scales. A table, however, is
made of smaller components to which may be assigned some specific
task, and one may even consider reprogramming the matter of which
it is made, in the manner epitomised in the subfield of programmable
matter. In which case one may say that the table is computing itself,
since it could be computing something else out of its atoms. So the
definition of a C-computer is scale dependent and its implementation
in the real world is subtle, yet at the abstract level it seems to corre-
spond to an interesting and well-delineated definition of computation
based on its behavioural capabilities.

In the physical world, under this qualitative approach, things may
compute or not depending on the scale at which they are studied.
To say that a table computes only makes sense at the scale of the
table, and as a C-computer it should have a very limited C, that is a
very limited behaviour given that it can hardly be programmed to do
something else.

5.2 Program versus physical realisation

The behavioural approach may need a major shake-up if used in a
quantum context, given that our understanding of the mechanisms at
the quantum scale are subject to various interpretations. For example,
the standard interpretation considers quantum mechanics to be fun-
damentally non-deterministic, and so our definition of a deterministic
computer (necessary to evaluate C) becomes inapplicable. If quan-
tum particles are capable of, for example, being in all possible states
at the same time when entangled, that means that they can perform
every possible computation at the same time (which is at the core of
the quantum computational paradigm as based on the concept of the
quantum bit or qubit and taking advantage of quantum properties).
Hence it would obviously have a transition coefficient C beyond any
attained by a digital system, given that it would represent all possible
behaviours at the same time–which in the macroscopic world would
not be possible. If one takes atoms to be computers, or quantum com-
puters, one can therefore trivially claim, as has been done by Lloyd
[21], that the world is a quantum computer. In this case, the only
content of such a claim, as opposed to its contrary (that the world
is not a computer) concerns whether or not the world is a classical
computer. Lloyd claims, as do Deutsch [8] and others, that it is not
a classical computer, if it is a computer at all, but rather a quantum
one, simply because computers, like everything else, rely on the very
basic physical properties of our world.

When Gödel provided the proof of his incompleteness theorem
what he did was to unify symbols and operators, just as Turing did
for data and programs. Because Gödel’s and Turingś approaches are
extensionally equivalent, as long as one can find a Gödel numbering
encoding a system, one can conclude that such a system can be in-
terpreted as a program. For example, based on Davis’ work encoding
Diophantine equations, it would seem that the extension of what a
program can be is formally quite large.

The consequence of universal computation is that hardware and
software are not essentially different, for one can be encoded in the
other. But in the real world why are hardware implementations of
software faster? (e.g. the case of Intel’s Pentium coprocessor: they
could have certainly solved it with a patch, i.e. software, but that
would perhaps have jeopardised the promise of a faster cpu). So are
there real world differences between software and hardware, e.g. in
execution time? It seems software always requires a transformational
process– from a description to a physical embedding–in order to be
executed. What makes a program, as a sequence of text, become a set
of instructions that are executed? This is sometimes called the prob-
lem of computational implementation. The usual way to get round
this problem is to separate programs from their physical implemen-
tations, on the grounds that the former are abstract while the latter
are concrete, thus in some sense reinstating the difference between
software and hardware when it comes to the physical world. At the
fundamental level, however, and given that one can always (under
Church-Turing’s thesis) implement a program, the difference is not
essential in nature.

Physically, computer programs may be a collection of punched
cards or configurations in a magnetic tape. Is software part of a com-
puter? If data and program can be exchanged one for the other, can
software or hardware by themselves constitute a computer? Hard-
ware alone may, if the computer is designed to serve a specific pur-
pose, though it thereby loses its potential to reach computational uni-
versality. But what a purely software computer means may be un-
clear, and as suggested by Deutsch and Lloyd, the notion may make
no sense. It may seem, for example, that the description of a Turing
machine is pure software if no distinction is made between the input
of the machine and its transition table (whether capable of univer-
sal computation or not). Is the difference only practical? Software
seems not to have a physical execution carrier, and software before
implementation may only be a description of a computation and not
a computation per se, which means it cannot be executed in the real
world until it finds a physical carrier. Is the description still a com-
puter? I don’t think so, but I don’t aim to answer all these questions,
and other authors have attempted to shed some light on such matters
[24, 16]. The answer also seems related to a relativisation of soft-
ware. Software written in a higher language like C or Mathematica
is different from software written in machine language, and much
closer to hardware.

The fact that we do need a computer for running, say, cellular au-
tomata rules, may be misleading, since it may suggest that there is
always a need of hardware (and software) in the way we know and
use it. This leads to the question of computation in nature, and ulti-
mately to the question of the computer running the universe itself, if
one embraces such an idea, and the associated question of whether
such a computer, if it exists, is part of the universe or runs in some
higher world.

The first thing to note is that the costs related to such a computer
would be huge, on the order of the computational power of the uni-
verse itself, and likely to require even more than the energy in the
universe itself, due to thermodynamical laws, if they apply at such
a scale. This suggests that one need not look for a computer if one
thinks that the computation comes equipped with its physical carrier
or one would fall into an infinite hierarchy of worlds running each the
program of a lower level universe. When the concept is at the same
time matched and disentangled from its carrier in the behavioural
approach, one can see that it is a particle at a time that creates the
universe both carrying software and hardware together. As has been
suggested, the universe would then be running itself [21] and would



be doing so rather efficiently [12] and may be quite simple [27], yet
there is no need to deny the physical carrier, which is simply the
performer.

6 CONCLUDING REMARKS
I have proposed a novel qualitative notion of computation based in
the sensitivity of a system to external stimuli connected to a con-
cept of programmability. A notion I have called nature-like compu-
tation that provides a behavioural interpretation of computation (and
of computers). This goes along current lines of technology for pro-
gramming molecules and cells to compute, see for example Ref. [1].
This in some way can be seen as reprogramming a cell to do certain
tasks that wasn’t supposed to do from their natural course. This is
what in some way we have done with digital computers too, building
machines out of natural matter to make them do calculations for us.
All around a single concept, that of programmability, that I have sug-
gested can be captured by a measure of behaviour rather than syn-
tactic or even semantic approaches, given that the former requires
descriptions of inner workings, even though we may not even fully
understand the machinery of a cell, and the latter requires an interpre-
tation of computation. The behavioural approach, however, is agnos-
tic in most of these accounts, and it only cares about the qualitative
behaviour of a system to transfer information by being stimulated.
The concept also helps to give sense to current uses of computation
in the context of natural phenomena, including the universe itself.

ACKNOWLEDGEMENTS
I would like to thank the organisers of the symposium Natu-
ral/Unconventional Computing and its Philosophical Significance
for their kind invitation to talk at the AISB/IACAP World Congress
2012 – Alan Turing 2012.

REFERENCES
[1] S. Ausländer, D. Ausländer, M. Müller, M. Wieland and M. Fusseneg-

ger, Programmable single-cell mammalian biocomputers, Nature,
2012.

[2] Baiocchi, C. Three small universal Turing machines. In Margenstern
M. and Rogozhin, Y. (eds), Machines, Computations, and Universality
(MCU), volume 2055 of LNCS, pages 1–10, Springer, 2001.

[3] Invited talk by Blanco, J. Interdisciplinary Workshop with Javier
Blanco: Ontological, Epistemological and Methodological Aspects of
Computer Science, University of Stuttgart, Germany, July 7th 2011.

[4] Cook, M. Universality in Elementary Cellular Automata, Complex Sys-
tems 15: pp. 1–40, 2004.

[5] Berlekamp, E., Conway, K. and Guy R., Winning Ways for your Math-
ematical Plays, vol. 2, Academic Press, 1982.

[6] Invited talk by Davis, M. Universality is Ubiquitous, Invited Lecture,
History and Philosophy of Computing (HAPOC11), Ghent, 8 Novem-
ber, 2011.

[7] Dershowitz, N. and Gurevich, Y. A natural axiomatization of com-
putability and proof of Church’s Thesis, Bulletin of Symbolic Logic,
14(3):299–350, 2008.

[8] Deutsch, D. The Fabric of Reality: The Science of Parallel Universes
and Its Implications, Penguin, 1998.

[9] Feynman, R., The Character of Physical Law, Modern Library, 1994.
[10] Fredkin, E. Finite Nature, Proceedings of the XXVIIth Rencotre de

Moriond, 1992.
[11] Gandy, R. Church’s Thesis and principles for mechanisms. In Barwise,

J., Keisler, H.J. and Kunen, K. (eds) The Kleene Symposium, North-
Holland, 123–148, 1980.

[12] Schmidhuber, J. Algorithmic Theories of Everything, arXiv:quant-
ph/0011122v2, 2000.

[13] Illachinski, A. Cellular Automata: a Discrete Universe, World Scien-
tific Publishing Co, 2001.

[14] Perlis, A.J. Epigrams on Programming, SIGPLAN Notices, Vol. 17, No.
9, pages 7–13, 1982.

[15] Margenstern, M. Turing Machines with Two Letters and Two States,
Complex Systems, (19)1, 2010.

[16] Moor, J.H. Three Myths of Computer Science, The British Journal for
the Philosophy of Science, Vol. 29, No. 3, pp. 213- 222, 1978.

[17] Scott, D.S. Outline of a mathematical theory of computation, Technical
Monograph PRG-2, Oxford University Computing Laboratory, Eng-
land, November 1970.

[18] Searle, J.R. Is the Brain a Digital Computer, in Philosophy in a New
Century, pp 86–106, Cambridge University Press, 2008.

[19] Sieg, W. Step by recursive step: Church’s analysis of effective calcula-
bility (with a Postscript), forthcoming in Zenil, H. A Computable Uni-
verse, World Scientific, 2012.

[20] Sutner, K. Computational Processes, Observers and Turing Incomplete-
ness, Theoretical Computer Science, Volume 412, pp. 183–190, 2011.

[21] Lloyd, S. Computational capacity of the Universe, Physical Review Let-
ters, 88, 237901, 2002.

[22] Margolus, N. Physics-like Models of Computation, Physica, Vol. 10D,
pp. 81–95, 1984.

[23] De Mol, L. Generating, solving and the mathematics of Homo Sapiens.
Emil Posts views on computation, forthcoming in Zenil, H. (ed.), A
Computable Universe, World Scientific, 2012.

[24] Turner, R. Specification, Minds and Machines, 21 (2): pp 135–152,
2011.

[25] Wheeler, J.A. Information, physics, quantum: The search for links. In
Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information,
Addison-Wesley, 1990.

[26] Wolfram, S. Cellular Automata as Models of Complexity, Nature, 311,
419–424, 1984.

[27] Wolfram, S. A New Kind of Science, Wolfram Media, 2002.
[28] Zenil, H. Compression-based investigation of the behaviour of cellular

automata and other systems, Complex Systems, (19)2, 2010.
[29] Zenil, H., Soler-Toscano F. and Joosten, J.J. Empirical Encounters

With Computational Irreducibility and Unpredictability, Minds and
Machines, vol. 21, 2011.

[30] Zenil, H. On the Dynamic Qualitative Behaviour of Universal Compu-
tation, Complex Systems, (20)3, 2012.



Does the Principle of Computational Equivalence 

overcome the objections against Computationalism? 

Alberto Hernández-Espinosa
1
 and Francisco Hernández-Quiroz

2
 

Abstract.  Computationalism has been variously defined as the 

idea that the human mind can be modelled by means of 

mechanisms broadly equivalent to Turing Machines. 

Computationalism’s claims have been hotly debated and 

arguments against and for have drawn extensively from 

mathematics, cognitive sciences and philosophy, although the 

debate is hardly settled. On the other hand, in his 2002 book New 

Kind of Science, Stephen Wolfram advanced what he called the 

Principle of Computational Equivalence (PCE), whose main 

contention is that fairly simple systems can easily reach very 

complex behaviour and become as powerful as any possible 

system based on rules (that is, they are computationally 

equivalent). He also claimed that any natural (and even human) 

phenomenon can be explained as the interaction of very simple 

rules. Of course, given the universality of Turing Machine-like 

mechanisms, PCE could be considered simply a particular brand 

of computationalism, subject to the same objections as previous 

attempts. In this paper we analyse in depth if this view of PCE is 

justified or not and hence if PCE can overcome some criticisms 

and be a different and better model of the human mind.12 

1 INTRODUCTION 

Computational Theory of the Mind (CTM) or computationalism 

is usually attributed to Alan Turing (for instance [15]). In fact 

Turing compared the human brain to a digital computing 

machine [36], but also to an analogue type machine [38], but we 

should point out that Turing never developed a formal theory of 

thought, despite his foundational work on computability. In 

contrast, McCulloch and Pitts [21] did talked about mental 

processes as computations, as Piccinini remind us [23]. 

As we said before, computationalism is not a single thesis, but it 

has been formulated differently by many people. According to 

Piccinini [23], computationalism claims that cognitive activity is 

achieved by means of computations carried out by specific 

components of the mind whose functioning is akin to that of a 

Turing Machine (TM) or an equivalent mechanism. The fact that 

cognition happens in the brain (and the brain is based on neural 

networks and not on TM) can be incorporated into 

computationalism by considering that neural computations are 

Turing-computable at least as they are actually realized in the 

human brain. This wider thesis would make some types of 

connectionism mere variations of computationalism. 
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Talking about computationalism, Piccinini [24] distinguishes 

two variations: 1)traditional or classic computationalism, which 

claims that thought can be reduced to computations made over 

linguistic structures and 2) connectionist computationalism, 

which claims that thought can be reduced to “computations” 

carried out by Neural Network Systems. 

There are some other theses that frequently have been 

grouped together under the label of computationalism, for 

instance, the so called Strong Artificial Intelligence (SAI), 

which, according to Searle, claims that artificial intelligence can 

eventually reach the ability of becoming self-aware and exhibit 

human-like thought processes (Searle [31]). 

We will not dwell on this specific variety of 

computationalism (if it really can be found beyond Searle's 

analysis) as we are interested only in the explaining power of 

computationalism for understanding the human mind and not in 

the question of whether computers can really think and we 

consider Piccinini's classification perfectly adequate for this 

purpose. 

The debate between supporters of varieties of 

computationalism and their detractors has raged for decades and 

both sides have drawn arguments from mathematics, cognitive 

science and philosophy. The point is hardly settled and we do 

not intend to review it here even superficially. New arguments 

and theories keep appearing which can (or cannot) be considered 

variations of computationalism and claim to deal better with 

objections against computational explanations of the mind. Our 

purpose in this paper is to analyse one of this theories, namely, 

Stephen Wolfram's Principle of Computational Equivalence 

(PCE), introduced as one of the key elements of his extremely 

ambitious New Kind of Science program. In his book of the 

same name, Wolfram contends that PCE can explain complexity 

of any natural or artificial phenomenon, including of course the 

complexity of human mind. 

The outline of the paper is as follows: in the second section we 

review some arguments against computationalism. In the third 

section, we summarize what we consider some of the essential 

claims of Wolfram's PCE as a tool for explaining the complexity 

of the human mind. In the fourth we ponder the ability of PCE 

for dealing against the cons of computationalism presented in the 

second section, while at the same time evaluating if PCE is or 

not just plain computationalism under a new disguise (although 

we do not offer a definite answer yet). In the final section, we 

point out to the challenges that PCE should deal with if it has 

any hope of offering a better alternative to past theories.  



2 FOUR TYPES OF ARGUMENTS AGAINST 

COMPUTACIONALISM 

Cordeshi [4], Dreyfus [9, 10] and Horst [17] have brought 

forward diverse arguments against computationalism. We have 

classified them in four types for convenience. 

Computationalism contends that is the only scientific 

explanation in offer. Their supporters argue that computational 

explanations of cognitive abilities like language and learning are 

the only viable approach to the mind. Examples of this view can 

be found in Fodor [13], Pinker [25] and Winograd [39]. Even if 

they take for granted that the mind “resides” in the brain and the 

brain is a gigantic neural network, they also claim that electrical 

signals in neural networks codify symbols and representations 

which are manipulated according to logical rules [30]. One 

consequence of this view is that the mind deals basically with 

representational systems [17]. A first and clear line of attack 

against computationalism is to challenge this contention. As 

Horst has pointed out [19], in the search for alternatives, 

philosophers and cognitive scientists are reconsidering if models 

like neural networks can and should be based on rules and 

representations or if they work in a radically different way. 

On the other hand, Dreyfus [9, 10] and even Winograd and 

Flores [39] have argued that a significant part of what we call 

thought and behaviour cannot be reduced to explicit rules and 

therefore cannot be formalized (and translated into a computer 

program). In other words, a sizeable portion of mental 

phenomena are beyond the reach of techniques dearest to 

computationalists. 

A third line of criticism rejects the use of symbols as the 

foundation of the semantics of thoughts. Symbolic semantics 

imply intentionality in thought either through causality [16, 27, 

28] or concepts [18]. But trying to explain intentionality by 

symbols is a vicious circle. Searle [29] and Horst [18] go further 

and state that computer “representations” are not even symbolic 

on their own right as its symbolic nature rests on the intentions 

and conventions held by their human users. 

Supporters of externalist theories of meaning have raised a 

fourth set of criticisms. Many computationalists were fond of 

what can be called “methodological solipsism” [12] or 

individualism: the view that mental states' characterization is 

insensitive to and independent from any external features of the 

cognitive subject, as the underlying computational processes 

only have access to mental representations. But at the same time, 

computationalism would have this characterization reflecting 

semantic properties. This is clearly difficult to reconcile with an 

externalist stand on meaning, which would require that the 

meaning of terms be at least partially determined by factors 

external to the cognitive subject, for instance, its physical [24] 

and linguistic [1, 2] environment. Of course, the argument can be 

turned around to reject externalism as Fodor did [11]. 

 
3 NKS AND THE PRINCIPLE OF 

COMPUTATIONAL EQUIVALENCE (PCE) 
 

Stephen Wolfram wrote his book A New Kind of Science (NKS) 

[40] after twenty years of experimentation with Cellular 

Automata (CA) as tools for solving problems in a very wide 

range of domains. One of the main guidance of his proposal is 

the Principle of Computational Equivalence (PCE), which can be 

summarized by the two following theses: 

 

1. All processes, whether they are produced by human effort 

or occur spontaneously in nature, can be viewed as 

computations. 

2. In computational terms there is a fundamental equivalence 

between many different kinds of processes. In particular, 

almost all processes that are not obviously simple can be 

viewed as computation of equivalent sophistication. [40] 

 

In very general terms, Wolfram contends that PCE means that 

there is a maximal (“universal”) level of complexity in 

computations and this level is easily attainable by most non-

trivial systems (even artificial ones). Natural systems can in 

principle have the same computational power as computers and 

vice versa. Wolfram claims that, provided a proper translation 

for inputs and outputs of different systems, all of them are 

computationally equivalent.3 

Wolfram states that his NKS has three basic advantages over 

classical science: 

 

1. An alternative view of randomness: over time, simple rules 

can produce very complex behaviour which becomes 

almost impossible to predict. Randomness is then just 

unpredictability arising from lack of information about 

deterministic phenomena. But this type of “randomness” 

can be approximated by means of programs based on very 

simple rules. 

2.  Scientific insight should be guided by the search of these 

very simple rules in all natural and human phenomena. Of 

course, this idea goes counter the “prejudice” that 

computing simulations of natural phenomena should be 

based in very complex software. The key, according to 

Wolfram, is the opposite: look for simple rules. 

3. Given that all systems are based on simple rules, 

individual sciences can proceed to analyse their disparate 

subjects by means of a uniform methodology which can 

help to extract more general and abstract explanations. 

 

Stephen Wolfram states explicitly that the complexity of the 

human mind is also covered by PCE. For instance, he claims that 

perception can be reduced to a process of pattern recognition and 

information processing [40]. At first sight, PCE seems to be just 

another version of classical computationalism. But it may not be 

so simple. For instance: does PCE imply representationalism? 

Other similar questions can be easily asked and their answers are 

not straightforward, which makes us think worthwhile to 

consider in depth if Wolfram's proposal can really offer a 

valuable alternative to classical computationalism. 

 

4 NKS VS OBJECTIONS AGAINST 

COMPUTATIONALISM  

Following Dodig-Crnkovic's analysis of what she calls info-

computationalism (the strong thesis that the universe can be 
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better understood as a series of computational processes 

operating on informational structures) [5, 6, 7], we may be 

inclined to regard PCE as a variety of info-computationalism. 

Nonetheless, there are at least two reasons why Wolfram's 

proposal may be considered a different and probably better brew 

of computationalism which may be able to avoid some criticisms 

directed against other traditional computationalist views: 1) if he 

is right (and this a big “if”) that there is an upper limit in 

complexity for all systems and this limit can be reached by 

simple rules, then of course computer programs can simulate any 

degree of complexity; 2) again, if his main thesis is right, the 

complexity of the mind also falls in the scope of what can be 

explained by computations based on simple rules. 

While it is far from clear that all systems in nature have a 

complexity limit within the reach of the computable, computable 

universality is reachable by means of the simple rules advocated 

by Wolfram [33, 3]. The general question of a universal limit is 

still open and seems bound to remain so for the foreseeable 

future. 

On the other hand, even if Wolfram were right about the 

existence of an upper limit in complexity, he offers no practical 

clues for the solution of the many problems any theory of mind 

(let alone a computational one) should face. His optimism 

becomes evident when he regards a possible explanation of free 

will as computationally complex decision procedures whose 

inner details are hidden from consciousness [40]. 

NKS and the PCE are then just a (sketch of a) proposal for a 

research program and before embracing it any prospective 

theoretician of mind should at least make a quick assessment of 

its potential: 

1. A first obvious question is if we are not dealing with a 

mere variety of computationalism. 

2. A second and more interesting one is if PCE is not simple 

computationalism (or even despite being 

computationalism), how it can overcome the objections 

faced by psychological and connectionist models [13]. 

3. Next it is to be seen if PCE can answer the objection that 

human thought and behaviour cannot be reduced to explicit 

rules and therefore cannot be formalized or reduced to 

computer programs [9, 10, and 39]. 

4. PCE should also offer a theory of the meaning of thought 

without the troubles faced by computationalism's symbolic 

semantics [28, 16, and 27]. 

5. Finally, PCE should present an alternative explanation of 

how mental states can be characterized independently of 

features external to the cognitive subject [1, 2]. 

 

Many other issues could be raised [4, 24], but we consider 

these some of the most relevant because they touch the core of 

the theory and we will dwell on them in the next section 

5  PROBLEMS TO SOLVE 

What are the chances of PEC dealing rightly with the previous 

questions? It is not our intention to give a definitive answer, but 

just to offer a very initial assessment and to outline how a NKS 

practitioner should carry on. 

To begin with, the charge of being just computationalism 

under a different guise. Mathematically speaking, the simple 

rules on which NKS is based are computationally equivalent to 

Turing Machines and other Turing-complete models. Claiming 

that any system (natural or artificial) is of equivalent complexity 

is highly reminiscent of (a strong form of) Church-Turing's 

thesis, on its turn one of the pillars of computationalism. 

Wolfram himself seems to support this last: “But it was not until 

the 1980s –perhaps particularly following some of my work – 

that it began to be more widely realized that Church’s Thesis 

should best be considered a statement about nature and about the 

kinds of computation that can be done in our universe. The 

validity of Church’s Thesis has long been taken more or less for 

granted by computer scientist, but among physicists there are 

still nagging doubts, mostly revolving around the perfect 

continua assumed in space and quantum mechanism in the 

traditional formalism of theoretical physics” [40]. Wolfram calls 

Turing's and other scientists' attempts “close approaches”, 

acknowledging their similarity, but he also claims to have a 

distinctive proposal which is also based on “experimentation” on 

computers. Of course, these short and sometimes puzzling 

comments do not settle the point as (a sort of) mathematical 

equivalence between Church's thesis and PCE does not imply 

that PCE has to assume all the baggage of classical 

computationalism (which in turn is not a consequence of 

Church's thesis). 

Regarding the second question, PCE should be able to attain 

at least the same degree of success as connectionism, an 

important rival of classical computationalism. According to 

some researchers [16] connectionism has been able to explain 

some intellectual abilities without resorting to syntactical 

representations and manipulations (let us put aside the issue of 

Artificial Neural Networks as they exist being mathematically 

equivalent to Turing Machines), performing better than actual or 

potential systems based on techniques dear to computationalists. 

Can PCE equal these supposed achievements? Again, for the 

time being Wolfram's NKS can only provide more optimism: 

“So on the basis of traditional intuition; one might then assume 

that the way to solve this problem must be to use systems with 

more complicated underlying rules, perhaps more closely based 

on details of human psychology or neurophysiology. But from 

discoveries in this book we know that this is not the case, and 

that in fact very simple rules are quite sufficient to produce 

highly complex behaviour” [40]. 

Searle [29, 31] and Horst [18] have provided a powerful 

argument against the idea that thought can be reduced to the 

application of simple rules in the style of a computer program, as 

meaning cannot be derived from rules for manipulating symbols 

(so covering the core of questions 4 and 5): “The problem of 

semantics is: How these sentences in the head get their meaning? 

But that question can be discussed independently of the question: 

How does the brain work in processing these sentences?” [29]. 

About this last issue Wolfram says: “One might have imagined 

that human thinking must involve fundamentally special 

processes, utterly different from all other processes that we have 

discussed [here Wolfram talks about thinking and perception as 

processes]. But just as it has become clear over the past few 

centuries that the basic physical constituents of human beings are 

not particularly special, so also –especially after the discoveries 

in this book (NKS) – I am quite certain that in the end there will 

turn out to be nothing particularly special about the basic 

processes that are involved in human thinking. And indeed, my 

strong suspicion is that despite the apparent sophistication of 

human thinking most of the most important processes that 

underlie it are very simple” [40]. To be fair (and therefore not so 



pessimistic), Wolfram's phrasing of the problem does not imply 

that the solution should be attached to rules for manipulating 

symbols. 

Finally, there is the issue of defining mental states (which are 

internal representations according to computationalism) and their 

complex relation with features external to the cognitive subject 

[23]. Can Wolfram's idea of intelligence being based at least 

partially on pattern recognition point to a different definition 

about what a mental state is and how it relates to the external 

world (the ultimate source from which the pattern is 

recognized)? We consider that, right now, this idea is too vague 

to give rise to any serious attempt to formulate the problem of 

mental states, let alone to lead to its solution. 

To conclude: PCE hopes for being a better alternative than 

classical computationalism are dependent on many “if”, namely: 

if Wolfram is right that all natural and artificial phenomena are 

under the scope of the kind of simple computational rules he 

advocates, if these rules can lead to practical ways of explaining 

what previous models have been unable to explain, if complex 

behaviour such as meaning and mental states (and their relation 

with the external world) can be accounted for by the same rules, 

then NKS can offer a way out of computationalism troubles. On 

a more positive note, we want to stress an implicit conclusion of 

our previous analysis: it is not obvious that PCE should fail 

where classical computationalism has already failed. 

But optimism cannot be the only foundation for a scientific 

account of the human mind. More philosophical and empirical 

research is needed to see if optimism can be turned into results 

or, at least, concrete lines of research. 
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Intelligence and reference. 
Formal ontology of the natural computation 

Gianfranco Basti1 

Abstract.1 In a seminal work published in 1952, “The chemical 
basis of morphogenesis” — considered as the true start point of the 
modern theoretical biology —, A. M. Turing established the core 
of what today we call “natural computation” in biological systems, 
intended as self-organizing dynamic systems. In this contribution 
we show that the “intentionality”, i.e., the “relation-to-object” 
characterizing biological morphogenesis and cognitive intelligence, 
as far as it is formalized in the appropriate ontological interpreta-
tion of the modal calculus (formal ontology), can suggest a solution 
of the reference problem that formal semantics is in principle una-
ble to offer, because of Gödel and Tarski theorems. Such a solu-
tion, that is halfway between the “descriptive” (Frege) and the 
“causal” (Kripke) theory of reference, can be implemented only in 
a particular class of self-organizing dynamic systems, i.e., the dis-
sipative chaotic systems characterizing the “semantic information 
processing” in biological and neural systems. 

1 INTRODUCTION 

1.2 Natural computation and algorithmic computa-
tion  

Today natural computation (NC) is considered as an alternative 
paradigm to the algorithmic computation (AC) paradigm in natural 
and computer sciences, being the paternity of only the latter one 
generally ascribed to Alan Mathison Turing (1912-1954) seminal 
work. On the contrary, after the publication of his famous seminal 
work on algorithmic computation in 1936 [1] by the notions of Tu-
ring Machine (TM) and Universal Turing Machine (UTM), Turing 
worked for widening the notion of “computation” in the direction 
of what today we define as “natural computation”.  
Before all, he defined the notion of Oracle-machine(s)  – i.e., a TM 
enriched with the output of operations not computable by a TM, 
endowing the TM with the primitives of its computable functions – 
and  of their transfinite hierarchy, in his doctoral work at Princeton, 
under the Alonso Church supervision, published in 1939 [2].  
Afterward, in 1947 in a lecture given at the London Mathematical 
Society [3], and hence in an unpublished communication for the 
National Physical Laboratory in 1948 [4], he sketched the idea of 
computational architectures made by undefined interacting ele-
ments, that can be suitably trained, so to anticipate the so-called 
Artificial Neural Networks (ANN) computational architectures.  
Finally, in a much more known contribution on a new mathemati-
cal theory of morphogenesis, published in 1952 [5], Turing was the 
first who studied a model of pattern formation via non-linear equa-
tions, in the specific case of chemical reaction-diffusion equations 
simulated by a computer.  
This pioneering work on non-linear systems, and their simulation 
via computers, is, indeed, among all the pioneering works of Tu-
ring, the most strictly related with the new paradigm of NC, be-
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cause of its wide field of application in practically every realm of 
mathematical and natural sciences, from cosmology and fundamen-
tal physics, to thermodynamics, chemistry, genetics, epigenetics, 
biology, and neurosciences; but also in human sciences, from cog-
nitive and social sciences, to ecology, to economical sciences, to 
linguistics, …, and wherever a mathematical modeling of empirical 
data makes sense2.  
In a recent paper devoted to illustrate the new paradigm of NC in 
relationship with the old paradigm of AC [6], G. Dodig-Crnkovic 
emphasizes the main differences between the two paradigms that 
can be synthesized according to the following, main dichotomies: 
1. Open, interactive agent-based computational systems (NC) 3 

vs. closed, stand-alone computational systems (AC); 
2. Computation as information processing and simulative model-

ing (NC) vs. computation as formal (mechanical) symbol ma-
nipulation (AC); 

3. Adequacy of the computational response via self-organization 
as the main issue (NC) vs. halting problem (and its many, 
equivalent problems) as the main issue in computability theo-
ry (AC); 

Of course, such dichotomies must be intended, in perspective, as 
oppositions between complementary and not mutually exclusive 
characters of computation models. However, as Dodig-Crnkovic 
emphasizes, such a complementarity might emerge only when a 
foundational theory of NC will be sufficiently developed, overall 
as to semantic and the logic of NC. The present contribution is de-
voted precisely to this aim, even though it is necessary to add to the 
previous list other two essential dichotomic characters of NC, em-
phasized by Dodig-Crnkovic in other papers, overall the more re-
cent one published on the Information journal [7]: 
4. Intentional, object-directed, pre-symbolic computation, based 

on chaotic dynamics in neural computation (NC) vs. repre-
sentational, solipsistic, symbolic computation, based on linear 
dynamics typical of early AI approach to cognitive neurosci-
ence (AC). 

5. Dual ontology based on the energy-information distinction of 
natural (physical, biological and neural) systems (NC) vs. 
monistic ontology based on the energy-information equiva-
lence in all natural systems (AC).  
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the special issue of Nature of for the Turing centenary with, among the 
others, the celebrative contributions of G. Dyson [59], J. Reiniz [60], B. 
Cooper [61]. 

3 So, she synthesizes this important fundamental character of NC approach: 
«Agent Based Models are the most important development in this direc-
tion, where a complex dynamical system is represented by interacting, in 
general adaptive, agents. Examples of such systems are in physics: turbu-
lence, percolation, sand pile, weather; in biology: cells organs (including 
brain), organisms, populations, ecosystems; and in the social sphere: lan-
guage, organizations, and markets». 



1.3 Relevance of the reference problem in NC 
In this paper, we want to suggest how a foundational approach to 

NC, overall as to its logical and semantic components cannot dis-
regard the essential point of how to integrate in one only formalism 
the physical (“natural”) realm with the logical-mathematical 
(“computation”) one, as well as their relationship. That is, the pas-
sage from the realm of the causal necessity (“natural”) of the phys-
ical processes, to the realm of the logical necessity (“computation-
al”), eventually representing them either in a sub-symbolic, or in a 
symbolic form. This foundational task can be performed, by the 
newborn discipline of theoretical formal ontology [8, 9, 10, 11, 
12], as distinguished from formal ontology engineering – an ap-
plicative discipline, well established and diffused in the realm of 
computational linguistics and semantic databases4. 
Particularly, the distinction between formal logic and formal ontol-
ogy is precious for defining and solving foundational misunder-
standing about the notion of reference that the NC approach had 
the merit of emphasizing, making aware of it the largest part of the 
computer science community – and also the rest, we hope, of the 
scientific community, as far as NC is spreading all over the entire 
realm of the natural sciences.  
In fact, as A. Tarski rightly emphasized since his pioneering work 
on formal semantics [13], not only the meaning but also the refer-
ence in logic has nothing to do with the real, physical world. To 
use the classic Tarski’s example, the semantic reference of the true 
statement “the snow is white” is not the whiteness of the crystal-
ized water, but at last an empirical set of data to which the state-
ment is referring, eventually taken as a primitive in a given formal 
language. In other terms logic is always representational, it con-
cerns relations among tokens, either at the symbolic or sub-
symbolic level. It has always and only to do with representations, 
not with real things. This is well emphasized, also, by R. Carnap’s 
principle of the methodological solipsism in formal semantics [14, 
p. 423], that both H. Putnam [15] and J. Fodor [16] rightly extend-
ed also to the representationalism of cognitive science, as far as it 
is based in the so-called functionalist approach of the classic, sym-
bolic AI, and hence of the classic AC paradigm. Finally, this is also 
the deep reason of what Quine defines as the “impenetrability of 
reference” beyond the network of equivalent statements meaning 
the same referential object in different languages [17]. 
To sum up, what satisfies (makes true) a predicate in logic are not 
real objects, but the terms denoting them. A class (or a set), intend-
ed as the collection of elements satisfying a given predicate (func-
tion) denoting the class (or enumerating completely the set) is an, 
abstract, logical entity, not a collection of real things – a “natural 
kind”.   
Now in AC, any formal theory of reference and truth is faced with 
the Gödelian limits making impossible a recursive procedure of 
satisfaction in a semantically closed formal language. What we 
emphasized also elsewhere [18, 19, 20], as the core of the reference 
problem is that such a recursive procedure for being complete 
would imply the solution of the coding problem through a diago-
nalization procedure; that is, the solution of the so–called “Gödel 
numbering” problem. In computational terms, the impossibility of 
solving the coding problem through a diagonalization procedure 
means that no TM can constitute by itself the “basic symbols”, the 
primitives, of its own computations. For this reason Tarski rightly 
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stated that, at the level of the propositional calculus, the semantic 
theory of truth has nothing to say about the conditions under which 
a given simple (“atomic” in L. Wittengstein’s terms) proposition 
can be asserted. And for this very same reason, in his fundamental 
paper about The meaning of “meaning” [15], Putnam stated that no 
ultimate solution exists in logic both of the problem of reference 
and, at the level of linguistic analysis, of the problem of naming.  
In this sense, Putnam stated, we would have to consider ultimately 
names as rigid designators “one - to - one” of objects in S. Krip-
ke’s sense [21]. But no room exists, also in Kripke’s theory of par-
tial reference – and hence using Kleene’s genious solution of par-
tial recursive predicates for dealing with the problem of enumera-
tion of partial functions, that Gödelian notion of general recursion 
cannot approach in principle (see [22, p. 313 and 327f.]) – for de-
fining the notion of rigid designation in terms of a purely logical 
relation, since any logical relation only holds among tokens and not 
between tokens and objects, as Tarski reminded us. Hence a formal 
language has always to suppose the existence of names (or num-
bers) as rigid designators and cannot give them a foundation. 
To explain by an example the destructive consequences of this 
point for a functionalist theory of mind, Putnam suggested a sort of 
third version of the famous “room – metaphor” [23, p. 116ff.], after 
the original “Turing test” version of this metaphor, and J. Searle’s 
“Chinese – room” version of it. Effectively, Putnam proposed by 
his metaphor a further test that a TM cannot solve and that has 
much deeper implications than the counterexample to the Turing 
test proposed by Searle. For instance, Putnam said, if we ask “how 
many objects are in this room?”, the answer supposes a previous 
decision about which are to be considered the “real” objects to be 
enumerated — i.e., rigidly designated by numerical units. So, one 
could answer that the objects in that room are only three (a desk, a 
chair and a lamp over the desk). However, by changing the enu-
meration axiom, another one could answer that, for instance, the 
objects are many billions, because we have to consider also the 
molecules of which the former objects are constituted.  
Out of metaphor, any computational procedure of a TM (and any 
AC procedure at all, if we accept Church’s thesis) supposes the de-
termination of the basic symbols on which the computations have 
to be carried on – the partial domain on which the recursive com-
putation has to be carried on. Hence, from the semantic standpoint, 
any computational procedure supposes that such numbers are en-
coding (i.e., unambiguously naming as rigid designators) as many 
“real objects” of the computation domain. In short, owing to the 
coding problem, the determination of the basic symbols (numbers) 
on which the computation is carried on, cannot have any computa-
tional solution in the AC paradigm.      
The closed, stand-alone character of AC models depends thus on 
the purely syntactic and semantic level in which the logical ap-
proach can develop its analysis of the reference problem, hence at a 
necessarily  representational/symbolic level. Precisely for this sys-
tematic impossibility of the logical theory of reference of justifying 
logical truth as adequacy to outer reality H. Putnam abandoned the 
functionalist approach to cognitive science he himself contributed 
to define in 60’s of last century, for an intentional, non-
representational theory of a cognitive act, based on a causal theory 
of reference as anticipated in his early works of 1973 [24] and of 
1975 [15], even though in a different sense as to other representa-
tives of this theory like, for instance, K. S. Donnellan [25] and S. 
Kripke himself [21]. Putnam indeed rightly vindicated that a causal 
theory of reference supposes that at least at the beginning of the 
social chain of “tradition” of a given denotation there must be an 



effective causal relation from the denoted thing to (the cognitive 
agent producing) the denoting name – and, in the limit, in this 
causal sense must be intended also the act of perception Kripke 
vindicated as sufficient for the dubbing of a given object. To syn-
thesize this position, even though Putnam never spoke in these 
terms, what is necessary is a “causal”, “finitistic” theory of coding 
in which the real thing causally and progressively determines the 
partial domain of the descriptive function recursively denoting it. 
It is thus evident the necessity of formal ontology for formalizing 
such an approach to the meaning/reference problem in the NC par-
adigm. That is, it is evident the necessity of a formal calculus of re-
lations able to include in the same, coherent, formal framework 
both “causal” and “logical” relations, as well as the “pragmatic” 
(real, causal relations with the cognition/communication agents), 
and not only the “syntactic” (logical relations among terms) “se-
mantic” (logical relations among symbols) components of mean-
ingful actions/computations/cognitions.  

2 FROM FORMAL LOGIC TO FORMAL ON-
TOLOGY 

2.1 Extensional vs. intensional logic 
The modal logic with all its intensional interpretations are what 

is today defined as philosophical logic [26], as far as it is distin-
guished from the mathematical logic, the logic based on the exten-
sional calculus, and the extensional meaning, truth, and identity5. 
What is new is that also the intensional logics can be formalized 
(i.e., translated into a proper symbolic language, and axiomatised), 
against some rooted prejudices among “continental” philosophers, 
who abhor the symbolic hieroglyphics of the “analytic” ones. I.e., 
there exists an intensional logical calculus, just like there exists an 
extensional one, and this explains why both mathematical and 
philosophical logic are today often quoted together within the 
realm of computer science. This means that classical semantic and 
even the intentional tasks can be simulated artificially. This is the 
basis of the incoming “Web3 revolution”, i.e., the advent of the 
semantic web. Hence, the “thought experiment” of Searle’s “Chi-
nese Room” is becoming a reality, as it happens often in the history 
of science. 
Anyway, to conclude this part, the main intensional logics with 
which we are concerned in the present paper are: 
1. Alethic logics: they are the descriptive logics of “being/not be-

ing” in which the modal operators have the basic meaning of  
“necessity/possibility” in two main senses: 

a. Logical necessity: the necessity of lawfulness, like in de-
ductive reasoning 

                                                                 
5 What generally characterizes intensional logic(s) as to the extensional 

one(s) is that neither the extensionality axiom – reducing class identity to 
class equivalence, i.e., ↔ ⇒ =A B A B  - nor the existential generaliza-
tion axiom – Pa xPx⇒ ∃ , where P is a generic predicate, a is an individu-
al constant, x is an individual variable – of the extensional predicate cal-
culus hold in intensional logic(s). Consequently, also the Fegean notion of 
extensional truth based on the truth tables holds in the intensional predi-
cate and propositional calculus.  Of course, all the “first person” (both 
singular, in the case of individuals, and plural, in the case of groups), i.e., 
the belief or intentional (with t) statements, belong to the intensional log-
ic, as Searle, from within a solid tradition in analytic philosophy [45, 46, 
47], rightly emphasized [39, 38]. For a formal, deep characterization of 
intensional logics as to the extensional ones, from one side, and as to in-
tentionality, from the other side, see [48]. 

b. Ontic necessity: the necessity of causality, that, on its turn, 
can be of two types: 

• Physical causality: for statements which are true (i.e., 
which are referring to beings existing) only in some pos-
sible worlds. For instance, biological statements cannot 
be true in states, or parts, or ages of the universe in which, 
because of the too high temperatures only quantum sys-
tems can exist). 

• Metaphysical causality: for statements which are true of 
all beings in all possible worlds, because they refer to 
properties or features of all beings such beings.  

2. The deontic logics: concerned with what “should be or not 
should be”, where the modal operators have the basic meaning 
of “obligation/permission” in two main senses: moral  and le-
gal obligations.  

3. The epistemic logic: concerned with what is “science or opin-
ion”, where the modal operators have the basic meaning of  
“certainty/uncertainty”. It is evident that all the “belief” logic 
pertains to the epistemic logic, as we see below. 

2.2. Interpretations of modal logic 
For our aims, it is sufficient here to recall that formal modal calcu-
lus is an extension of classical propositional, predicate and hence 
relation calculus with the inclusion of some further axioms. Here, 
we want to recall only some of them — the axioms N, D, T, 4 and 
5 —, useful for us: 
N: <(X→α) ⇒ (X→α)>, where X is a set of formulas (lan-
guage),  is the necessity operator, and α is a meta-variable of the 
propositional calculus, standing for whichever propositional varia-
ble p of the object-language. N is the fundamental necessitation 
rule supposed in any normal modal calculus 
D: <α→àα>, where à is the possibility operator defined as 
¬¬ α. D is typical, for instance, of the deontic logics, where no-
body can be obliged to what is impossible to do.  
T: <α→α>. This is typical, for instance, of all the alethic logics, 
to express either the logic necessity  (determination by law) or the 
ontic necessity (determination by cause).  
4: <α→α>. This is typical, for instance, of all the “unifica-
tion theories” in science where any “emergent law” supposes, as 
necessary condition, an even more fundamental law. 
5: <◊α→◊α>. This is typical, for instance, of the logic of  meta-
physics, where it is the “nature” of the objects that determines nec-
essarily what it can or cannot do.  
By combining in a consistent way several modal axioms, it is pos-
sible to obtain several modal systems which constitute as many 
syntactical structures available for different intensional interpreta-
tions. So, given that K is the fundamental modal systems, given by 
the ordinary propositional calculus k plus the necessitation axiom 
N, some interesting modal systems are for our aims are: KT4 (S4, 
in early Lewis’ notation), typical of the physical ontology; KT45 
(S5, in early Lewis’ notation), typical of the metaphysical ontolo-
gy; KD45 (Secondary S5), with application in deontic logic, but 
also in epistemic logic, in ontology, as w and hence in NC as we 
see. 
Generally, in the alethic (either logical or ontological) interpreta-
tions of modal structures the necessity operator p is interpreted as 
“p is true in all possible world”, while the possibility operator àp is 
interpreted as “p is true in some possible world”. In any case, the 
so called  reflexivity principle for the necessity operator holds in 
terms of axiom T, i.e, p → p. In fact, if p is true in all possible 



worlds, it is true also in the actual world (E.g., “if it is necessary 
that this heavy body falls (because of Galilei’s law), then this body 
really falls”). 
This is not true in deontic contexts. In fact, “if it is obligatory that 
all the Italians pay taxes, does not follow that all Italians really pay 
taxes”, i.e., p p→O , where O is the necessity operator in deontic 
context. In fact, the obligation operator Op must be interpreted as 
“p is true in all ideal worlds” different from the actual one, other-
wise O=, i.e., we are in the realm of metaphysical determinism 
where freedom is an illusion and ethics too. The reflexivity princi-
ple in deontic contexts, able to make obligations really effective in 
the actual world, must be thus interpreted in terms of an optimality 
operator Op for intentional agents, i.e,  

(Op→p) ⇔ ((Op (x,p) ∧ ca ∧ cni ) → p) 
Where x is an intentional agent, ca is an acceptance condition and 
cni is a non-impediment condition.  
In similar terms, in epistemic contexts, where we are in the realm 
of representations of the real world. The interpretations of the two 
modal epistemic operators B(x,p), “x believes that p”, and S(x,p), 
“x knows that p” are the following: B(x,p) is true iff p is true in the 
realm of representations believed by x. S(x,p) is true iff p is true for 
all the founded  representations believed by x. Hence the relation 
between the two operators is the following: 

( ) ( )( ), ,x p x p⇔ ∧S B F  (1) 

Where F is a foundation relation, outside the range of B, and hence 
outside the range of x consciousness, otherwise we should not be 
dealing with “knowing” but only with a “believing of knowing”. 
I.e., we should be within the realm of solipsism and/or of meta-
physical nihilism, systematically reducing “science” or “well 
founded knowledge” to “believing”. So, for instance, in the context 
of a logicist ontology, such a F is interpreted as a supposed actually 
infinite capability of human mind of attaining the logical truth [27]. 
We will offer, on the contrary, a different finitistic interpretation of 
F within NC . Anyway, as to the reflexivity principle in epistemic 
context, 

( ),x p p→B  
In fact, believing that a given representation of the actual world, 
expressed in the proposition p, is true, does not mean that it is ef-
fectively true, if it is not well founded. Of course, such a condition 
F — that hence has to be an onto-logical condition — is by defini-
tion satisfied by the operator S, the operator of sound beliefs, so 
that the reflexivity principle for epistemic context is given by: 

( ),x p p→S         (2) 

2.3 Kripke’s relational semantics 
Kripke relational semantic is an evolution of Tarski formal se-

mantics, with two specific characters: 1) it is related to an intuition-
istic logic (i.e., it considers as non-equivalent excluded middle and 
contradiction principle, so to admit coherent theories violating the 
first one), and hence 2) it is compatible with the necessarily in-
complete character of the formalized theories (i.e., with Gödel the-
orems outcome), and with the evolutionary character  of natural 
laws not only in biology but also in cosmology. In other terms, 
while in Tarski classical formal semantics, the truth of formulas is 
concerned with the state of affairs of one only actual world, in 
Kripke relational semantics the truth of formulas depends on states 
of affairs of worlds different from the actual one (= possible 
worlds). On the other hand, in contemporary cosmology is nonsen-
sical speaking of an “absolute truth of physical laws”, with respect 

to a world where the physical laws cannot be always the same, but 
have to evolve with their referents [28, 29].  
Anyway, the notion of “possible world” in Kripke semantics has 
not only a physical sense. On the contrary, as he vindicated many 
times, the notion of “possible world”, as syntactic structure in a re-
lational logic, has as many senses as the semantic models that can 
be consistently defined on it. In Kripke words, the notion of “pos-
sible world” in his semantics has a purely stipulatory character.  
In the same way, in Kripke semantics, like the notion of “possible 
world” can be interpreted in many ways, so also the relations 
among worlds can be given as interpretations of the only relation of 
accessibility. In this way, a unified theory of the different inten-
sional interpretations (alethic, ontology included, deontic, epistem-
ic, etc.) of modal logic became possible, as well as a graphic repre-
sentation of their relational semantics.  
The basic notion for such a graphic representation is the notion of 
frame. This is an ordered pair , <W, R>, constituted by a domain 
W of possible worlds {u, v, w…}, and a by a two-place relation R 
defined on W, i.e., by a set of ordered pairs of elements of W (R ⊆ 
W×W), where W×W is the Cartesian product of W per W.  
E.g. with W = {u,v,w} and R = {uRv}, we have: 
 
 
 

 
According to such a model, the accessibility relation R is only in 
the sense that v is accessible by u, while w is not related with 
whichever world. If in W all the worlds were reciprocally accessi-
ble, i.e., R= {uRv, vRu, uRw, wRu, wRv, vRw}, then we would have 
R only included in W×W. On the contrary, for having R=W×W, 
we need that each world must be related also with itself, i.e.: 
 
 

                                                     (3) 
 
Hence, from the standpoint of the relation logic, i.e., by interpret-
ing {u,v,w} as elements of a class we can say that this frame repre-
sents an equivalence class. In fact, a R, transitive, symmetrhain ical 
and reflexive relation holds among them. Hence, if we consider al-
so the serial relation:  <(om u)(ex v)(uRv)>6, where “om” and “ex” 
are the meta-linguistic symbols, respectively of the universal and 
existential quantifier, we can discuss also the particular Euclidean 
relation that can be described in a Kripke frame.  
The Euclidean property generally in mathematics means a weaker 
form of the transitive property (that is, if one element of a set has 
the same relation with other two, these two have the same relation 
with each other).  
I.e.,<(om u) (om v) (om w) (uRv et uRw ⇒ vRw)> : 
 

 
 
 
Where et is the meta-symbol for the logical product.  
Hence, for seriality, it is true also <(om u)(om v) (uRv⇒vRv)>: 
 
 

                                                                 
6 For ontological applications it is to be remembered that seriality means in 

ontology that the causal chain is always closed, as it is requested in phys-
ics by the first principle of thermodynamics, and in metaphysics by the 
notion of a first cause of everything. 



 
 
Moreover, <(om u) (om v) (om w) (uRv et uRw ⇒ vRw et wRv)>: 
 
 

 
 
Finally, if we see at the last two steps, we are able to justify, via the 
Euclidean relation,  a set of secondary reflexive and symmetrical 
relations, so that we have the final frame of a secondary equiva-
lence relation among worlds based on an Euclidean relation with a 
third one: 

 
 

                                                                                                  (4) 
 
Of course, this procedure of equivalence constitution by a transi-
tive and serial (=causal) relation can be iterated indefinitely: 

 
 

                                                                                                    (5) 
 

2.4 Double saturation S/P and its implementation 
What characterizes the definite descriptions in a naturalistic for-

mal ontology since of its Middle Age ancestors is the theory of 
double saturation between Subject and Predicate (S/P), driven by a 
causal action from the referential object.  So Thomas Aquinas 
(1225-1274)7 depicts his causal theory of reference: 

Science, indeed, depends on what is object of science, but the 
opposite is not true: hence the relation through which science re-
fers to what is known is a causal  [real not logical] relation, but 
the relation through which what is known refers to science is on-
ly logical [rational not causal]. Namely, what is knowable (sci-
bile) can be said as “related”, according to the Philosopher, not 
because it is referring, but because something else is referring to 
it. And that holds in all the other things relating each other like 
the measure and the measured, … (Q. de Ver., 21, 1. Square pa-
rentheses and italics are mine). 

In another passage, this time from his commentary to Aristotle 
book of Second Analytics, Aquinas explains the singular reference 
in terms of a “one-to-one universal”, as opposed to “one-to-many 
universals” of generic predications.  

It is to be known that here “universal” is not intended as some-
thing predicated of many subjects, but according to some adapta-
tion or adequation (adaptationem vel adaequation)of the predi-
cate to the subject, as to which neither the predicate can be said 
without the subject, nor the subject without the predicate (In 
Post.Anal., I,xi,91. Italics mine). 

So, Aquinas’ idea is that the predicative statement, when applied 
denoting a singular object must be characterized by a “mutual re-
definition” between the subject S and the predicate P “causally” 
driven by the referential object itself. A procedure formalized in 
Kripke’s frame (4) and that A. L. Perrone first demonstrated being 
                                                                 
7 Historically, he first introduced the notion and the term of “intention” (in-

tentio) in the epistemological discussion, in the context of his naturalistic 
ontology. The approach was hence rediscovered in the XIX century by the 
philosopher Franz Brentano, in the context of a conceptualist ontology, 
and hence passed to the phenomenological school, trough Brentano’s 
most famous disciple: Edmund Husserl. 

a finitistic computational procedure always convergent in polyno-
mial time, even in chaotic dynamics [30]. 

3 CONCLUSIONS 
To conclude, it is important to emphasize that the frame (3) and the 
frame (4) are a graphic representation in Kripke’s approach of S5 
and KD45 modal systems respectively. If we see at these frames, 
we can understand immediately, why, from one side, S5 is the only 
axiomatic system in modal logic, since all its elements constitutes 
one only equivalence class.  On the other side, we can also under-
stand immediately also why KD45 is named “secondary S5”. In 
fact, <v,w> in (4) and <v,w,z> in  (5) constitute two equivalence 
classes via their Euclidean relation with <u>.  
If S5 is thus, in ontology, the common syntactic structure of all 
possible metaphysics, KD45 is the common structure of any ontol-
ogy of the emergence of a new natural law (and hence of a new 
natural kind) from more fundamental levels of physical causality.  
Moreover, in epistemic logic, if <u> represents the referential ob-
ject, then <v,w>  and/or <v,w,z> represent two equivalence classes 
of two and/or three symbols co-denoting it. Two classes of logical 
symbols with their relations constituted via a common causal rela-
tion from the denoted object! It is evident that such a solution of 
the reference problem can be implemented only in a NC model 
where <v,w,z> can be interpreted as cognitive agents, particularly 
as (pseudo-)cycles of the same chaotic attractor, as we and others 
demonstrated elsewhere (See [30, 18, 31, 32]; [33, 34, 35]).   
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MENS, an info-computational model for  

(neuro-)cognitive systems up to creativity

Andrée C. EHRESMANN
1

Abstract.  MENS is a bio-inspired model for higher level 

cognitive systems; it is an application of the Memory Evolutive 

Systems developed with J.-P. Vanbremeersch [12], to model 

complex multi-scale, multi-agent self-organized systems, such as 

biological or social systems. Its development resorts from an 

info-computationalism: first we characterize the properties of the 

human brain/mind at the origin of higher order cognitive 

processes up to consciousness and creativity, then we 'abstract' 

them in a mathematical model MENS for natural or artificial 

cognitive systems. The model, based on a 'dynamic' Category 

Theory incorporating Time, emphasizes the computability 

problems which are raised.12 

1 INTRODUCTION 

One of the aims of this Conference is: "understanding of 

computational processes in nature and in the human mind".  This 

aim has been central in the development of the Memory 

Evolutive Neural Systems (or MENS), a mathematical model of a 

cognitive system, such as the brain/mind, allowing for the 

emergence of higher order cognitive processes, up to thought, 

consciousness and creativity.  

   

 MENS proposes a common frame accounting for the 

functioning of the neural and of the mental and cognitive system 

at different levels of description and across different timescales. 

It does not constitute a logic model of the invariant structure of 

the neuro-cognitive system; it is intended to give a dynamic 

model sizing up the system 'in the making', with the variation 

over time of its configuration and of its information processing. 

It describes how various brain areas interact as hybrid systems to 

generate an "algebra of mental objects" (in the terms of 

Changeux [5]) through iterative 'binding' of more and more 

complex synchronous assemblies of neurons. In its frame  

mental objects are treated as 'higher level' neurons (called 

category-neurons) on which to compute how cognitive processes 

of increasing complexity can emerge. 

 The bio-inspired development of MENS has followed the 

two directions proposed by G. Dodig‐Crnkovic: analyzing living 

organisms as info‐computational systems/agents, and implem-

enting natural computation strategies [8]. Indeed, first we 

characterize the properties of the human brain/mind at the root of 

cognitive processes; then we 'abstract' them in MENS. A third 
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step would be to develop an adequate kind of (probably 

unconventional) computation to simulate them 

 MENS is an application of the Memory Evolutive Systems 

(MES), developed with J.-P. Vanbremeersch [12], which give a 

model, based on Category Theory, for complex multi-scale, 

multi-agent self-organized systems, such as biological, social or 

cognitive systems. 

 In Section 2, we make some recalls on MES, indicating the 

role of Category Theory in them. Section 3 emphasizes the 

neural basis of MENS. A description of the structure and of the 

local/global dynamic of MENS is given in Sections 4 and 5, 

while Section 6 deals with the emergence of higher cognitive 

processes. The conclusion proposes an extension of MENS to 

artificial cognitive systems, and emphasizes the computational 

problems which it raises. 

2 WHY CATEGORY THEORY IN MES? 

Category Theory has a unique status at the border between 

mathematics, logic, and meta-mathematics. Introduced by 

Eilenberg and Mac Lane [10] in the early forties, its 

development (e.g. by Kan  [21], Ehresmann [15], Lawvere [22]) 

has provided a setting in which a general concept of structure is 

possible, and essential mathematical constructions are unified 

thanks to a capture of their common roots in the ways of 

thinking of the "working mathematician". As these ways reflect 

some of the main mental operations at the basis of science, it is 

natural that categories have begun to be applied to other 

scientific domains, in particular computer science, physics, 

complexity theory and biology.  

 

 Graphs are extensively used to represent networks of any 

nature. A category is a graph equipped with an internal 

composition associating to a pair (a, b) of successive arrows (or 

links) a: A → B and b: B → C, a composite arrow ab; A → C; 

this composition is associative and each object has an identity. 

Each graph generates the category of its paths: the objects are 

the same, the links are the paths (sequences of successive 

arrows), composition is by convolution. Each category is the 

quotient of the category of its paths by the equivalence: two 

paths are functionally equivalent if they have the same 

composite. 

 If we use categories rather than simple graphs in our study 

of complex systems, it is because they open the way to important 

"universal constructions", such as the colimit operation which 

will model the 'binding' of a pattern P of linked objects. A 

pattern (or diagram) P in a category is a family of objects Pi with 

some distinguished links f: Pi → Pj. A collective link from P to 



an object N is a family of links- si from the different Pi to N, 

such that fsj = si for each distinguished link f: Pi → Pj of P. The 

pattern admits a colimit (or inductive limit [21]) M if there is a 

collective link from P to M which factorizes any other collective 

link, so that the collective links (si) from P to any N are in 1-1 

correspondence with the links s: M → N binding them.  

  

 
 

FIGURE 1. Collective link, and colimit of a pattern P 

  

 The Memory Evolutive Systems give a model based on a 

'dynamic' Category Theory, incorporating time and durations, for 

complex multi-scale systems, with the following characteristics:

 (i) The system is evolutionary, its components and their 

links varying over time. The few models of complex systems 

using category theory (e.g., inspired by [24]) only consider one 

category representing the invariant structure of system. On the 

contrary in MES, the system is not represented by a unique 

category but by an Evolutive System consisting in: a family of 

categories Kt, representing the successive configurations of the 

system at each time t, and partial transition functors from Kt to 

Kt' accounting for the change from t to t'.  

 (ii) The system is hierarchical, with a tangled hierarchy of 

components varying over time. A component C of a certain level 

'binds' at least one pattern P of interacting components of lower 

levels so that C, and P acting collectively, have the same 

functional role. Modeling this hierarchy raises the Binding 

Problem: how do simple objects bind together to form "a whole 

that is greater than the sum of its parts" [1] and how can such 

"wholes" interact? In the categorical setting, the 'whole' C is 

represented by the colimit of the pattern P of interacting simple 

objects; and the interactions between wholes are described.    

 (iii) There is emergence of complex multiform components, 

with development of a flexible central memory. Whence the 

Emergence Problem: how to measure the 'real' complexity of an 

object and what is the condition making possible the emergence 

over time of increasingly complex structures and processes? We 

characterize this condition as the Multiplicity Principle [12], a 

kind of 'flexible redundancy' which ensures the existence of 

multiform components. And we prove that it is necessary for the 

emergence of increasingly complex objects and processes with 

multiform presentations, constructed by iterated complexification 

processes [11]. 

 (iv) The system has a multi-agent self-organization. Its 

global dynamic is modulated by the cooperation/competition of a 

network of internal functional subsystems, the co-regulators, 

with the help of a long-term memory. Each co-regulator operates 

locally with its own rhythm, logic and complexity, but their 

different commands can be conflicting and must be harmonized. 

While the local dynamics are amenable to conventional 

computations, the problem is different for the global one. 

 MENS is a MES the level 0 of which represents the 

'physical' neural system (neurons and synapses), while its higher 

level components are 'conceptual' objects (called category-

neurons) which represent mental objects as the binding of 

synchronous (hyper-)assemblies of neurons.  

 

  

3 PROPERTIES OF THE NEURAL SYSTEM  

Despite the huge progresses of brain research in the last 20 

years, we do not understand the brain's large-scale organizational 

principles allowing for the emergence of higher order cognitive 

processes. Interesting mathematical models of a local nature 

have been developed for particular processes in specialized brain 

areas; as the different brain areas are heterogeneous both 

anatomically and functionally, such models cannot be extended 

to other areas or processes.  

 However, there are some general properties, and MENS 

relies on them:  

 (i) Graphs of neurons. The neurons and the synapses 

existing at an instant t form a graph; a neuron has an activity at t, 

a synapse from N to N' has a propagation delay and a strength 

depending on how it may transmit the activity of N to N'; the 

synapse can be active or passive at t. The activity of N is a sum 

of the activities of the neurons connected to N by an active link, 

pondered by the strength of this link. The graph changes over 

time: some neurons 'die', new neurons are formed, and the same 

for synapses; delays and strengths may vary.  

 (ii) The structural core. The graph of neurons has a central 

sub-graph, called its structural core,  discovered by Hagmann & 

al. [17] in 2008: "Our data provide evidence for the existence of 

a structural core in human cerebral cortex […] both spatially and 

topologically central within the brain […] an important structural 

basis for shaping large-scale brain dynamics […] linked to self-

referential processing and consciousness." Recently (2011) it has 

been found that this core is a sub-graph with several hubs 

forming a "rich club" [25]. 

 (iii) Synchronous assemblies of neurons. Already in the 

forties Hebb [18] has noted the formation, persistence and 

intertwining of more or less complex and distributed assemblies 

of neurons whose synchronous activation is associated to 

specific mental processes:  "Any frequently repeated, particular 

stimulation will lead to the slow development of a "cell-

assembly" as a close system". And he gives the Hebb rule for 

synaptic plasticity: "When an axon of cell A is near enough to 

excite B and repeatedly or persistently takes part in firing it […] 

A’s efficiency, as one of the cells firing B, is increased."  

 (iv) Degeneracy property of the neural code. Emphasized 

by Edelman, it says that: "more than one combination of 

neuronal groups can yield a particular output, and a given single 

group can participate in more than one kind of signaling 

function." [9]. Thus the mental representation of a stimulus 

should be the common 'binding' of the more or less different 

neural patterns which it can synchronously activate in different 

contexts or at different times. 

 (v) Modular organization. The brain has a modular 

organization, with a variety of 'modules' or areas of the brain 

with a specific function, from small specialized parts (the 

"treatment units" of Crick [6]) such as visual centers processing 

colour, to large areas such as the visual or motor areas, or nuclei 

of the emotive brain (brain stem and limbic system) or the 

associative cortex. 

  



 The neural system will be represented by the Evolutive 

System of Neurons NEUR: it has for configuration at t the 

category of neurons NEURt: its objects, also called neurons, 

model the neurons N existing at t with their activity, the links 

model the synaptic paths between them, labeled by their 

propagation delay and strength (defined as the sum of those of 

their factors). 

 The transition from t to a later time t' associates to the state 

at t of a neuron N its new state at t' provided that N still exists at 

t', and similarly for the links. The transitions describe what has 

changed, but they do not indicate the kind of computation (as 

processing of information) which is internally responsible for the 

change. A component of NEUR models a neuron through the 

sequence of its successive states.  

  

 NEUR constitutes the level 0 of MENS, from which higher 

levels are constructed by iterated complexification processes. 

4 CATEGORY-NEURONS AND THEIR LINKS  

As said above, a mental object (e.g., the mental image of a 

simple stimulus) synchronously activates an assembly of neurons 

P, and possibly several ones in different contexts. In simple 

cases, there is a neuron N 'binding' the assembly, so that it will 

represent the mental object; for instance there are neurons 

representing a segment or an angle [19], or more complex but 

very familiar objects.  

 However, generally there is no "grand-mother neuron" [3] 

in NEUR. The mental object activating P will be represented by 

a conceptual object M, called a category-neuron (abbreviated in 

cat-neuron) of level 1, which will become the colimit of P, not in 

NEUR (where it has no colimit), but in the larger system MENS. 

The construction (by a complexification process) will determine 

what are the good links between M and other (cat-)neurons, and 

will guarantee that M also becomes the colimit of the other 

assemblies of neurons which P can synchronously activate. Thus 

we can speak of assemblies of cat-neurons of level 1, and iterate 

the construction to obtain a hierarchy of cat-neurons of 

increasing levels, representing more and more complex mental 

objects binding together assemblies of simpler ones. 

 

 Formally, any assembly of (cat-)neurons is modeled by a 

pattern P in MENS. For the assembly to synchronously activate 

a (cat-)neuron N, there must exist a collective link (si) from P to 

N, allowing that all the si transmit an activation of Pi to N at the 

same time; in particular this imposes that all the zig-zags of links 

between Pi and Pj have the same propagation delay.  

 If such a pattern P is repeatedly activated, its distinguished 

links are strengthened (via Hebb rule), and there is formation of 

a mental object. This object will be represented by a higher level 

cat-neuron M, which becomes the colimit of P in MENS (cf. 

Figure 1). It is important to note that the activation of P precedes 

that of its colimit M.  

 The degeneracy property asserts that the mental object can 

also activate other patterns Q, not necessarily connected to P by 

a cluster of links. The representing cat-neuron M must also be 

the colimit of Q, so that it is a multiform cat-neuron [12], which 

can be activated by anyone of its different decompositions P, Q, 

…, with possibility of switches between them. The existence of 

multiform cat-neurons signifies that MENS satisfies the 

Multiplicity Principle [12]. Once formed the cat-neuron M 

preserves its identity up to its 'death' though its lower level 

decompositions can vary more or less quickly over time. The 

stability span of M at an instant t is the longest period during 

which M admits a decomposition P at t whose successive states 

remain a decomposition of M. 

  

 MENS is an Evolutive System. At an instant t of the life of 

the individual, the configuration category MENSt models the 

present state of the neural, mental and cognitive system; its 

objects are the cat-neurons of any level (from the level 0 of 

neurons up) existing at t with their activity, and their links with 

their propagation delay and strength; a link is active or not at t.  

 The transition from t to t' points out the structural changes 

without accounting for the information processing at their origin 

(to be considered in Section 5). The changes are events of the 

following kinds: formation (or preservation if it exists) of a new 

cat-neuron binding some pattern P' of already existing lower 

level cat-neurons, possibly loss or decomposition of some cat-

neurons. In the categorical setting, the new configuration 

MENSt' at t' is obtained as the complexification of MENSt with 

respect to a procedure Pr having objectives of the preceding 

kinds (cf. Figure 2). Such a complexification is solution of the 

"universal problem" of constructing a category in which the 

objectives of Pr are satisfied in the 'best' way. We have given an 

explicit construction of the complexification, in particular of the 

links between cat-neurons; and we have shown in [13] how, 

using its universal property, the propagation delays and strengths 

of synaptic paths (at the level 0) can be extended to the links of 

any level, as well as the Hebb rule.  

 
FIGURE 2. Complexification process 

  

 The construction distinguishes 2 kinds of links (Figure 3):  

 (i) Simple links. They 'bind' clusters of lower level links as 

follows. Let M and M' be 2 cat-neurons binding lower level 

patterns P and P' respectively. If we have a cluster G of links 

from P to P' well correlated by the distinguished links of P and 

P', this cluster binds into a link from M to M', called a (P, P')-

simple link (or just a n-simple link if P and P' are of level ≤ n). 

Such a link just translates at the level n+1 the information that P 

can coherently activate components of P' through the links of G; 

and this information is computable at the lower levels. A 

composite of n-simple links binding adjacent clusters is n-

simple. 

 (ii) Complex links. They emerge at a higher level, as 

composites of n-simple links binding non-adjacent clusters. 

Their existence is possible because of the existence of multiform 

cat-neurons M. Figure 3 presents a complex link from N to M' 

composite of a (Q', Q)-simple link with a (P, P')-simple link, 

where P and Q are non-connected decompositions of M. Such a 

link represents information emerging at the level n+1 by 

integration of the global structure of the lower levels, and not  



locally computable through lower level decompositions of N and 

M'; indeed the fact that the cat-neuron M is multiform imposes 

global conditions, calling out all its lower decompositions and 

their collective links; could it be amenable to some kind of 

unconventional computation? 

 

 
 

FIGURE 3. Cluster, simple and complex links 

 

Remark. Here we only speak of cat-neurons constructed by 

colimits. In fact there are also cat-neurons obtained by projective 

limits [21], which arise for instance in the construction of a 

semantic memory. When the procedure asks also for the 

formation of such 'classifying' cat-neurons, we speak of a mixed 

complexification; its construction is more complicated [12]. 

  

 The construction of cat-neurons of higher levels allows 

making more precise the brain/mind correlation. The activation 

or the recall of the cat-neuron M of level > 0 representing a 

mental object consists in the unfolding of one of its ramifications 

down to the neural level (cf. Figure 3): first activation of one of 

its decompositions P into a synchronous assembly of cat-neurons 

of lower levels, then a decomposition of each component of P, 

and so on down to the physical activation of synchronous 

assemblies of neurons. Because of the propagation delays of the 

links, the unfolding has a certain duration.  

 At each step, there is a choice between various (possibly 

non-connected) decompositions, so that the activation of M has 

several freedom degrees leading to multiple physical 

realizabilities into hyper-assemblies (i.e. assemblies of 

assemblies of… assemblies) of neurons. The ramifications of M 

have not all the same length. The complexity order of M is the 

smallest length of a ramification; it is less or equal to the level of 

M. The level indicates the number of steps in which M has been 

constructed, while the complexity order measures the smallest 

number of steps sufficient for its later activation.  

 From general results on complexifications of categories 

satisfying the Multiplicity Principle [12], we deduce: 

 

 THEOREM. Iterated complexifications preserve the 

Multiplicity Principle and lead to the emergence in MENS of 

cat-neurons of increasing complexity order, representing more 

and more complex mental objects or cognitive processes. 

 

 

5 LOCAL AND GLOBAL DYNAMIC OF MENS 

As any Memory Evolutive System, MENS has a multi-scale self-

organization modulated by a network of co-regulators with the 

help of a central long-term memory. 

 The Memory is a hierarchical sub-system Mem of MENS, 

which develops over time; it models the innate or acquired 

knowledge of any modality and the information of any kind 

which the individual can store and later recognize and/or recall. 

A cat-neuron M in Mem, called record, represents the mental 

object associated to an item S (external object, signal, past event, 

internal state, sensory-motor or cognitive processes,..). Initially 

constructed to bind a particular pattern P of cat-neurons activated 

by S, it later takes its own identity as a multiform cat-neuron and 

can even disassociate from P at a later time to adapt to changing 

situations (as long as the change is progressive enough). S can be 

recognized and M recalled through the activation of any of the 

ramifications of M, with possibility of switches between them, 

so that M is a robust memory but not a rigid one (as in a 

computer), since it remains flexible and can be constantly 

revised to account for changes. 

 Mem contains a sub-system Proc, the Procedural Memory 

in which the records, called procedures, have links (or 

'commands') toward the pattern of their effectors (e.g.  motor 

commands of a specific movement). It also contains a sub-

system Sem, the Semantic Memory, in which records are 

classified into invariance classes with respect to some attributes 

(for the construction of Sem, cf. [12]). 

  

 The memory plays an important role in the dynamic of 

MENS which is modulated by the cooperative/ competitive 

interactions between functional sub-systems, the co-regulators,  

related to the modular organization of the brain. A co-regulator 

is based on a specific module of the brain, meaning that its cat-

neurons have ramifications down to this module (so that they 

model hyper-assemblies of neurons of the module). It has its 

own differential access to Mem, in particular to Proc, to recall its 

'admissible procedures' specific of its function. 

 The dynamic of MENS must account for both the local 

information processing of each co-regulator, which operates with 

its own rhythm and logic, and for the global dynamic which 

results from an 'interplay' among these co-regulators. While the 

local dynamics are amenable to conventional computations, their 

merging in the global one raises computational problems. 

 

 A co-regulator CR operates stepwise as a hybrid system, A 

step from t to t' is divided into more or less intermingled phases: 

 (i) Formation of the landscape at t. It is a category Lt which 

models the partial information accessible to CR through active 

links: its objects are clusters G from a cat-neuron B to CR with 

at least one link activating a cat-neuron in CR around t. It plays 

the role of a working memory during the step. 

 (ii) Selection of an admissible procedure Pr to respond to 

the situation with adequate structural changes. It is done through 

the landscape, using the access of CR to Mem to recall how the 

information has been processed in preceding analogue events. 

For instance in presence of an object S, a CR treating colours 

will retain only information on the colour of S, and the objective 

of Pr could be to bind the pattern P of neurons activated by the 

colour to memorize the colour or, if already known, recall it. 

 (iii) Commands of the procedure are sent to its effectors in 

MENS. In the above example, the binding of P into a CR-record 

of S consists in strengthening the distinguished links of P using 

Hebb rule. The dynamic by which the effectors realize the 

commands during the continuous time of the step is computable 

through conventional computations (e.g., using differential 

equations implicating the activity of cat-neurons and the 

propagation delays and strengths of the links [13]). 



 (iv) Evaluation at the beginning of the next step, by 

comparison of the anticipated landscape (which should be the 

complexification of Lt with respect to Pr) with the new 

landscape; then Pr and its result are recorded. If the commands 

of Pr have not entirely succeeded, we say that there is a fracture 

for CR.  

  

 The global dynamic must take account of the different local 

dynamics. At a given time the commands sent by the various co-

regulators should all be realized by the effectors of the system. 

Since the co-regulators have different functions and rhythms, 

these commands can be conflicting, and there is need of an 

equilibration process to ensure the correlation of the different 

commands, possibly neglecting some of them. For instance to 

seize an object, the visual and motor commands should fit 

together. This process, called the interplay among the co-

regulators, leads to the operative procedure Pr° which will be 

implemented on the system.  

 The interplay searches for a best compromise between the 

more or less conflicting commands, keeping as much as possible 

of them. In particular it takes benefit of the degrees of freedom 

of a multiform command which can be activated through anyone 

of its lower level decompositions, with possible switches 

between them: the decompositions allowing for a better 

coordination are selected through a kind of Darwinian selection 

process; for instance, depending on the context, we can seize an 

object in the right or left hand.  

 The operative procedure Pr° actually carried out may by-

pass the procedures of some co-regulators thus causing 

dysfunction (temporary fracture or longer de-synchrony) to 

them. A main cause of fractures is the non-respect of the 

structural temporal constraints (or synchronicity laws) imposed 

on a co-regulator CR by the propagation delays and stability 

spans in its landscape [12]. Fractures may backfire between co-

regulators with heterogeneous complexity levels and 

temporalities. In the interplay, an important role is played by 

evaluating co-regulators, based on parts of the emotive brain 

which evaluate the procedures in function of their consequences 

on the well-being of the person. 

 A standing problem is to determine what kind of 

computation could help model the interplay among the co-

regulators. Since it makes use of the flexibility of the commands 

as multiform cat-neurons, it is probably not amenable to 

conventional computations (cf. Section 4).     

   

 

6 AC AND HIGHER COGNITIVE PROCESSES 

 The co-regulators jointly participate in the development 

over time of an important functional sub-system of the memory 

Mem, the Archetypal Core AC which will act as an internal 

model, essential for the emergence of higher cognitive processes.  

 In Section 3 we have said that the brain has a structural core 

which plays a main role in the shaping of large-scale brain 

dynamic; it corresponds to the level 0 of AC. A cat-neuron in 

AC is a higher order cat-neuron, often activated and with 

ramifications down to the structural core; thanks to the "rich 

club" organization of this core, the hyper-assemblies of neurons 

which it binds are largely distributed in different brain areas. 

Thus an archetypal record integrates and intertwines recurring 

memories and experiences of different modalities (sensory-

motor, proprioceptive, affective, …) as well as notable events 

with their emotive undertones. Archetypal records are connected 

by complex links which become stronger and faster (thanks to 

Hebb rule) along time. These links form archetypal loops which 

propagate very quickly the activation of an archetypal record A 

back to itself, thus maintaining it for a long time; the activation 

of A resonates to lower levels via the unfolding of ramifications 

of A and switches between different decompositions. 

 It follows that an activation of part of AC extends to a larger 

domain D of MENS, both in depth (lower level decompositions 

P are activated) and in duration: if A is activated at t, it means 

that P has been activated earlier (cf. Section 4), and, since the 

activation of A is self-maintained by the loops, the activation of 

P will been maintained in the near future: the 'present' of D has 

some extent, as proposed by Husserl:  "Il y a dans le présent une 

rétention du passé (rétention primaire si c’est un passé immédiat, 

rétention secondaire si c’est un souvenir plus lointain) et une 

protention du futur (de ce qui va immédiatement  arriver)." [20]  

 

 
 

FIGURE 4. Archetypal Core at the basis of GL 

   

 AC represents an internal model of the Self, reflecting a 

personal vision of the world since each ramification of an 

archetypal record represents a specific association of mental 

objects dependent on the former experiences of the person. It 

plays a motor role in the development of higher cognitive 

processes, through information processing by higher level co-

regulators based on associative brain areas and directly linked to 

AC; these co-regulators, called intentional co-regulators, can be 

compared to the "conscious units" of Crick [6]. An arousing 

situation or a non-expected event S (such as a fracture in a 

higher co-regulator) leads to the activation of some archetypal 

cat-neurons. As explained above, it triggers, through archetypal 

loops, an extension of the activated domain D. This activation is 

transmitted back to the intentional co-regulators, which can 

cooperate to construct a global landscape GL uniting their 

respective landscapes and extending them in depth and duration. 

GL assembles information related to the present state, reinforces 

evanescent traces recently accumulated in lower levels of the 

working memory, and even anticipates some future trends. 

Successive global spaces partially overlap each other.  

 

 The global space GL can be compared to the "global 

workspace" proposed by different authors (e.g. [7], and to the 

"theater of consciousness" of Baars [2]. It gives a frame for the 

development of higher cognitive processes, in particular 

conscious processes characterized by an integration of the time 

dimension through 2 possibly alternative and/or intermingled 

processes which extend Husserl's retention and pretention: 

 (i) A retrospection process (toward the past) proceeds by 

abduction (in the sense of Pierce [23]) to recollect information 

back in time thanks to its reinforcement in GL. Processing this 



information allows for analyzing the event S which has triggered 

the formation of GL and finding its possible causes, thus 

"sensemaking" of the present. 

    (ii) A prospection process (toward the future) is then 

developed in GL, to try and select long term strategies. It is done 

through the formation, inside GL, of local 'virtual' landscapes 

(representing "mental spaces"), where successive procedures can 

be tried by constructing the corresponding complexifications, 

with evaluation of their benefits and of the risk of dysfunction. A 

sequence of alternating retrospection and prospection processes 

thus leads to various 'scenarios'. Once a scenario is selected, the 

retrospection process allows back-casting to find sequences of 

procedures (implicating co-regulators of various levels) able to 

realize this long term program.  

 

 The formation of scenarios is at the root of anticipation and 

creativity. Scenarios directly inspired by the contextual 

environment and current trends are obtained by simple 

complexifications of successive virtual landscapes that add, 

delete and/or combine components (examples: "combinational" 

and "exploratory" creativity [4]; metaphors and "conceptual 

blending" [16]). More innovative scenarios ("transformational 

creativity" [4]) make use of iterated complexifications which (as 

asserted by the "Iterated complexification Theorem" [12]) are 

not reducible to a unique complexification and lead to the 

emergence of mental objects of increasing complexity, so that 

these scenarios transcend the current situation. 

 Successive global spaces can 'consciously' process 

information coming from higher-order cat-neurons, while they 

'automatically' keep traces of the operations of lower level co-

regulators (recruited by retrospection). It explains how a creative 

process can go through an 'incubation period' during which the 

person consciously performs unrelated operations, followed by 

an "insight" with emergence in the global space of new ideas for 

the creative scenario.  

7 CONCLUSIONS & FUTURE WORK 

This paper shows how to model a "theory of mind", in which a 

hierarchy of mental objects and processes emerges from the 

functioning of the brain, through the iterative binding of 

neuronal (hyper-)assemblies. We show that the degeneracy 

property of the neural code is the characteristic which makes this 

emergence possible, and we explain how it allows the 

development of a flexible memory, with a central part, the 

Archetypal Core AC at the basis of the Self and of the formation 

of higher cognitive processes up to consciousness and creativity. 

The info-computational model MENS is an application of the 

Memory Evolutive Systems [12], which are based on a 'dynamic' 

Category Theory. 

 

 The same constructions could lead to the development of an 

artificial cognitive system with higher cognitive processes, 

provided it is based on a graph satisfying the assumptions of 

Section 3 (structural core, reinforcement of active assemblies of 

objects, degeneracy property). Or to the development of Neuro-

Bio-ICT systems enlarging MENS, obtained by connecting, to 

the neural system, an artificial cognitive system acting as an 

"exocortex" to monitor dysfunctions and/or enhance human 

abilities [14]. 

 

 In any case, the local dynamics should be computable, but 

the problem remains to study how the interplay between them 

leading to the global dynamic could be amenable to some kind of 

(hyper-?)computation.    
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Representation, Analytic Pragmatism  and  AI  

Raffaela Giovagnoli1  

Abstract: Our contribution aims at individuating a  
valid philosophical strategy for a fruitful 
confrontation between human and artificial 
representation. The ground for this theoretical 
option resides in the necessity to find a solution that 
overcomes, on the one side, strong AI (i.e. 
Haugeland) and, on the other side, the view that 
rules out AI as explanation of human capacities (i.e. 
Dreyfus). We try to argue for Analytic Pragmatism 
(AP) as a valid strategy to present arguments for a 
form of weak AI and to explain a notion of 
representation common to human and artificial 
agents. 

1. Representation in AI  

The notion of “representation” is at the basis of a 
lively debate that crosses philosophy and artificial 
intelligence. This is because the comparison starts 
from the analysis of “mental representations”.  First, 
we move by adopting a fruitful distinction between 
the “symbolic” and the “connectionist” paradigms in 
AI [1]. This distinction is useful to highlight two 
different ways of explaining the notion of 
representation in AI.  

An important challenge for AI is to simulate not 
only the “phonemic” and “syntactic” aspects of 
mental representation but also the “semantic” 
aspect. Traditionally, philosophers use the notion of 
“intentionality” to describe the representational 
nature of mental states namely intentional states are 
those that “represent” something, because mind is 
directed toward objects. The challenge for AI is 
therefore to approximate to human representations 
i.e. to the semantic content of human mental states. 
If we think that representation means to connect a 
symbol to the object of representation we focus on 
the discreteness of mental representations. On the 
contrary, it could be plausible to focus on the inter-
relation of mental representations. The first 
corresponds to the symbolic paradigm in AI, 
according to which mental representations are 
symbols. The second corresponds to connectionism 
in AI, according to which mental representations are 
distributed patterns [2].  
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The task to consider the similarity between 
human and artificial representation could involve 
the risk of skepticism about the possibility of 
“computing” this mental capacity. If we consider 
computationalism as defined in purely abstract 
syntactic terms then we are tempted to abandon it 
because human representation involves “real world 
constrains”. But, a new view of computationalism 
could be introduced that takes into consideration the 
limits of the classical notion and aims at providing a 
concrete, embodied, interactive and intentional 
foundation for a more realistic theory of mind [3]. 

We would like to highlight also an important and 
recent debate on “digital representation”[4] that 
focuses on the nature of representations in the 
computational theory of mind (or 
computationalism). The starting point is the nature 
of mental representations, and, particularly, if they 
are “material”. There are authors who maintain that 
mental representation are material [5] others thing 
that thought processes use conventional linguistic 
symbols [6]. The question of digital representation 
involves the “problem of physical computation [7] 
as well as the necessity of the notion of 
representation [8] so that we only have the problem 
of how to intend the very notion of representation 
[9]. But, there is also the possibility of 
understanding computation as a purely syntactic 
procedure or to include “every natural process” in a 
“computing universe” [10].  

2. What is AP?  

The core point of Brandom’s original book Between 
Saying and Doing [11] is to describe discursive 
practices and to introduce norms for deploying an 
autonomous vocabulary namely a vocabulary of a 
social practice (science, religion etc.). These norms 
are logical and are at the basis of an “inferential” 
notion of representation. But, inference in this sense, 
recalling Frege, is material [12]. Brandom refuses 
the explanation of representation in terms of 
syntactical operations as presented by 
“functionalism” in “strong” artificial intelligence 
(AI). He does not even accept weak AI (Searle), 
rather he aims to present a “logical functionalism” 
characterizing his analytic pragmatism (AP) [13]. 
Even though Brandom uses his account of 
representation to refuse computationalism, his 



pragmatism is different from the Dreyfus’s one, 
which rests on a non-linguistic know-how (logically 
and artificially not computable). According to 
Brandom, we are not only creatures who possess 
abilities such as to respond to environmental stimuli 
we share with thermostats and parrots but also 
“conceptual creatures” i.e. we are logical creatures 
in a peculiar way.  

First, we introduce “practice-vocabulary 
sufficiency” or “PV-sufficiency” which obtains 
when exercising a specific set of abilities is 
sufficient for someone to count as deploying a 
specified vocabulary [14]. These are for instance 
“the ability to mean red by the word red” or “the 
capacity to refer to electrons by the word electrons” 
(Brandom includes even intentions to refer). 
Together with these basic abilities we must consider 
the relationship between these and the vocabulary in 
which we specify them. A second basic meaning-
use relation is the “vocabulary-practice sufficiency” 
or just “VP-sufficiency” namely the relation that 
holds between a vocabulary and a set of practices-
or-abilities when that vocabulary is sufficient to 
specify those practices-or-abilities. 

In order to deploy any autonomous vocabulary 
we must consider the necessity of certain discursive 
practices defined as “asserting” and “inferring” that, 
according to Brandom, rule out computationalism 
[15]. According to the PV-necessity thesis, there are 
two abilities that must be had by any system that can 
deploy an autonomous vocabulary: the ability to 
respond differentially to some sentence-tokenings as 
expressing claims the system is disposed to assert 
and the ability to respond differentially to moves 
relating one set of such sentence-tokenings to 
another as inferences the system is disposed to 
endorse. By hypothesis, the system has the ability to 
respond differentially to the inference from p 
(premise) to q (conclusion) by accepting or rejecting 
it. It also must have the ability to produce tokenings 
of p and q in the form of asserting. 

3. Why AP could be a fruitful strategy to 
simulate representation? 

In this conclusive session I’ll try to show that the 
notion of representation described in AP terms 
presents aspects that are common to human and 
artificial intelligence.  

The PV- and VP-sufficiency thesis suggest that 
basic practices can be computationally implemented 
and this description corresponds to the Brandomian 
interpretation of the Turing test and, consequently, 
to the refusal of a classical symbolic interpretation 

in AI (GOFAI) of the notion of human 
representation. Brandom introduces a pragmatic 
conception of artificial intelligence or “pragmatic 
AI” which means that any practice-or-ability P can 
be decomposed (pragmatically analyzed) into a set 
of primitive practices-or-abilities such that: 

1. they are PP-sufficient for P, in the sense that 
P can be algorithmically elaborated from 
them (that is, that all you need in principle 
to be able to engage in or exercise P is to be 
able to engage in those abilities plus the 
algorithmic elaborative abilities, when these 
are all integrated as specified by some 
algorithm); and 

2. one could have the capacity to engage or 
exercise each of those primitive practices-
or-abilities without having the capacity to 
engage in or exercise the target practice-or-
ability P [16]. 

For instance, the capacity to do long division 
is “substantively” algorithmically decomposable 
into the primitive capacities to do multiplication 
and subtraction. Namely, we can learn how to do 
multiplication and subtraction without yet having 
learning division.  

On the contrary, the capacities to differentially 
respond to colors are not algorithmically 
decomposable into more basic capacities. This 
observation entails that there are human but also 
animal capacities that represent a challenge for 
strong AI (GOFAI), but nowadays not for new 
forms of computationalism. Starting from Sellars, 
we can call them reliable differential capacities to 
respond to environmental stimuli [17] but these 
capacities are common to humans, parrots and 
thermostats so that they do not need a notion of 
representation as symbol manipulation.   

Along the line introduced by Sellars, Brandom 
intends the notion of representation in an 
“inferential” sense. It is grounded on the notion of 
“counterfactual robustness” that is bound to the so-
called frame problem [18]. It is a cognitive skill 
namely the capacity to “ignore” factors that are not 
relevant for fruitful inferences. The problem for AI 
is not how to ignore but what to ignore.  In 
Brandom’s words: “Since non-linguistic creatures 
have no semantic, cognitive, or practical access at 
all to most of the complex relational properties they 
would have to distinguish to assess the goodness of 
many material inferences, there is no reason at all to 
expect that that sophisticated ability to distinguish 
ranges of counterfactual robustness involving them 
could be algorithmically elaborated from sorts of 



abilities those creatures do have” [19]. Nevertheless, 
we could start by studying what “intelligence” really 
is by starting from the simplest cases. 

Brandom introduces the notion of 
“counterfactual robustness” to overcome strong 
GOFAI, to avoid the primacy of prelinguistic 
background capacities and skills in weak AI (Searle) 
and phenomenology (Dreyfus). The notion of 
representation he introduces could work only if we 
embrace a peculiar form of inferentialism. 
Differently, we could read AP to analyze inferential 
capacities that are connected with logical laws 
common to human and artificial agents [20].  
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Salient Features and Snapshots in Time:
an interdisciplinary perspective on object representation

Veronica Arriola-Rios1 and Zoe P. Demery2

Abstract. Faced with a vast, dynamic environment, some animals
and robots often need to acquire and segregate information about ob-
jects. The form of their internal representation depends on how the
information is utilised. Sometimes it should be compressed and ab-
stracted from the original, often complex, sensory information, so
it can be efficiently stored and manipulated, for deriving interpreta-
tions, causal relationships, functions or affordances. We discuss how
salient features of objects can be used to generate compact represen-
tations, later allowing for relatively accurate reconstructions and rea-
soning. Particular moments in the course of an object-related process
can be selected and stored as ‘key frames’. Specifically, we consider
the problem of representing and reasoning about a deformable object
from the viewpoint of both an artificial and a natural agent.

1 INTRODUCTION
The cognitive architecture of any animal or machine (jointly
‘agents’) has limits, so it cannot contain a perfect model of the dy-
namic external and internal world, such as about all matter, pro-
cesses, affordances, or more abstract concepts, like ‘mind’ or ‘spirit’.
Every agent receives a particular amount of data through its sensors.
How useful that data is in the short or long term depends on the en-
vironmental conditions, how accurately the data might be processed
into information, and the agent’s behavioural response. Frequently,
an agent should maximise the amount of meaningful, relevant infor-
mation it can obtain about its surroundings, while minimising the en-
ergy expended, but this is highly dependent on the nature of the agent
[4]. This applies not just to a static snapshot of time, but also to a con-
stantly changing world with a past, present and future, where being
able to predict events, or select between alternative actions without
actually trying them, may be useful for the agent. So in these cir-
cumstances, what are the most useful elements for the agent to store
and process in its cognitive architecture and how may they best be
coded? Principally, we propose that when an agent gathers informa-
tion through its senses, often it may form object representations sup-
ported by exploration3.

To date in the field of animal cognition (AC), there has been sur-
prisingly little systematic, quantitative research on exploration, and
how it could support learning mechanisms in different agents (see

1 School of Computer Science, University of Birmingham, Edgbaston, Birm-
ingham, B15 2TT, UK; email: v.arriola-rios@cs.bham.ac.uk

2 School of Biosciences, B15 2TT; email: zxd878@bham.ac.uk
3 Cognition does not always rely on internal representations and the degree

of detail in any internal representation can vary greatly depending on the
situation. For instance, there can be a lack of detail especially when the
environment can largely control an agent’s behaviour, such as in flocking
behaviour or in using pheromone trails. Here alternative, but complemen-
tary, mechanisms may be more relevant, such as emergency or embodiment,
but in this paper we will not consider these cases[3].

[28] for more discussion). What research there is, has largely been
on humans and focussed on Bayesian network learning (e.g. [20]).
Among the non-human animal researchers, the focus has been on
what the different cognitive capacities of different species are, rather
than how they actually process information to achieve those capac-
ities [25]. For example, the ‘trap-tube task’ is a typical litmus test
for causal understanding of gravity (e.g. [26]). It has revealed a lot
about many species, but it is just a binary measure of whether an in-
dividual can complete the task or not. No one has fully investigated
why one individual can succeed at the task, while another fails – is
it something about their different exploratory strategies? Moreover,
although quite complex-looking actions can often be performed by
agents with simple mechanisms and small neural architectures (e.g.
[11]), they may not be able to generalise these actions to other sim-
ilar, but novel circumstances. Thus in this paper, we are concerned
with more complex, flexible agents. Another area consistently ig-
nored in AC, but one which may provide answers, is how the senses
support exploratory learning (e.g. [7]).

It is a blossoming area in Artificial Intelligence (AI) however.
Robots force us to explicitly define the model design, suggesting
concrete, testable hypotheses for AC. However, we believe there is
not yet a robot/simulation that can flexibly abstract concepts, or gen-
eralise knowledge to new situations. AI has looked at different learn-
ing mechanisms in isolation with relative success, but few projects
have tried combining them into one agent (e.g. [10]). Therefore, AC
behavioural experiments can provide realistic biological constraints
and inspire more integrative cognitive modelling in AI.

We would like to propose that when exploration of objects occurs
for forming representations, it is not always random, but also struc-
tured, selective and sensitive to particular features and salient cate-
gorical stimuli of the environment. Also that it can follow through
three stages of theory formation – the forming, the testing and the
refining of hypotheses [6]. Each hypothesis may be specific to a par-
ticular group of affordances or processes (‘exploratory domains’),
but they may also be generalisable to novel contexts. We introduce
how studies into artificial agents and into natural agents are comple-
mentary [6], by comparing some findings from each field.

First, we will take a top-down approach to explore what some of
the general environmental constraints imposed on an agent’s system
when internalising the world around it may be. Then we will look
at some of the possible mechanisms to solve these problems, partic-
ularly in the visual domain of object representation. There are sev-
eral methodological problems in computer vision research, includ-
ing recognition, tracking and mental imagery [14]. Within robotics,
we present an approach where simulations of real objects, calibrated
from real-time environmental data, can be used as artificial mental
imagery. We have exploited a combination of key features from im-



age analysis, computer graphics and animation, as well as aspects
of physical models, to generate an internal representation of a de-
formable object with predictive capabilities. Finally, we will con-
sider the degree of ecological validity of this model by comparing
it with AC behavioural findings about parrots, who are notoriously
exploratory and playful throughout their lives.

2 REQUIREMENTS FOR THE
AGENT-ENVIRONMENT INTERACTION

An agent interacting with its surrounding environment often com-
bines perception and analysis with action. It can also be driven by its
goals, which can be quite explicit, like foraging for survival, or par-
ticular problem-solving tasks. Or they can be quite implicit, such as
to gather information by apparently random exploratory behaviour.
Shaw [21] suggests, “The chief end of an intelligent agent is to un-
derstand the world around it.” Here, the word ‘understanding’ im-
plies the agent’s ability to make predictions about the world. For this
to take place, the agent should be able to detect the consistent prop-
erties or salient features in its environmental niche. These properties
allow a link to form between the agent and the environment. We will
now consider what some of these primordial properties might be (see
also [5]).

2.1 Redundancy
Given the inherent limitations of the agent, it will only be possible
for it to gain a partial understanding of its surroundings4. This partial
understanding may not allow the agent to make perfect predictions
for all environmental events, so it cannot always be ready to process
useful information. As it detects sensory data, it also may not succeed
at processing relevant signals. Therefore, we expect there may be er-
rors and inexactitudes at different levels of the agent’s perceptual or
analytical processes. It may thus be useful for its system to be able to
tolerate this margin-of-error. Some agents often have more than one
mechanism to find things, solve problems, or to perform actions. The
agent could just react according to different layers of data filtering, or
it could use one or a combination of different learning mechanisms
[6]. While qualitatively different, all of these mechanisms produce
similar, valid results. In this sense, we call these different possible
mechanisms ‘valid ways’, and say they are ‘redundant’. Therefore,
redundancy allows the agent to ignore irrelevant data, or to recon-
struct faulty perceptions from new perceptions that convey the same
information.

2.2 Consistency
When multiple methods are used to collect or analyse data, they can
act in a complementary way, and contribute by providing different
information. Alternatively, they may be superfluous; in which case,
they confirm previous findings. For an agent, different methods of
perceiving the same thing should be consistent with each other, if
there is enough knowledge. An agent that sees a pen while touch-
ing it, should gain tactile information in accordance with the position
and surface of the image it sees. If there is a fault in the synchroni-
sation between this visual and tactile information, the agent will not
be able to properly integrate this information, or accurately describe
the object. This principle is present in human mathematics: different
methods used to solve the same equation, must give the same answer.

4 An artificial agent (e.g. a virtual automaton) in a very simple environment
can make perfect predictions; but we are not concerned with these cases.

2.3 Persistency
For an agent to be able to make relatively accurate predictions about
the environment, there should be at least a few unchanging rules in
the environment for a significant period of time. These rules are use-
ful for the agent’s internal knowledge and learning mechanisms. The
strongest examples can be found in mathematics and physics. In or-
der to develop the cosmological theories of physics, it is necessary to
assume that the physical laws that rule at the present time on planet
Earth, are the same rules that applied during the Big Bang and in
galaxies far beyond ours. Agents should respond in the same way
to the environment. During complex actions, an agent may change or
modify their goals and plans. Even then though, they should make the
changes according to a particular, foreseeable pattern, which may be
rooted, for example, in their brain structure. If agents do not follow
persistent rules, their behaviour is erratic and unpredictable.

2.4 Regularity
This is the predictable presence of previously perceived features or
classes of them, due to a fixed relationship between occurrences5.
There should be persistent patterns in the environment, allowing at
least for partial predictions, particularly when an agent is faced with
different causal problems. Causality is a manifestation of regularity,
where the partaking elements are not always identifiable, but whose
manifestation always entails the same consequence. Thus, agents
should have mechanisms capable of detecting these patterns to take
advantage of them. Then the environment could be categorised us-
ing a finite amount of key features linked by predictive relationships,
including elements representing continuous features. For example, a
small mathematical equation can describe an infinite parabola.

2.4.1 Sequentiality

This is a particular form of regularity, but in a universe with only one
temporal dimension, it becomes especially relevant. Sequentiality is
the presence of a series of features of two or more elements that are
nearly always perceived in the same total or partial order6. The first
features can be used to identify the sequence and predict either the
following features, or the rules set needed to process them. Some
examples include: identify a command and know which actions to
execute; analyse the first items of a numerical sequence and predict
the next; listen to the first notes of a song and remember how to sing
the rest (which was memorised in advance); identify the beginning
of a question and prepare to understand it to look for the answer; or
listen to the sound of a prey and prepare to chase.

2.4.2 Structure: partial order and layers

There could also be a succession of sub-sequences. The connections
here would only allow a few options to follow, such as beginnings
of other sub-sequences. This forms a branching structure, which be-
comes layered, modular, and, in some cases, hierarchical [1]. The
maximum length of an existing sequence, and the maximum number
of branches that can be remembered and manipulated, impose strict
limitations upon what the agent can understand, and the types of pat-
terns it is capable of detecting. However, this structure may allow
more complex agents to make abstractions, as concepts formed at
one stage could be re-used and refined to repeatedly form ever more

5 This can be present in different dimensions, or in a hierarchical structure.
6 These may not be contiguous and can include cause-and-effect learning.



complex concepts in multiple ways [4]. This allows for progressively
specific and parallel processes (e.g. [9]).

2.5 Experience
For small and well-identified tasks, a largely pre-programmed agent
may suffice. Little experience may be needed in a relatively static
environment, such as where precocial animals, whose behaviour has
been almost completely determined by their genome, just need to
survive long enough to reproduce. Other agents are often required to
adapt to diverse, dynamic environments, where a lot more learning is
required (see [4] for greater discussion). The different extractions of
relevant information (Section 2.1) would more likely be processed by
mechanisms shaped and influenced by experience. The agent should
seek out information to reinforce, evolve and, when possible, prove
or disprove its current models, particularly if its expectations are vi-
olated. Depending on the needs and the competences of the agent,
a specific, relevant subset of experiences would allow specific, rele-
vant features of the individual’s niche to be captured (e.g. [27]). We
believe there is continual extension of these ‘branches’ or ‘blocks of
knowledge’ throughout the life of a cognitive agent. At different ages
or stages of development, an agent should take in different aspects of
the same overheard conversation, for instance, or different aspects of
the operation of the same tool.

2.6 Where does this leave us?
All of the above described environmental features/constraints to-
gether form a structured universe. Parts of this structure may be
perceived and understood by artificial and natural agents. The ex-
istence of regularities reduces the information needed to describe a
part of the environment, as once enough elements and relationships
have been identified, the rest can be inferred. Some animals may
have the ability to identify ‘valid ways’ and describe them as ‘for-
malisms’; sets of rules that can warrant good results when sufficient
conditions are met [6]. This is essentially how science operates, par-
ticularly logic, mathematics and computer science.

Within the field of AI, some formalisms for ‘knowledge represen-
tation’ focus on the association of symbols to entities (i.e. objects,
relationships and processes) in a structured way, such as ‘Frame Lan-
guages’ [15]. However others, like ‘First Order Logic’, incorporate
powerful systems of deduction. These symbolic languages are ex-
tremely powerful for discrete reasoning, but they may not be partic-
ularly appropriate for describing continuous dynamics, or even for
making predictions, such as when objects move through an environ-
ment. In AI, it is highly relevant to consider the amount and type of
knowledge needed before an agent can be capable of processing it.
How much does the agent need to know to be able to predict a few
movements of different objects? Can that knowledge be learned from
experience, or does it need to be programmed beforehand?

In certain contexts, the minimum number of necessary elements
to complete a description is known as the number of degrees of free-
dom. For example, given the generic mathematical formula that de-
scribe parabolae, only three points are needed to specify a single,
infinite parabola. This principle can be directly applied in computer
graphics. By making use of algebraic equations, an infinite amount
of shapes can be approximated, represented and reconstructed with
just a few polynomials [16]. Furthermore, transformations of these
shapes can be encoded with mathematical formulae, thus allowing
the representation of physical objects and processes; which can be
used to implement a form of mental imagery.

Figure 1. Top view of an experiment where a robotic finger (sphere at the
top) pushes a sponge, perpendicular to its widest axis, against a pencil that

serves as an obstacle (green cap). a) The contour of a deformed sponge
approximated by a series of splines, with the control points placed by a

human. b) The sponge represented by a rectangular mesh, generated in the
first frame before deformation; the mesh configuration was predicted by the

physics model. c) Hexagonal mesh, similar to (b).

Hence, whether the powerful deductive machinery is available in
a natural or an artificial agent, it is important to define how we go
from representations of continuous transformations, to discrete ob-
jects and events. As with the popular phrase, ‘a picture is worth a
thousand words’, predicate logic may not be able to naturally repre-
sent 3D graphical information in a consistent, complete and compact
description. It may be possible, however, to extract logical informa-
tion from graphical simulations when required for symbolic reason-
ing. Here we give an example of how this could be achieved in AI by
combining traditional animation techniques, computer graphics and
physics, with symbolic representations.

We believe this approach may be more rigorous than the stan-
dard mechanism used in human brains. Humans can recognise things
without being able to draw them [2], or use mental imagery without
making exact simulations [14] (while our AI system requires them).
This shows how we need to better understand the underlying mecha-
nisms of natural agents processing and representing the world around
them. Observations of natural exploration behaviour do provide re-
alistic biological constraints on the design of AI models for object
representation. We will investigate these issues in AC by running be-
havioural experiments on parrots, as our exemplar exploratory and
adaptive species. Is there evidence of each of the environmental re-
quirements/regularities described above being attended to by the par-
rots? Does their exploration behaviour suggest underlying strategies
for processing and representing the environment?

3 DESIGNING A REPRESENTATION
3.1 Using key frames to model deformable objects
The study of the perception and understanding of the affordances of
deformable objects is particularly appropriate to illustrate the points
outlined in the section above. The problem of representing solid ob-
jects, their properties and their related processes has been studied in
great detail in computer graphics [8], and there has been attempts to
generate representations using semantic information [22]. Within the
first field, there are several good representations for many different



types of shapes, most of them based on meshes, splines or quadrics
[16]. The motion of objects is simulated with an approach analo-
gous to traditional cartoon animations. There is a set of key frames,
where a ‘key frame’ is a drawn snapshot in time defining the start and
end points of any smooth transition, and all of the frames connecting
them are called the ‘inbetweeners’.

Currently, key frames are identified and drawn by humans; in tra-
ditional animation the most skilled cartoonists are responsible for
them. Due to the smoothness of the transition between key frames, it
is possible for a less-skilled cartoonist to interpolate the inbetween-
ers. In computer animation, the control points and curves defining the
geometry and colours of the scene are set in the key frames. The tran-
sitions between key frames are mainly polynomial interpolations, or
continuous mathematical transformations of these control elements
[18]. To create realistic animations, movements are often captured
from real objects. This is a very slow and expensive process [13].
In an attempt to automate the rendering of realistic movements and
the inbetweeners, physics engines have been incorporated into the
animation packages. They are also present in real-time virtual envi-
ronments where interaction with a user takes place.

However, the incorporation of physics changes the dynamics of
producing an animation slightly. Instead of interpolating between
two key frames, the first key frame is given by a human designer and
the simulation stops when a given condition is satisfied, thus auto-
matically generating the inbetweeners and the final key frame. Note
that predictive capabilities have been attained, and that the simulation
is now required to specify the new parameters of the material. This
includes mass, young coefficient and spring stiffness, in addition to
the method’s criteria, such as integration methods or time steps. Cor-
rectly estimating these parameters is a difficult problem.

Furthermore, while the simulations may look plausible to the hu-
man eye, they may not be physically accurate, so different models
are required to simulate different materials and differently shaped
objects. A natural agent’s brain faces a similar computational prob-
lem, yet evolution largely seems to have solved it in a qualitatively
different way. Humans can reason and make predictions about fea-
tures of the world, but we probably do not simulate it in the quan-
titative way a physics engine does. It is still not completely clear
how or what exactly the underlying mechanism is in various natural
agents. Behavioural experiments can allow us to infer what is going
on in an animal’s mind. However, interpretation of the data is largely
based on assumptions and only allows us to make indirect conclu-
sions. Invasive techniques, such as particular neurophysiological or
brain imaging methods, only provide partial information about the
content, or even about the structure or neural representations, in an
animal’s mind. Thus, if done correctly, AI simulations can be very
illuminating. We suggest that an initial list of problems an artificial
agent needs to solve are:

1. Generate an internal representation of real deformable objects in
the surrounding environment;

2. Identify key frames of the related environmental processes;
3. Interpolate (continuously or discretely) the links between frames;
4. Use previous knowledge to predict future events.

The automation of the animation process provides one solution for
the first three points. Traditional animation techniques, however, can-
not address the fourth point. The use of physics models and formal
logics can address the two last points, but in this case the agent needs
to select and calibrate the right model. It is still debatable whether
physics models can correctly approximate all the ranges of processes
observed in natural environments, given the inherent limitations of

mathematical models to model real, complex deformations. Further-
more, there is still no model that integrates all of the points into one
agent. Given the huge variety of possible affordances perceived by
humans alone, we expect that some form of learning should be used
to generate the model(s), which would provide the interpolating link
between key frames and aid in making predictions. However, which
type of learning mechanism is still open to question.

Here we present the advances of a preliminary, physics-based
method, where a general (though not completely accurate) model of
deformable objects is used [24], and an artificial agent learns to cal-
ibrate and use it in the way described above. The next step is to take
the key frame representation of the object and extract symbolic ones
from it. Then we need to take functions that describe the transfor-
mations, associate a symbol to it, and consider that symbol as refer-
ring to a categorised process or action. For several cases, this step
should be quite straightforward, since the representation has already
been discretised, grounded and categorised [23]. Then the already
developed, symbolic-level machinery can be applied and the results
compared with the natural exploration behaviour (e.g. of parrots) for
ecological validity. Is there evidence of similar mechanisms in natu-
ral systems? Is our model biologically plausible?

3.2 Representing the object’s shape

3.2.1 Kakariki Experiment I: AC implications for AI models

When segregating the world around itself, we believe an agent first
needs to identify and represent distinct objects. Then the agent needs
to understand what the shape of each object means, i.e. its affor-
dances when it interacts with the rest of the world. What are its phys-
ical properties? For instance, if two key elements are connected by
a known relationship, anything in between is already implicitly rep-
resented. Contact points and segments of continuous curves can be
approximated by lines and polynomials, and delimited by key points.
Under this light, it is natural that an agent would be more interested in
these points of discontinuity. Indeed, in our first AC experiment, we
found that this does seem to be the case, at least for the New Zealand
red-fronted parakeet or ‘kakariki’ (Cyanoramphus novaezelandiae).

We chose kakariki as our model animal species for investigating
how agents gather and represent environmental information, as they
are neophilic and have a high exploratory tendency throughout their
lives. Moreover, as with many other parrot species, they are relatively
intelligent and have an anatomy adapted to dexterity and fine object
manipulation. We presented a series of novel objects of a range of
different rigid shapes to 21 kakariki individually and recorded their
exploratory behaviour in detail over a 25-minute period. They spent
most of the time exploring the corners and indents of the objects, then
areas of high curvature second, over smooth surfaces. We would like
to suggest this may be because corners and areas of high curvature
are more likely to cue useful properties/affordances about different
objects.

Related to this finding, it is interesting to consider in AI how Shaw
uses information theory to apply the principle of maximising infor-
mation and predictive capabilities to an image analysis task, and the
first result he finds is an edge detector [21]. Similarly, related to the
AC finding on relative importance of areas of high curvature, Rav-
ishankar [19] found that it is easier for an artificial agent to recog-
nise deformed objects by placing emphasis on the bending around
points of high curvature. It is further compelling that a mathematical
function is segmented where there is a discontinuity. Thus, in one
dimension, corners are discontinuities of the derivative of functions;



in two dimensions, edges are discontinuities of derivatives of func-
tions; while points of high curvature (maxima, minima and inflexion
points) are points where the first derivative is zero. It would seem that
the same issues that mathematicians deem interesting are playing a
major role in both natural and artificial agents, as features for ob-
ject segmentation, categorisation, tracking and, possibly, prediction.
Therefore the use of mathematical curves to approximate deformable
objects is highly illustrative.

3.2.2 AI Model I: modelling the sponge

In one dimension, a way of approximating a continuous curve is by
a succession of lines. In two or more dimensions, shapes can be ap-
proximated by meshes, where each element is ‘flat’ and defined by
nodes and edges. Triangular and hexagonal meshes are widely used.
Alternatively, quadrics and polynomials of two or three degrees can
be used. They are flexible enough for representing most humanly dis-
tinguishable continuous shapes. Polynomials have been used to form
splines, which are defined by a small set of control points. They can
be used to interpolate as much detail of a shape as desired, since the
polynomials are continuous, while the connections between them can
be discontinuous (e.g. [16]). This is why we considered meshes and
splines for our model.

As an experimental example, our model analysed the process of
deforming a sponge. In general, compliant materials have the po-
tential to change their shape in nearly an infinite amount of un-
predictable ways, therefore understanding deformable objects poses
a particularly interesting challenge for both artificial and natural
agents. Unlike rigid objects, it is not possible to know in advance
all of the elements required for representing the deformation. How
many splines or elements in a mesh is required, or what are its de-
grees of freedom? For some specific objects under controlled circum-
stances, these possibilities can be restricted, as in medical research
with human organs [12]. However, an agent that interacts with an en-
vironment populated with unrestricted deformable objects, requires
a more general solution. One approach is to automatically generate
a hierarchical mesh to represent a few objects in a virtual environ-
ment, which adapts as an object deforms [17]. However, this has not
yet been directly tried in robotics, where an internal representation
needs to match objects in the external environment. This continues
to remain an open question even in the AC literature – what would
the agent do if an object becomes deformed to a shape unforeseen by
the initial representation?

As a tentative first step towards solving this problem, we looked at
modelling a spheric robotic finger pushing against a sponge. Please
note we are not claiming this model replicates animal vision or rea-
soning, but it may provide a building block from which to work from.
The movement of the robotic finger was blocked by a pencil directly
opposite. The finger performed a continuous movement against the
sponge, while a camera and a force sensor registered the interaction.
Figure 1 illustrates the use of splines and meshes to approximate the
contour and surface of the sponge as it became deformed.

3.3 Representing the related processes
3.3.1 Kakariki Experiment II: more implications for models

Once the agent can generate a representation of any object shape
it may detect, we believe the next step is for it to understand the
related physical processes in the environment. It should identify the
key elements and unite them with appropriate functions. How does
the object become deformed when interacted with in the world?

We first considered this in the natural dimension in a second AC
behavioural experiment. We presented the same kakariki with five
cubes of different deformabilities in a random order over five trials
over different days. As in the previous experiment, in each trial we
allowed them 25 minutes to interact with the objects as they chose
and recorded their exploration behaviour in detail.

As we predicted in [6], they initially explored the two extremes
the most (i.e. the most rigid and the most deformable cube), but their
exploratory ‘focus’ or ‘strategy’ changed. So in the second and third
trial, the cube of the ‘median’ or intermediate deformability was ex-
plored significantly more than all of the other cubes. Then in the final
two trials, the cubes the next interval along (i.e. the second-most de-
formable cube and the second-most rigid cube) became more of a
focus for the kakariki’s exploration. In conclusion, the exploration
strategy seems to change with time, perhaps as more experience and
progressively more specific knowledge is gained about the deforma-
bility of objects and different object categories. We would like to sug-
gest that the kakariki had a exploration strategy that allowed them to
gain more information about the process of deforming an object.

3.3.2 AI Model II: modelling the deformation

Thus as a preliminary, tentative step, we next wanted to consider
what the design of this internal strategy/learning mechanism might
be. In the AI example of deforming the sponge, the following key
frames can be identified:

1. The finger starts moving. At this point the force sensor detects
only some noise, but the command to move has been given and
the vision (camera) begins to detect changes between frames, i.e.
that the position of the finger is changing. Thus, the first key frame
would contain the finger separated from the sponge and the pencil.

2. The finger touches the sponge. At this point the force sensor
detects an abrupt increase in one direction. Visually, collision de-
tection routines begin to detect a contact between the circle (i.e.
the finger), and one or two triangles in the mesh (i.e. the sponge).

3. The finger stops moving. No more changes are detected.

Notice that these coarse key frames are the frames where things
change in a very noticeable manner. It is possible to connect frames
1 and 2 by using a function that describes the simple linear transla-
tion of the circle (finger). Between frames 2 and 3, the same trans-
lation function applies to the circle, but also the physics model gets
activated to deform the mesh (sponge) as the circle pushes it. These
two functions can predictively describe the observed movements. At
frame 3, no function or model is required anymore, because the exe-
cution of the command is over and there is no more movement. The
scene has ended. From this perspective, the whole process/action can
productively be segmented into smaller actions. The internal repre-
sentation of each frame can be formed by tracing back the activation
and deactivation of the required mechanisms. Now each segment can
be re-represented by a single symbol. The whole sequence can be
described as something like: displace finger; push sponge; stop. The
agent can then choose between thinking of the command it executed
(e.g. translate), or the changes in the sponge (detected through vision
or touch), or combinations of both.

There are precedents to doing this type of segmentation, such as in
the work by [22]. Here the agent, Abigail, analyses a simple circle-
and-sticks simulation of ping-pong. Even for this highly simplified
world, it was not trivial to unequivocally detect the points of dis-
continuity that establish the beginning and end of an action. How-
ever, Siskind was not quite using our concept of segmentation in



modelling, which is just an extension of the idea of a polynomial
connecting two control points. Even though the use of splines to ap-
proximate curves is a widely used technique, there is not a general
technique that can automatically generate a spline from scratch to ap-
proximate any curve. It is a brand new research field; to investigate
the use of models for interpolation between frames, segmenting and
understanding actions.

4 CONCLUSION
By studying both artificial and natural agents, we can provide a fuller
account of how, when necessary, an individual can efficiently rep-
resent objects and their related processes in the environment from
the huge number of sensory signals they receive. In this light, we
can also consider what the requirements posed by the external en-
vironment may be upon the finite brain of the agent. Thus, we have
briefly discussed two behavioural experiments on parrot exploration
of novel objects to give us an insight into what the biological con-
straints might be on an AI model for representing deformable ob-
jects. In considering natural behaviour and the possible underlying
exploration strategies for gathering information, we have described
how a selection of key elements from the environment could be used
as a basis for an object representation. These key elements are con-
nected through functions, which indicate how to obtain the value of
other points. The same mechanism could be used to represent pro-
cesses and actions, by identifying key frames, and finding the correct
physics model to interpolate between frames. It is possible to seg-
ment a complex interaction between the agent and the environment
into individual actions, by detecting: the commands given; disconti-
nuities in the sensory signals; and the intervals of application of each
mechanism. Each of these individual actions could then be repre-
sented by symbols. These symbols are grounded in the environment
through the selected key elements. It is straightforward to use these
symbols for traditional problem-solving tasks, as in [1]. We have fur-
ther provided evidence that natural agents seem to similarly focus
their exploration behaviour on key environmental elements, such as
corners, edges and areas of high curvature. Likewise, at least with
parrots, individuals seem to attend first to extreme exemplars of par-
ticular object properties, including deformability/rigidity, but this ex-
ploration strategy becomes gradually refined with time. However, we
cannot yet confirm if this parrot exploration is due to similar under-
lying mechanisms as those presented in our AI model. In conclusion,
we have presented an interesting preliminary analysis of some of the
forms of object representation that may be useful to intelligent natu-
ral agents in certain contexts, and demonstrated these capabilities in
working computer models.
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Grailog: Mapping Generalized Graphs to 
Computational Logic

Harold Boley1

Abstract. Human intuition is often supported by graph-like 
knowledge constructs depicting objects as (atomic) nodes and 
(binary) relationships as directed labeled arcs. Following the AI 
tradition of simple semantic networks and the Semantic Web use 
of RDF triple stores, philosophical and domain knowledge could 
in principle be specified as a single directed labeled graph. 
However, such graphs cannot directly represent nested 
structures, non-binary relationships, and relation descriptions; 
these advanced features require encoded ('contrived') constructs 
with auxiliary nodes and relationships, which also need to be 
kept separate from direct ('natural') constructs. Therefore, 
various extensions of directed labeled graphs have been 
proposed for knowledge representation, including graph 
partitionings (possibly interfaced as complex nodes), n-ary 
relationships as directed labeled hyperarcs, and (hyper)arc labels 
used as nodes of other (hyper)arcs. Meanwhile, a lot of AI and 
Semantic Web research and development has gone into extended 
logics for knowledge representation such as description logics, 
general modal logics, and higher-order logics. The talk 
demonstrates how knowledge representation with graphs and 
logics can be reconciled. It proceeds from simple to extended 
graphs for logics needed in Philosophy, Cognitive Science, AI, 
and the Semantic Web. Along with its visual introduction, each 
graph construct is mapped to its corresponding symbolic logic 
construct. This has led to the development of the knowledge 
representation language Grailog as part of the Web-rule industry 
standard RuleML. By serializing Grailog knowledge in 
RuleML/XML (http://ruleml.org/#Grailog), it will become 
interchangeable between Web-based engines for Computational 
Logic.1 
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Abstract.  Turing presented a general representation scheme by 

which to achieve artificial intelligence – unorganised machines. 

Significantly, these were a form of discrete dynamical system 

and yet dynamic representations remain relatively unexplored. 

Further, at the same time as also suggesting that natural 

evolution may provide inspiration for search mechanisms to 

design machines, he noted that mechanisms inspired by the 

social aspects of learning may prove useful. This paper presents 

initial results from consideration of using Turing’s dynamical 

representation within an unconventional substrate - networks of 

Belousov-Zhabotinsky vesicles - designed by an imitation-based, 

i.e., cultural, approach. 12 

1 INTRODUCTION 

In 1948 Alan Turing produced an internal paper where he 

presented a formalism he termed “unorganised machines” by 

which to represent intelligence within computers (eventually 

published in [37]). These consisted of two main types: A-type 

unorganised machines, which were composed of two-input 

NAND gates connected into disorganised networks (Figure 1); 

and, B-type unorganised machines which included an extra 

triplet of NAND gates on the arcs between the NAND gates of 

A-type machines by which to affect their behaviour in a 

supervised learning-like scheme. In both cases, each NAND gate 

node updates in parallel on a discrete time step with the output 

from each node arriving at the input of the node(s) on each 

connection for the next time step. The structure of unorganised 

machines is therefore very much like a simple artificial neural 

network with recurrent connections and hence it is perhaps 

surprising that Turing made no reference to McCulloch and 

Pitts’ [28] prior seminal paper on networks of binary-thresholded 

nodes. However, Turing’s scheme extended McCulloch and 

Pitts’ work in that he also considered the training of such 

networks with his B-type architecture. This has led to their also 

being known as “Turing’s connectionism” (e.g., [10]). 

Moreover, as Teuscher [34] has highlighted, Turing’s 

unorganised machines are (discrete) nonlinear dynamical 

systems and therefore have the potential to exhibit complex 

behaviour despite their construction from simple elements. The 

current work aims to explore the use of Turing’s dynamic system 

representation within networks of small lipid-coated vesicles. 

The excitable chemical Belousov-Zhabotinsky (BZ) medium is 
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packaged into the vesicles which form the simple/elementary 

components of a liquid information processing system. The 

vesicles communicate through chemical “signals” as excitation 

propagates from vesicle to vesicle. Initial experimental 

implementations which use micro-fluidics to control vesicle 

placement have recently been reported [24]. This paper considers 

implementation of the basic two-input NAND gates using the 

vesicles and then how to design networks of vesicles to perform 

a given computation. In particular, a form of collision-based 

computing (e.g., [1]) is used, along with imitation programming 

(IP) [8], which was also inspired by Turing’s 1948 paper, 

specifically the comment that “Further research into intelligence 

of machinery will probably be very greatly concerned with 

‘searches’ …. [an example] form of search is what I should like 

to call the ‘cultural search’ … the search for new techniques 

must be regarded as carried out by the human community as a 

whole” [37].  

 

 
 

Figure 1. Example A-type unorganised machine consisting of 

four two-input NAND gate nodes (N=4), with one input (node 1) 

and one output (node 4) as indicated by the bold arrows. 

2 UNORGANISED MACHINES 

A-type unorganised machines have a finite number of possible 

states and they are deterministic, hence such networks eventually 

fall into a basin of attraction. Turing was aware that his A-type 

unorganised machines would have periodic behaviour and he 

stated that since they represent “about the simplest model of a 

nervous system with a random arrangement of neurons” it would 

be “of very great interest to find out something about their 

behaviour” [37]. Figure 2 shows the fraction of nodes which 

change state per update cycle for 100 randomly created 

networks, each started from a random initial configuration, for 

various numbers of nodes N. As can be seen, the time taken to 

equilibrium is typically around 15 cycles, with all nodes in the 

larger case changing state on each cycle thereafter, i.e., 

oscillating (see also [34]). For the smaller networks, some nodes 



remain unchanging at equilibrium on average; with smaller 

networks, the probability of nodes being isolated is sufficient 

that the basin of attraction contains a degree of node stasis. 

However, there is significant variance in behaviour. 

 
Figure 2. Showing the average fraction of two-input NAND gate 

nodes which change state per update cycle of random A-type 

unorganised machines with various numbers of nodes N. Error 

bars show max. and min. values from 100 trials. 

 

Turing [37] envisaged his A-type unorganised machines being 

used such that they “ ... are allowed to continue in their own way 

for indefinite periods without interference from outside” and 

went on to suggest that one way to use them for computation 

would be to exploit how the application of external inputs would 

alter the (dynamic) behaviour of the machine. This can be 

interpreted as his suggesting individual attractors be used to 

represent distinct (discrete) machine states and the movement 

between different attractors as a result of different inputs a way 

to perform computation. Note this hints at some of the ideas later 

put forward by Ashby [6] on brains as dynamic systems.       

Teuscher [34] used a genetic algorithm (GA) [18] to design 

A-type unorganised machines for bitstream regeneration tasks 

and simple pattern classification. Bull [8] used IP to design 

simple logic circuits, such as multiplexers, from them. Here the 

unorganised machine had an external input applied, was then 

updated for some number of cycles, e.g., sufficient for an 

attractor to be typically reached, and then the state of one or 

more nodes was used to represent the output. More generally, it 

is well-established that discrete dynamical systems can be robust 

to faults, can compute, can exhibit memory, etc. (e.g., see 

[22][39]). 

Given their relative architectural simplicity but potential for 

complex behaviour, A-type unorganised machines appear to be a 

good candidate (dynamic) representation to use with novel 

computing substrates. Their use for a chemical computing 

system is considered here. It can be noted that Turing (e.g., [38]) 

was also interested in chemical reaction-diffusion systems, for 

pattern formation not computation. 

3 CHEMICAL COMPUTING 

Excitable and oscillating chemical systems have been used to 

solve a number of computational tasks such as implementing 

logical circuits [32], image processing [25], shortest path 

problems [31] and memory [29]. In addition chemical diodes [5], 

coincidence detectors [15] and transformers where a periodic 

input signal of waves may be modulated by the barrier into a 

complex output signal depending on the gap width and 

frequency of the input [30] have all been demonstrated 

experimentally. See [2] for an overview. 

A number of experimental and theoretical constructs 

utilising networks of chemical reactions to implement 

computation have been described. These chemical systems act as 

simple models for networks of coupled oscillators such as 

neurons, circadian pacemakers and other biological systems [23]. 

Ross and co-workers [16] produced a theoretical construct 

suggesting the use of “chemical” reactor systems coupled by 

mass flow for implementing logic gates neural networks and 

finite-state machines. In further work Hjelmfelt et al. [17] 

simulated a pattern recognition device constructed from large 

networks of mass-coupled chemical reactors containing a 

bistable iodate-arsenous acid reaction. They encoded arbitrary 

patterns of low and high iodide concentrations in the network of 

36 coupled reactors. When the network is initialized with a 

pattern similar to the encoded one then errors in the initial 

pattern are corrected bringing about the regeneration of the 

stored pattern. However, if the pattern is not similar then the 

network evolves to a homogenous state signalling non-

recognition.  

In related experimental work Laplante et al. [26] used a 

network of eight bistable mass coupled chemical reactors (via 16 

tubes) to implement pattern recognition operations. They 

demonstrated experimentally that stored patterns of high and low 

iodine concentrations could be recalled (stable output state) if 

similar patterns were used as input data to the programmed 

network. This highlights how a programmable parallel processor 

could be constructed from coupled chemical reactors. This 

described chemical system has many properties similar to 

parallel neural networks. In other work Lebender and Schneider 

[27] described methods of constructing logical gates using a 

series of flow rate coupled continuous flow stirred tank reactors 

(CSTR) containing a bistable nonlinear chemical reaction. The 

minimal bromate reaction involves the oxidation of cerium(III) 

(Ce3+) ions by bromate in the presence of bromide and sulphuric 

acid. In the reaction the Ce4+ concentration state is considered as 

“0” “false” (“1”“true”) if a given steady state is within 10% of 

the minimal (maximal) value. The reactors were flow rate 

coupled according to rules given by a feedforward neural 

network run using a PC. The experiment is started by feeding in 

two “true” states to the input reactors and then switching the 

flow rates to generate “true”-“false”, “false”-“true” and “false”-

“false”. In this three coupled reactor system the AND (output 

“true” if inputs are both high Ce4+, “true”), OR (output “true” if 

one of the inputs is “true”), NAND (output “true” if one of the 

inputs is “false”) and NOR gates (output “true” if both of the 

inputs are “false”) could be realised. However to construct XOR 

and XNOR gates two additional reactors (a hidden layer) were 

required. These composite gates are solved by interlinking AND 

and OR gates and their negations. In their work coupling was 

implemented by computer but they suggested that true chemical 

computing of some Boolean functions may be achieved by using 

the outflows of reactors as the inflows to other reactors, i.e., 

serial mass coupling. 

As yet no large scale experimental network implementations 

have been undertaken mainly due to the complexity of analysing 

and controlling many reactors. That said there have been many 

experimental studies carried out involving coupled oscillating 



and bistable systems (e.g., see [33][11][7][21]). The reactions 

are coupled together either physically by diffusion or an 

electrical connection or chemically, by having two oscillators 

that share a common chemical species. The effects observed 

include multistability, synchronisation, in-phase and out of phase 

entrainment, amplitude or “oscillator death”, the cessation of 

oscillation in two coupled oscillating systems, or the converse, 

“rhythmogenesis”, in which coupling two systems at steady state 

causes them to start oscillating [13].  

 

 
 

Figure 3. Showing the BZ droplet vesicles. 

 

Vesicles formed from droplets of BZ medium (Figure 3), 

typically just a few millimetres in diameter, exhibit many 

properties which may be considered as rudimentary for possible 

future molecular processing systems: signal transmission, self-

repair, signal gain, self-organisation, etc. Their potential use for 

computation has begun to be explored through collision-based 

schemes (e.g., [3][4][19][20]). This paper considers their use 

within a dynamic representation using a collision-based scheme. 

Collision-based computing exploits the interaction of 

moving elements and their mutual effects upon each other’s 

movement wherein the presence or absence of elements at a 

given point in space and time can be interpreted as computation 

(e.g., see [2] for chemical systems). Collision-based computing 

is here envisaged within recurrent networks of BZ vesicles, i.e., 

based upon the movement and interaction of waves of excitation 

within and across vesicle membranes. For example, to 

implement a two-input NAND gate, consider the case shown in 

Figure 4: when either input is applied, as a stream of waves of 

excitation, no waves are seen at the output location in the top 

vesicle - only when two waves coincide is a wave subsequently 

seen at the output location giving logical AND. A NOT gate can 

be constructed through the disruption of a constant Truth input in 

another vesicle, as shown. 

A-type unorganised machines can therefore be envisaged 

within networks of BZ vesicles using the three-vesicle construct 

for the NAND gate nodes, together with chains of vesicles to 

form the connections between them. Creation of such chains is 

reported in the initial experimentation with micro-fluidics noted 

above [24]. As also noted above, it has recently been shown that 

IP is an effective design approach with the dynamic 

representation. 

 
 

 

 
 

 

Figure 4. Showing the construction of a two-input NAND gate 

under a collision-based scheme using three BZ vesicles. The 

cases of inputs True-False (top) and True-True (bottom) are 

shown. Techniques such as micro-fluidics are envisaged as being 

used to influence/control vesicle position. 

4 IMITATION PROGRAMMING  

For A-type design, IP utilizes a variable-length representation of 

pairs of integers defining node inputs, each with an 

accompanying single bit defining the node’s start state. There are 

three imitation operators - copy a node connection, copy a node 

start state, and change size through copying. In this paper, each 

operator can occur with or without error, with equal probability, 

such that an individual performs one of the six during the 

imitation process as follows. 

To copy a node connection, a randomly chosen node has one 

of its randomly chosen connections set to the same value as the 

corresponding node and its same connection in the individual it 

is imitating. When an error occurs, the connection is set to the 

next or previous node (equal probability, bounded by solution 

size). Imitation can also copy the start state for a randomly 

chosen node from the corresponding node, or do it with error (bit 

flip here). Size is altered by adding or deleting nodes and 

depends upon whether the two individuals are the same size. If 

the individual being imitated is larger than the copier, the 

connections and node start state of the first extra node are copied 



to the imitator, a randomly chosen node being connected to it. If 

the individual being imitated is smaller than the copied, the last 

added node is cut from the imitator and all connections to it re-

assigned. If the two individuals are the same size, either event 

can occur (with equal probability). Node addition adds a 

randomly chosen node from the individual being imitated onto 

the end of the copier and it is randomly connected into the 

network. The operation can also occur with errors such that 

copied connections are either incremented or decremented. For a 

problem with a given number of binary inputs I and a given 

number of binary outputs O, the node deletion operator has no 

effect if the parent consists of only O + I + 2 nodes. The extra 

two inputs are constant True and False lines. Similarly, there is a 

maximum size (100) defined beyond which the growth operator 

has no effect. 

In this paper, each individual in the population P creates one 

variant of itself and it is adopted if better per iteration. In the 

case of ties, the solution with the fewest number of nodes is kept 

to reduce size, otherwise the decision is random. The individual 

to imitate is chosen using a roulette-wheel scheme based on 

proportional solution utility, i.e., the traditional reproduction 

selection scheme used in GAs. Other forms of updating, 

imitation processes, and imitation selection are, of course, 

possible [8]. In this form IP may be seen as combining ideas 

from memetics [12] with Evolutionary Programming [14]. It can 

be noted GAs have previously been used to design chemical 

computing systems in various ways (e.g., [9][35][36]). 

5  EXPERIMENTATION 

In the following, three well-known logic problems are used to 

begin to explore the characteristics and capabilities of the 

general approach. The multiplexer task is used since they can be 

used to build many other logic circuits, including larger 

multiplexers. These Boolean functions are defined for binary 

strings of length l = k + 2k under which the k bits index into the 

remaining 2k bits, returning the value of the indexed bit. Hence 

the multiplexer has multiple inputs and a single output. The 

demultiplexer and adders have multiple inputs and multiple 

outputs. As such, simple examples of each are also used here.  In 

all cases, the correct response to a given input results in a quality 

increment of 1, with all possible binary inputs being presented 

per solution evaluation. Upon each presentation of an input, each 

node in an unorganised machine has its state set to its specified 

start state. The input is applied to the first connection of each 

corresponding I input node. The A-type is then executed for 15 

cycles. The value on the output node(s) is then taken as the 

response. All results presented are the average of 20 runs, with 

P=20. Experience found giving initial random solutions 

N=O+I+2+30 nodes was useful across all the problems explored 

here, i.e., with the other parameter/algorithmic settings. 

Figure 5 shows the performance of IP to design A-type 

unorganised machines on k=2 versions of the three tasks: the 6-

bit multiplexer (opt. 64), 2-bit adder (opt. 16) and 6-bit 

demultiplexer (opt. 8).  As can be seen, optimal performance is 

reached in all cases, well within the allowed time, and that the 

solution sizes are adjusted to the given task. That is, discrete 

dynamical circuits capable of the given logic functions have 

been designed. As discussed elsewhere [8], the relative 

robustness of such circuits to faults, their energy usage, etc. 

remains to be explored. 

 
 

 
 

 
 

Figure 5. Showing the performance of IP in designing A-type 

unorganised machines for the three logic tasks. 

 

However, to begin to consider implementing such designs within 

BZ vesicles, the time taken for signal propagation between 

NAND gate nodes needs to included. That is, in Figure 5, as in 

all previous work with such dynamic representations, any 

changes in node state are immediately conveyed to any other 



connected nodes since a traditional computational substrate is 

assumed. Within the vesicles, changes in NAND gate node state 

will propagate through chains and hence there will be a time 

delay proportional to the distance between nodes. 

 

 
 

 
 

 

 
 

Figure 6. Showing the performance of IP in designing A-type 

unorganised machines for the three logic tasks with signal 

propagation times added. 

Figure 6 shows results for the same experiments and parameters 

as before but with a form of time delay added to begin to 

consider the physical implementation in an elementary way. 

Here NAND gate node states take the same number of update 

cycles to propagate between nodes as the absolute difference in 

node number. For example, the state of node 11 at time t would 

take 8 update cycles to reach node 3. Hence at update cycle t+8, 

node 3 would use the state of node 11 as at time t as one of its 

inputs. The number of overall update cycles for the A-types was 

increased to 50.  

As Figure 6 shows, it takes longer to reach optimal solutions 

(T-test, p<0.05) and they are perhaps surprisingly smaller (T-

test, p<0.05) than before, but suitable dynamic designs are again 

found in the allotted time, except for the adder which takes 

longer to reach optimality (not shown). 

6 CONCLUSIONS 

Over sixty years ago, Alan Turing presented a simple 

representation scheme for machine intelligence – a discrete 

dynamical system network of two-input NAND gates. Since then 

only a few other explorations of these unorganized machines are 

known. As noted above, it has long been argued that dynamic 

representations provide numerous useful features, such as an 

inherent robustness to faults and memory capabilities by 

exploiting the structure of their basins of attraction. For example, 

unique attractors can be assigned to individual system 

states/outputs and the map of internal states to those attractors 

can be constructed such that multiple paths of similar states lead 

to the same attractor. In this way, some variance in the actual 

path taken through states can be varied, e.g., due to errors, with 

the system still responding appropriately. Turing appears to have 

been thinking along these lines also. 

Given the relative simplicity of A-types but their potential 

for complex behaviour, this paper suggests they may provide a 

useful representation scheme for unconventional computing 

substrates. Unconventional computing aims to go beyond 

traditional architectures and formalisms, much of which is based 

upon Turing’s work on computability, by exploiting the inherent 

properties of systems to perform computation. A number of 

experimental systems have been presented in biological, 

chemical and physical media. Where NAND gate function can 

be realised, whilst also leaving open the potential utilisation of 

other aspects of the chosen medium, A-types could be explored. 

In particular, a substrate of BZ vesicles recently presented as a 

step towards molecular information processing, e.g., for future 

smart drugs, was considered and a form of two-input NAND 

gate designed for it through collision-based computing.  

It was then shown how a number of well-known benchmark 

logic circuits can be designed from A-type unorganised 

machines using an approach inspired by a comment from Turing 

on cultural search. Further consideration of the physical 

implementation within networks of BZ vesicles meant that signal 

propagation times were also included into the A-types. Results 

indicate that the design process was slowed relatively but still 

effective.  

Current work is increasing the level of detail of the simulated 

chemical system both in terms of the vesicle structure and of the 

BZ therein. Future use within the real substrate is expected to 

open the potential to further exploit emergent properties such as 

structural self-organisation and non-linear behaviour more fully.  



Acknowledgement 

 

The research was supported by the NEUNEU project sponsored 

by the European Community within FP7-ICT-2009-4 ICT-4-8.3 

- FET Proactive 3: Bio-chemistry-based Information Technology 

(CHEM-IT) program. 

REFERENCES 

[1] Adamatzky, A. (Ed.) Collision-based Computing. Springer, London 
(2002). 

[2] Adamatzky, A., De Lacy Costello, B. & Asai, T. Reaction-Diffusion 

Computers. Elsevier. (2005) 
[3] Adamatzky, A., Holley, J., Bull, L. & De Lacy Costello, B. On 

Computing in Fine-grained Compartmentalised Belousov–

Zhabotinsky Medium. Chaos, Solitons & Fractals, 44(10):779-790 
(2011). 

[4] Adamatzky, A., De Lacy Costello, B., Holley, J., Gorecki, J. & Bull, 

L. Vesicle computers: Approximating a Voronoi diagram using 
Voronoi automata. Chaos Solitons and Fractals 44:480-489 (2011) 

[5] Agladze K, Aliev RR, Yamaguhi T & Yoshikawa K. Chemical diode. 

Journal of Physical Chemistry, 100:13895-13897 (1996) 
[6] Ashby, W.R. Design for a Brain. Wiley, New York (1954). 

[7] Bar-Eli, K. & Reuveni, S. (1985). Stable stationary-states of coupled 

chemical oscillators: Experimental evidence. Journal of Physical 
Chemistry, 89, 1329-1330 

[8] Bull, L. Using Genetical and Cultural Search to Design Unorganised 
Machines. Evolutionary Intelligence, 5(1): (2012). 

[9] Bull, L., Budd, A., Stone, C., Uroukov, I., De Lacy Costello, B. & 

Adamatzky, A. (2008) Towards Unconventional Computing Through 
Simulated Evolution: Learning Classifier System Control of Non-

Linear Media. Artificial Life 14(2): 203-222 

[10] Copeland, J. & Proudfoot, D. On Alan Turing’s Anticipation of 

Connectionism. Synthese 108:361-377 (1996) 

[11] Crowley, M.F. & Field, R.J. Electrically coupled Belousov-

Zhabotinskii oscillators 1: Experiments and simulations. Journal of 
Physical Chemistry, 90:1907-1915 (1986) 

[12] Dawkins, R. The Selfish Gene. Oxford Press, Oxford (1976) 

[13] Dolnik, M. & Epstein, I.R. Coupled chaotic oscillators. Physical 
Review E, 54:3361-3368 (1996) 

[14] Fogel, L. J., Owens, A.J. & Walsh, M.J. Artificial Intelligence 

Through A Simulation of Evolution. In M. Maxfield et al. (Eds) 
Biophysics and Cybernetic Systems: Proceedings of the 2nd 

Cybernetic Sciences Symposium. Spartan Books, pp131-155 (1965) 

[15] Gorecki, J., Yoshikawa, K. & Igarashi, Y. On chemical reactors that 
can count. Journal of Physical Chemistry A, 107:1664-1669 (2003) 

[16] Hjelmfelt, A. & Ross, J. Mass-coupled chemical systems with 

computational properties. Journal of Physical Chemistry, 97:7988-
7992 (1993) 

[17] Hjelmfelt, A., Weinberger, E.D. & Ross, J. Chemical 

implementation of neural networks and Turing machines. PNAS 

88:10983-10987 (1991) 

[18] Holland, J.H. Adaptation in Natural and Artificial Systems. Univ. of 

Mich. Press. (1975) 
[19] Holley, J., Adamatzky, A., Bull, L., De Lacy Costello, B. & Jahan, 

I. Computational modalities of Belousov-Zhabotinsky encapsulated 

vesicles, Nano Communication Networks, 2: 50-61 (2011) 
[20] Holley, J., Jahan, I., De Lacy Costello, B., Bull, L. & Adamatzky, 

A. Logical and Arithmetic Circuits in Belousov Zhabotinsky 

Encapsulated Discs, Physical Review E 84: 056110 (2011) 
[21] Holz, R. & Schneider, F.W. (1993). Control of dynamic states with 

time-delay between 2 mutually flow-rate coupled reactors. Journal of 

Physical Chemistry, 97, 12239 
[22] Kauffman, S. A. The Origins of Order. Oxford Press, Oxford (1993) 

[23] Kawato, M. & Suzuki, R. Two coupled neural oscillators as a model 

of the circadian pacemaker. Journal of Theoretical Biology, 86:547-
575 (1980) 

[24] King, P. H., Corsi, J. C., Pan, B.-H., Morgan, H., de Planque, M. R. 
& Zauner, K.-P. Towards molecular computing: Co-development of 

microfluidic devices and chemical reaction media. Biosystems (2012) 

[25] Kuhnert, L., Agladze, K.I. & Krinsky, V.I. Image processing using 
light sensitive chemical waves. Nature, 337:244-247 (1989) 

[26] Laplante, J.P., Pemberton, M., Hjelmfelt, A. & Ross, J. Experiments 

on pattern recognition by chemical kinetics. Journal of Physical 
Chemistry, 99:10063-10065 (1995) 

[27] Lebender, D. & Schneider, F.W. Logical gates using a nonlinear 

chemical reaction. Journal of Physical Chemistry, 98:7533-7537 
(1994) 

[28] McCulloch, W.S. & Pitts, W. A Logical Calculus of the Ideas 

Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 
5: 115-133 (1943) 

[29] Motoike, I.N., Yoshikawa, K., Iguchi, Y. & Nakata, S. Real time 

memory on an excitable field. Physical Review E, 63:1-4 (2001) 
[30] Sielewiesiuk, J. & Gorecki, J. Passive barrier as a transformer of 

chemical frequency. Journal of Physical Chemistry A, 106:4068-

4076 (2002) 
[31] Steinbock, O., Toth, A. & Showalter, K. Navigating complex 

labyrinths: Optimal paths from chemical waves. Science, 267:868-

871 (1995) 
[32] Steinbock, O., Kettunen, P. & Showalter, K. Chemical wave logic 

gates. Journal of Physical Chemistry, 100:18970-18975 (1996) 

[33] Stuchl, I. & Marek, M. Dissipative structures in coupled cells: 
Experiments. Journal of Physical Chemistry, 77:2956-63 (1982) 

[34] Teuscher, C. Turing’s Connectionism. Springer, London (2002) 

[35] Toth, R., Stone, C., De Lacy Costello, B., Adamatzky, A. & Bull, L. 
(2008) Dynamic Control and Information Processing in the 

Belousov-Zhabotinsky Reaction using a Co-evolutionary Algorithm. 

Journal of Chemical Physics 129: 184708 
[36] Toth, R., Stone, C., De Lacy Costello, B., Adamatzky, A. & Bull, L. 

(2009) Simple Collision-based Chemical Logic Gates with Adaptive 

Computing. Journal of Nanotechnology and Molecular Computation 
1(3): 1-16 

[37] Turing, A. Intelligent Machinery. In C.R. Evans & A. Robertson 

(Eds) Key Papers: Cybernetics. Butterworths, pp91-102 (1968) 
[38] Turing, A. The Chemical Basis of Morphogenesis. Philosophical 

Transactions of the Royal Society of London. Series B, Biological 
Sciences, 237 (641):37-72 (1952) 

[39] Wolfram, S. A New Kind of Science. Wolfram Media. (2002) 

 



Some constraints on the physical realizability of a
mathematical construction
Francisco Hernández-Quiroz1 and Pablo Padilla2

Abstract. Mathematical constructions of abstract entities are nor-
mally done disregarding their actual physical realizability. The def-
inition and limits of the physical realizability of these constructions
are controversial issues at the moment and the subject of intense de-
bate.

In this paper, we consider a simple and particular case, namely,
the physical realizability of the enumeration of rational numbers by
Cantor’s diagonalization by means of an Ising system.

We contend that uncertainty in determining a particular state in an
Ising system renders impossible to have a reliable implementation of
Cantor’s diagonal method and therefore a stronger physicalsystem is
required. We also point out what are the particular limitations of this
system from the perspective physical realizability.

1 Introduction

“There is no quantum world. There is only an abstract quantumde-
scription. It is wrong to think physics’ task is to discover how Nature
is. Physics deals with what is possible to say about Nature.”

This quote is attributed to Niels Bohr, when he was asked whether
the quantum formalism reflected the underlying physical reality.
Bohr’s, other philosophers’ and scientists’ opinions aside, a good
deal of paper has been used to analyse the possibility of describing
and understanding reality by means of formal mathematical tools.
Barrow, Chaitin, Hawking and Penrose (among others) have ad-
vanced some ideas with varying degrees of formality.

Here we address a reciprocal question: given a mathematicalcon-
struction and a particular physical system, is the latter adequate to
“implement” the former? By implementation we mean an actual
physical device that (a) has structural properties that correspond to
components of the mathematical entity (some have talked about an
isomorphism between physical and mathematical structures[3], but
a weaker notion may also do); (b) a physical procedure that can
produce experimental results which reflect accurately corresponding
properties of the mathematical construction.

These are very intricate and hard questions to be answered defi-
nitely in a general case. Our aim is more modest, namely to explore
a specific instance of this problem: we take the classical Cantor’s
diagonalization for the enumeration of the rational numbers [2] and
how it can be implemented by an Ising system. We provide a specific
implementation and show its limitations deriving from properties of
the physical system itself.

This leads us to think that some clearly defined mathematicalques-
tions cannot always be posed and answered within the contextof a
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2 Institute for Applied Mathematics, IIMAS, UNAM, email:
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particular physical system. Of course, the more general question of
the existence of a physical system realizing a particular mathemat-
ical construction is beyond the limits of this work but we hope our
example helps to stimulate discussions on this line of thought. The
standard interpretation of quantum mechanics regarding physically
meaningful questions is that it should be possible to pose them in
such a way that they can be answered experimentally.

The reciprocal question is also interesting: to what extentmathe-
matical constructions should be considered valid? One possible ap-
proach, would imply that only those mathematical constructions that
can actually be implemented by means of a physical system canin
fact be used, at least in terms of computation.

In the next section we present—as a reminder—Cantor’s diago-
nalization method for enumerating the rational numbers. The third
section deals with Ising systems and its properties.The fourth section
presents our implementation of Cantor’s method and how to find a
specific rational number. In the final section, which is the central part
of this paper, we show how our system is unable to perform the task
for which it was designed due to intrinsic limitations of Ising systems
and other physical principles, and we also discuss some implications.

2 Cantor’s diagonalization

In 1878 Cantor defined rigorously when two sets have the same car-
dinality. Let A andB be two sets. They have the same number of
elements if and only if there exists a bijection between them, i.e., a
functionf : A → B which is both injective and surjective.

He also proved that the set of natural numbers and the set of ratio-
nal numbers are equinumerous, even though the former is a proper
subset of the latter. His argument introduced an ingenious device to
construct a one-to-one correspondence between the two sets. The
idea is that rational numbers are not arranged according to the tra-
ditional< relation, but rather, by taking advantage of the fact that a
rational number (in accordance with the etimology of the name) can
be regarded as the ratio of two integers. For example, the number 0.5
is also represented by the fraction1/2.

The fractional representation of a number, let us saym/n, can be
transformed into the convention that the pair(m,n) represents this
very number. Now consider the list

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), . . .

where pairs are arranged so that the sum of the two componentsis
increasing; pairs whose sum produces the same value are ordered by
the traditional< order applied to the first coordinate of the pairs. By
omitting pairs representing the same number (which can always be
calculated in a finite number of steps as the list is being produced),
this is a bijection between natural and rational numbers, and thus
both sets have the same cardinality.



If we set aside the traditional objections posed by mathematical
constructivists to the idea of actual infinite sets, Cantor’s argument
seems very straightforward and has been regarded as such ever since.
However we could take a mathematical constructive perspective and
reject Cantor’s device (and his whole set theory, for that matter).

But we can also take a different constructive perspective, which
we may namephysical constructivism: What requirements should
a particular physical system meet in order to serve as a basisfor
implementing Cantor’s device? At first sight there must be physical
systems on which this may not be possible (although the symmetrical
question does not seem easy to answer). Specifically, we willanalyse
the feasibility of Ising models for this task in the next section.

3 Ising models

In the last decades, some models in physics have played a central
role in understanding specific connections between mathematical as-
pects of the theory and experiments. One of such is preciselythe
Ising model. We use it here for different purposes. We suggest that it
can be taken as a real system in which Cantor’s diagonal procedure
could be implemented and therefore as a starting point from which
conclusions can be drawn regarding the limitations that mathemati-
cal constructions could have in the physical world. This is due to the
fact that, in principle, the physical configurations of the system can
be put in correspondence with rational numbers. Moreover, for the
Ising model a direct relationship between the physical entropy and
the informational entropy can be established, allowing a quantitative
comparison .

We briefly recall what the Ising model is about and later on we
make a few remarks on the entropy of a discrete physical system.
What follows is basically adapted from [5].

We consider a magnetic material in which the electrons determin-
ing the magnetic behaviour are localized near the atoms of a lattice
and can have only two magnetization states (spin up or down).The
spin for a given site in this lattice will be identified with the of the0’s
or 1’s used in the mathematical construction of the previous section
to write down the binary expansion of the rational numbers. Notice
that we need only a finite number or 0’s or 1’s since these expan-
sions will be either finite or periodic. For instance, we might put in
a row all numbers(m,n) of a fixed height one after the other with
a conventional sequence to denote beginning and end of a number.
As mentioned before, the magnetizationSi can take only two values
±1 that we identify with0 and1 respectively. There is a Hamiltonian
associated in the presence of an external magnetic force depending
on the site,hi which is given by:

H = −J
∑

i,k

SiSj −
∑

i

hiSi,

where the sum overi andk runs over all possible nearest-neighbour
pairs of the lattice andJ is the so called exchange constant.

The fact that is important to stress is that a possible enumeration
of the rationals correspond to a particular physical configuration. No-
tice that we are desregarding the obvious limitation of size. That is, in
Cantor’s procedure we need an infinite number of rows and columns,
that is an ideal lattice, whereas a physical material will necessarily
have finite size. Nevertheless, we will see that even then, there are
physical constraints that are imposed by the quantum natureof the
system to the entropy, which can be interpreted as informational re-
strictions on the physical realizability of the mathematical construc-
tion.

For a continuous system whose configuration is denoted byC,
where the configuration space is assumed to be endowed with a mea-
sureµ (for simplicity one may think ofRd, the entropy associated
with a specific probability distributionP is given by

S[P ] = −
∫

dµ(C)P (C)lnP (C),

that is, the expected value of−lnP (C) with respect toµ.
By dividing the space into cells of sizeεd the entropy of the contin-

uous system can be well approximated by the entropy of the discrete
system resulting from the partition:

Sdisc = Scont − dln(ε).

As a matter of fact, theε can be taken to be the Planck constant for a
quantum system. This observation will be important later on.

4 Implementing Cantor’s method

As we mentioned before, we can in principle use the Ising system to
physically array and enumerate the rational numbers and locate any
of them in this array. In fact the question: “How to find a rational
number in the list?” is well defined and would only need a finite
number of steps.

In the section devoted to the Ising model, we recalled equation 3
for the entropy of a quantum system. Notice that the second term
is positive and independent of the details of the system, only due to
the quantum nature of the same. This has an important implication
in terms of the possibility of actually determining the state in which
the Ising model is. If we relate the information content withthe en-
tropy of the system we see that, in order for the state of the system
to be completely determined, we would need zero entropy [4].This
is physically impossible. Moreover, a lower bound for the entropy is
related not only to the discrete (quantum) nature of the system, but it
also depends on the temperature and other parameters. The conclu-
sion is that even when the counting and locating procedure iswell
defined, there is always an intrinsic error. Of course one might argue
that this is probably due to the chosen system, but the reasoning is
general enough as to suggest that no matter what physical implemen-
tation we choose, there will always exist this limitation.

5 Conclusion: Uncertainty comes in the way or
how real is reality?

We have argued that uncertainty in determining a particularstate in
an Ising system renders impossible to have a reliable implementa-
tion of Cantor’s diagonal method. There are also other related math-
ematical constructions that could be analysed in a similar way. For
instance, Cantor’s proof of the uncountability of the real numbers re-
lies on similar ideas. As a matter of fact, in the usual argument, a
contradiction is obtained by producing a real number that cannot be
included in a proposed enumeration. This is done by considering the
diagonal sequence and taking its negation. Once this is done, it can
be shown that ift is the truth value of the element of this sequence
intersecting the diagonal, then it would have to satisfy therelation

t = 1− t,

which leads to a contradictionif one assumes the only possible truth
values are 0 or 1(see for instance chapter 2 on diagonalization in[1]).
However, this equation does not pose any problem ift is interpreted
in a probabilistic way and assigned a value of1/2. This opens up a



series of even subtler questions such as whether we can actually have
a physical model of the real numbers and many others, that from our
perspective, are worth addressing.

Many other people have previously addressed this questionsei-
ther in general terms or for particular mathematical concepts. A pi-
oneering work is [6], which posed the question of realizing an ab-
stract mapping process within the constraints of a physicalversion
of Church’s thesis. A very recent case study in the field of control
and quantum systems can be found in [7].
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Axiomatic Tools versus Constructive approach to 
Unconventional Algorithms 

Gordana Dodig-Crnkovic1 and Mark Burgin2  

Abstract. In this paper, we analyze axiomatic issues of 
unconventional computations from a methodological and 
philosophical point of view. We explain how the new models of 
algorithms changed the algorithmic universe, making it open and 
allowing increased flexibility and creativity. However, the 
greater power of new types of algorithms also brought the 
greater complexity of the algorithmic universe, demanding new 
tools for its study. That is why we analyze new powerful tools 
brought forth by the axiomatic theory of algorithms, automata 
and computation.1 

1 INTRODUCTION 
Tradition in computation is represented by conventional 

computations. The conventional types and models of algorithms 
make the algorithmic universe, i.e., the world of all existing and 
possible algorithms, closed because there is a rigid boundary in 
this universe formed by recursive algorithms such as Turing 
machines. 

Super-recursive algorithms controlling and directing 
unconventional computations break this boundary bringing 
people to an open algorithmic universe – a world of unbounded 
creativity. As the growth of possibilities involves much higher 
complexity of the new open world of super-recursive algorithms, 
innovative hardware and unconventional organization, we 
discuss means of navigation in this new open algorithmic world. 

The paper is organized as follows. First in Section 2 we 
compare local and global mathematics. Section 3 addresses local 
logics and logical varieties, while Section 4 offers the discussion 
of projective mathematics versus reverse mathematics versus 
classical mathematics. Section 5 answers the question how to 
navigate in the algorithmic multiverse. Finally Section 6 presents 
our conclusions and provides directions for future work.  

2 LOCAL MATHEMATICS VERSUS GLOBAL 
MATHEMATICS 
Mathematics exists as an aggregate of various mathematical 

fields. If at the beginning, there were only two fields – arithmetic 
and geometry, now there are hundreds of mathematical fields 
and subfields. However, mathematicians always believed in 
mathematics as a unified system striving to build common and in 
some sense absolute foundations for all mathematical fields and 
subfields. At the end of the 19th century, mathematicians came 
very close to achieving this goal as the emerging set theory 
allowed building all mathematical structures using only sets and 
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operations with sets. However, in the 20th century, it was 
discovered that there are different set theories. This brought 
some confusion and attempts to find the “true” set theory. 

To overcome this confusion, Bell [1] introduced the concept 
of local mathematics in 1986. The fundamental idea was to 
abandon the unique absolute universe of sets central to the 
orthodox set-theoretic account of the foundations of 
mathematics, replacing it by a plurality of local mathematical 
frameworks. Bell suggested taking elementary toposes as such 
frameworks, which would serve as local replacements for the 
classical universe of sets. Having sufficient means for 
developing logic and mathematics, elementary toposes possess a 
sufficiently rich internal structure to enable a variety of 
mathematical concepts and assertions to be interpreted and 
manipulated. Mathematics interpreted in any such framework is 
called local mathematics and admissible transformation between 
frameworks amounts to a (definable) change of local 
mathematics. With the abandonment of the absolute universe of 
sets, mathematical concepts in general lose absolute meaning, 
while mathematical assertions liberate themselves from absolute 
truth values. Instead they possess such meanings or truth values 
only locally, i.e., relative to local frameworks. It means that the 
reference of any mathematical concept is accordingly not fixed, 
but changes with the choice of local mathematics. 

It is possible to extend the approach of Bell in two directions. 
First, we can use an arbitrary category as a framework for 
developing mathematics. When an internal structure of such a 
framework is meager, the corresponding mathematics will be 
also indigent. Second, it is possible to take a theory of some 
structures instead of the classical universe of sets and develop 
mathematics in this framework. 

A similar situation emerged in computer science.  
Usually to study properties of computers and to develop more 

efficient applications, mathematicians and computer scientists 
use mathematical models. There is a variety of such models: 
Turing machines of different kinds (with one tape and one head, 
with several tapes, with several heads, with n-dimensional tapes, 
nondeterministic, probabilistic, and alternating Turing machines, 
Turing machines that take advice and Turing machines with 
oracle, etc.), Post productions, partial recursive functions, neural 
networks, finite automata of different kinds (automata without 
memory, autonomous automata, accepting automata, 
probabilistic automata, etc.), Minsky machines, normal Markov 
algorithms, Kolmogorov algorithms, formal grammars of 
different kinds (regular, context free, context sensitive, phrase-
structure, etc.), Storage Modification Machines or simply, 
Shönhage machines, Random Access Machines (RAM), Petri 
nets, which like Turing machines have several forms – ordinary, 
regular, free, colored, self-modifying, etc.), and so on. All these 
models are constructive, i.e., they have a tractable explicit 
descriptions and simple rules for operation. Thus, the 
constructive approach is dominating in computer science. 



This diversity of models is natural and useful because each of 
these classes is suited for some kind of problems. In other words, 
the diversity of problems that are solved by computers involves a 
corresponding diversity of models. For example, general 
problems of computability involve such models as Turing 
machines and partial recursive functions. Finite automata are 
used for text search, lexical analysis, and construction of 
semantics for programming languages. In addition, different 
computing devices demand corresponding mathematical models. 
For example, universal Turing machines and inductive Turing 
machines allows one to investigate characteristics of 
conventional computers [7]. Petri nets are useful for modeling 
and analysis of computer networks, distributed computation, and 
communication processes [31]. Finite automata model computer 
arithmetic. Neural networks reflect properties of the brain. 
Abstract vector and array machines model vector and array 
computers [7]. 

To utilize some kind of models that are related to a specific 
type of problems, we need to know their properties. In many 
cases, different classes have the same or similar properties. As a 
rule, such properties are proved for each class separately. Thus, 
alike proofs are repeated many times in similar situations 
involving various models and classes of algorithms. 

In contrast to this, the projective (also called multiglobal) 
axiomatic theory of algorithms, automata and computation 
suggests a different approach [9][30]. Assuming some simple 
basic conditions (in the form of postulates, axioms and 
conditions), we derive in this theory many profound properties 
of algorithms. This allows one, when dealing with a specific 
model not to prove this property, but only to check the 
conditions from the assumption, which is much easier than to 
prove the property under consideration. In such a way, we can 
derive various characteristics of types of computers and software 
systems from the initial postulates, axioms and conditions. 

Breaking the barrier of the Church-Turing Thesis drastically 
increased the variety of algorithmic model classes and changed 
the algorithmic universe of recursive algorithms to the 
multiverse of super-recursive algorithms, which consists of a 
plurality of local algorithmic universes. Each class of 
algorithmic models forms a local algorithmic universe, providing 
means for the development of local computer science in general 
and a local theory of algorithms in particular. 

Local mathematics brings forth local logics because each 
local mathematical framework has its own logic and it is 
possible that different frameworks have different local logics. 

3 LOCAL LOGICS AND LOGICAL 
VARIETIES 
Barwise and Seligman (1997) developed a theory of 

information flow. In it, the concept of local logic plays a 
fundamental role in the modeling commonsense reasoning. The 
basic concept of this theory is a classification, which can be 
interpreted as a representation of some domain in the physical or 
abstract world. Each local logic corresponds to a definite 
classification. This implies a natural condition that each domain 
has its own local logic and different domains may have different 
local logics. 

In the multiverse of super-recursive algorithms, each class of 
super-recursive algorithms forms a local algorithmic universe, 
which has a corresponding local logic. These logics may be 

essentially different. For instant, taking two local algorithmic 
universes formed by such classes as the class T of all Turing 
machines and the class TT of all total, i.e., everywhere defined, 
Turing machines, we can find that the first class satisfies the 
axiom of universality, which affirms existence of a universal 
algorithm, i.e., a universal Turing machine in this class. 
However, the class TT does not satisfy this axiom [9]. 

Analyzing the system of local logics, it is possible to see that 
there are different relations between them and it would be useful 
to combine these logics in a common structure. As it is explained 
in [9], local logics form a deductive logical variety or a 
deductive logical prevariety, which were introduced and studied 
in [4] as a tool to work with inconsistent systems of knowledge. 

Minsky [24] was one of the first researchers in AI who 
attracted attention to the problem of inconsistent knowledge. He 
wrote that consistency is a delicate concept that assumes the 
absence of contradictions in systems of axioms. Minsky also 
suggested that in artificial intelligence (AI) systems this 
assumption was superfluous because there were no completely 
consistent AI systems. In his opinion, it is important to 
understand how people solve paradoxes, find a way out of a 
critical situation, learn from their own or others’ mistakes or how 
they recognize and exclude different inconsistencies. In addition, 
Minsky [25] suggested that consistency and effectiveness may 
well be incompatible. He also writes [26]: “An entire generation 
of logical philosophers has thus wrongly tried to force their 
theories of mind to fit the rigid frames of formal logic. In doing 
that, they cut themselves off from the powerful new discoveries 
of computer science. Yes, it is true that we can describe the 
operation of a computer's hardware in terms of simple logical 
expressions. But no, we cannot use the same expressions to 
describe the meanings of that computer's output -- because that 
would require us to formalize those descriptions inside the same 
logical system. And this, I claim, is something we cannot do 
without violating that assumption of consistency.” Then Minsky 
[26] continues, “In summary, there is no basis for assuming that 
humans are consistent - not is there any basic obstacle to making 
machines use inconsistent forms of reasoning”. Moreover, it has 
been discovered that not only human knowledge but also 
representations/models of human knowledge (e.g., large 
knowledge bases) are inherently inconsistent [11]. Logical 
varieties or prevarieties provide powerful tools for working with 
inconsistent knowledge.  

There are different types and kinds of logical varieties and 
prevarieties: deductive or syntactic varieties and prevarieties, 
functional or semantic varieties and prevarieties and model or 
pragmatic varieties and prevarieties. Syntactic varieties, 
prevarieties, and quasi-varieties (introduced in [10]) are built 
from logical calculi as buildings are built from blocks.  

Let us consider a logical language L, an inference language R, 
a class K of syntactic logical calculi, a set Q of inference rules 
(Q ⊆ R), and a class F of partial mappings from L to L.  

A triad M = (A, H, M), where A and M are sets of expressions 
that belong to L (A consists of axioms and M consists of 
theorems) and H is a set of inference rules, which belong to the 
set R, is called:  

 (1) a projective syntactic (K,F)-prevariety if there exists a set 
of logical calculi  Ci = (Ai , Hi , Ti ) from K and a system of 
mappings fi : Ai → L and gi : Mi → L (i ∈ I) from F in which Ai 
consists of all axioms and Mi consists of all theorems of the 
logical calculus Ci, and for which the equalities A = ∪i∈I fi(Ai), H 



= ∪i∈I Hi and M = ∪i∈I gi(Mi) are valid (it is possible that Ci = Cj 
for some i ≠ j).  

(2) a projective syntactic (K,F)-variety with the depth k if it is 
a projective syntactic (K,F)-quasi-prevariety and for any i1 , i2 , 
i3 , … , ik ∈ I either the intersections ∩j=1

k fij(Aij) and ∩j=1
kgij(Tij) 

are empty or there exists a calculus C = (A, H, T) from K and  
projections f: A → ∩j=1

k fij(Aij) and g: N  → ∩j=1
k gij(Mij) from F 

where N ⊆ T;   
(3) a syntactic K-prevariety if it is a projective syntactic 

(K,F)-prevariety in which Mi = Ti for all i ∈ I and all mappings fi  
and gi that define M are bijections on the sets Ai and Mi , 
correspondingly; 

(4) a syntactic K-variety if it is a projective syntactic (K,F)- 
variety in which Mi = Ti for all i ∈ I and all mappings fi  and gi 
that define M are bijections on the sets Ai and Mi , 
correspondingly. 

The calculi Ci used in the formation of the prevariety (variety) 
M are called components of M. 

We see that the collection of mappings fi and gi makes a 
unified system called a prevariety or quasi-prevariety out of 
separate logical calculi Ci , while the collection of the 
intersections ∩j=1

k fij(Aij) and ∩j=1
kgij(Tij) makes a unified system 

called a variety out of separate logical calculi  Ci . For instance, 
mappings fi and gi allow one to establish a correspondence 
between norms/laws that were used in one country during 
different periods of time or between norms/laws used in different 
countries. 

The main goal of syntactic logical varieties is in presenting 
sets of formulas as a structured logical system using logical 
calculi, which have means for inference and other logical 
operations. Semantically, it allows one to describe a domain of 
interest, e.g., a database, knowledge of an individual or the text 
of a novel, by a syntactic logical variety dividing the domain in 
parts that allow representation by calculi. 

In comparison with varieties and prevarieties, logical quasi-
varieties and quasi-prevarieties studied in [5] are not necessarily 
closed under logical inference. This trait allows better flexibility 
in knowledge representation. 

While syntactic logical varieties and prevarietis synthesize 
local logics in a unified system, semantic logical varieties and 
prevarieties studied in [5] unify local mathematics forming a 
holistic realm of mathematical knowledge. 

In addition, syntactic logical varieties and prevarieties found 
diverse applications to databases and network technology (cf., 
for example, [6]). 

4 PROJECTIVE MATHEMATICS VERSUS 
REVERSE MATHEMATICS VERSUS 
CLASSICAL MATHEMATICS 
Mathematics suggests an approach for knowledge unification, 

namely, it is necessary to find axioms that characterize all 
theories in a specific area and to develop the theory in an 
axiomatic context. This approach worked well in a variety of 
mathematical fields. 

Axiomatization has been often used in physics (Hilbert's sixth 
problem refers to axiomatization of branches of physics in which 
mathematics is prevalent), biology (The most enthusiastic 
proponent of this approach, the British biologist and logician 
Joseph Woodger, attempted to formalize the principles of 

biology—to derive them by deduction from a limited number of 
basic axioms and primitive terms—using the logical apparatus of 
the Principia Mathematica by Whitehead and Bertrand Russell, 
according to Britannica), and some other areas, such as 
philosophy or technology. It is interesting that the axiomatic 
approach was also used in areas that are very far from 
mathematics. For instance, Spinoza used this approach in 
philosophy, developing his ethical theories and writing his book 
Ethics in the axiomatic form. More recently, Kunii [20] 
developed an axiomatic system for cyberworlds. 

With the advent of computers, deductive reasoning and 
axiomatic exposition have been delegated to computers, which 
performed theorem-proving, while the axiomatic approach has 
come to software technology and computer science. logical tools 
and axiomatic description has been used in computer science for 
different purposes. For instance, Manna [21] built an axiomatic 
theory of programs, while Milner [23] developed an axiomatic 
theory of communicating processes. An axiomatic description of 
programming languages was constructed by Meyer and Halpern 
[22]. Many researchers have developed different kinds of 
axiomatic recursion theories (cf., for example 
[15,19,14,13,29,28]).  

However, in classical mathematics, axiomatization has the 
global character. Mathematicians tried to build a unique 
axiomatics for the foundations of mathematics. Logicians 
working in the theory of algorithms tried to find axioms 
comprising all models of algorithms. 

This is the classical approach – axiomatizing the studied 
domain and then to deduce theorems from axioms. All classical 
mathematics is based on deduction as a method of logical 
reasoning and inference. Deduction is a type of reasoning 
processes that construct and/or evaluate deductive arguments and 
where the conclusion follows from the premises with logical 
necessity.  In logic, an argument is called deductive when the 
truth of the conclusion is purported to follow necessarily or be a 
logical consequence of the assumptions. Deductive arguments 
are said to be valid or invalid, but never true or false. A 
deductive argument is valid if and only if the truth of the 
conclusion actually does follow necessarily from the 
assumptions. A valid deductive argument with true assumptions 
is called sound; a deductive argument which is invalid or has one 
or more false assumptions or both is called unsound. Thus, we 
may call classical mathematics by the name deductive 
mathematics. 

The goal of deductive mathematics is to deduce theorems 
from axioms. Deduction of a theorem is also called proving the 
theorem. When mathematicians cannot prove some interesting 
and/or important conjecture, creative explorers invent new 
structures and methods, introducing new axioms to solve the 
problem. Researchers with a standard thinking try to prove that 
the problem is unsolvable. 

Some consider deductive mathematics as a part of axiomatic 
mathematics, assuming that deduction (in a strict sense) is 
possible only in an axiomatic system. Others treat axiomatic 
mathematics as a part of deductive mathematics, assuming that 
there are other inference rules besides deduction. 

While deductive mathematics is present in and actually 
dominates all fields of contemporary mathematics, reverse 
mathematics is the branch of mathematical logic that seeks to 
determine what are the minimal axioms (formalized conditions) 
needed to prove the particular theorem [17,18]. This direction in 



mathematical logic was founded by [15,16]. The method can 
briefly be described as going backwards from theorems to the 
axioms necessary to prove these theorems in some logical 
system [27]. It turns out that over a weak base theory, many 
mathematical statements are equivalent to the particular 
additional axiom needed to prove them. This methodology 
contrasts with the ordinary mathematical practice where 
theorems are deduced from a priori assumed axioms.  

Reverse mathematics was prefigured by some results in set 
theory, such as the classical theorem that states that the axiom of 
choice, well-ordering principle of Zermelo, maximal chain 
priciple of Hausdorff, and statements of the vector basis 
theorem, Tychonov product theorem, and Zorn's lemma are 
equivalent over ZF set theory. The goal of reverse mathematics, 
however, is to study ordinary theorems of mathematics rather 
than possible axioms for set theory. A sufficiently weak base 
theory is adopted (usually, it is a subsystem of second-order 
arithmetic) and the search is for minimal additional axioms 
needed to prove some interesting/important mathematical 
statements. It has been found that in many cases these minimal 
additional axioms are equivalent to the particular statements they 
are used to prove. 

Projective mathematics is a branch of mathematics similar to 
reverse mathematics, which aims to determine what are simple 
conditions needed to prove the particular theorem or to develop a 
particular theory. However, there are essential differences 
between these two directions: reverse mathematics is aimed at a 
logical analysis of mathematical statements, while projective 
mathematics is directed to making the scope of theoretical 
statements in general and mathematical statements in particular 
much larger and extending their applications. As a result, instead 
of proving similar results in various situations, it becomes 
possible to prove a corresponding general result in the axiomatic 
setting and to ascertain validity of this result for a particular case 
by demonstrating that all axioms (conditions) used in the proof 
are true for this case. In such a way the general result is 
projected on different situations. This direction in mathematics 
was founded by Burgin [9]. This approach contrasts with the 
conventional (deductive) mathematics where axioms describe 
some area or type of mathematical structures, while theorems are 
deduced from a priori assumed axioms.  

Projective mathematics has its precursor in such results as 
extension of many theorems initially proved for numerical 
functions to functions in metric spaces or generalizations of 
properties of number systems to properties of groups, rings and 
other algebraic structures.  

Here we use projective mathematics to study algorithms and 
automata. Our goal is to find some simple properties of 
algorithms and automata in general, to present these properties in 
a form of axioms, and to deduce from these axioms theorems 
that describe much more profound and sophisticated properties 
of algorithms. This allows one, taking some class A of 
algorithms, not to prove these theorems but only to check if the 
initial axioms are valid in A. If this is the case, then it makes 
possible to conclude that all corresponding theorems are true for 
the class A. As we know, computer scientists and 
mathematicians study and utilize a huge variety of different 
classes and types of algorithms, automata, and abstract 
machines. Consequently, such an axiomatic approach allows 
them to obtain many properties of studied algorithms and 
automata in a simple and easy way. 

It is possible to explain goals of classical (deductive) 
mathematics, reverse mathematics and projective mathematics 
by means of relations between axioms and theorems. 

A set A of axioms can be: 
1. Consistent with some result (theorem) T, i.e., when the 

theorem T is added as a new axiom, the new system remains 
consistent, allowing in some cases to deduce (prove) this 
theorem. 

2. Sufficient for some result (theorem) T, i.e., it is possible to 
deduce (prove) the theorem T using axioms from A. 

3. Irreducible with respect to some result (theorem) T, i.e., the 
system A is a minimal set of axiom that allows one to deduce 
(prove) the theorem T. 

After the discovery of non-Euclidean geometries, creation of 
modern algebra and construction of set theory, classical 
mathematics main interest has been in finding whether a 
statement T has been consistent with a given axiomatic system A 
(the logical goal) and then in proving this statement in the 
context of A. Thus, classical mathematics is concerned with the 
first relation. Reverse mathematics, as we can see, deals with the 
third relation.  

In contrast to this, projective mathematics is oriented at the 
second relation. The goal is to find some simple properties of 
algorithms or automata in general, to present these properties in 
a form of a system U of axioms, and from these axioms, to 
deduce theorems that describe much more profound properties of 
algorithms and automata. This allows one, taking some class A 
of algorithms or automata, not to prove these theorems but only 
to check if all axioms from the system U are valid in A. If this is 
the case, then it is possible to conclude that all corresponding 
theorems are true for the class A. As we know, computer 
scientists and mathematicians study and utilize a huge variety of 
different classes and types of algorithms, automata, and abstract 
machines. Consequently, the projective axiomatic approach 
allows them to obtain many properties of studied algorithms in a 
simple and easy way. In such a way, the axiom system U 
provides a definite perspective on different classes and types of 
algorithms, automata, and abstract machines. 

It is interesting that Bernays had a similar intuition with 
respect to axioms in mathematics, regarding them not as a 
system of statements about a subject matter but as a system of 
conditions for what might be called a relational structure. He 
wrote [2]: 

“A main feature of Hilbert’s axiomatization of geometry is 
that the axiomatic method is presented and practiced in the spirit 
of the abstract conception of mathematics that arose at the end of 
the nineteenth century and which has generally been adopted in 
modern mathematics.  It consists in abstracting from the intuitive 
meaning of the terms . . . and in understanding the assertions 
(theorems) of the axiomatized theory in a hypothetical sense, 
that is, as holding true for any interpretation . . . for which the 
axioms are satisfied.  Thus, an axiom system is regarded not as a 
system of statements about a subject matter but as a system of 
conditions for what might be called a relational structure . . . 
[On] this conception of axiomatics, . . . logical reasoning on the 
basis of the axioms is used not merely as a means of assisting 
intuition in the study of spatial figures; rather, logical 
dependencies are considered for their own sake, and it is insisted 
that in reasoning we should rely only on those properties of a 
figure that either are explicitly assumed or follow logically from 
the assumptions and axioms.” 



It is possible to formalize the approach of projective 
mathematics using logical varieties. Indeed, let us take a 
collection C of postulates, axioms and conditions, which are 
formalized in a logical language as axioms. This allows us to 
assume that we have a logical variety M that represents a given 
domain D in a formal mathematical setting and contains the set 
C. For instance, the domain D consists of a system of 
algorithmic models so that the logic of each model Di is a 
component Mi of M. Then we deduce a theorem T from the 
statements from C. Then instead of proving the theorem T for 
each domain Di , we check whether C ⊆ Mi . When this is true, 
we conclude that the theorem T belongs to the component Mi 
because Mi is a calculus and thus, the theorem T is valid for the 
model Di . Because C usually consists of simple statements, to 
check the inclusion C ⊆ Mi is simpler than to prove T in Mi . 

 

5 HOW TO NAVIGATE IN THE 
ALGORITHMIC MULTIVERSE  

It is possible to see that for a conformist, it is much easier to live 
in the closed algorithmic universe because all possible and 
impossible actions, as well as all solvable and insolvable 
problems can be measured against one of the most powerful and 
universal in the algorithmic universe classes of algorithms. 
Usually it has been done utilizing Turing machines.  

Open world provides much more opportunities for actions and 
problem solving, but at the same time, it demands more work, 
more efforts and even more imagination for solving problems 
insolvable in the closed algorithmic universe. Even the closed 
algorithmic universe contains many classes and types of 
algorithms, which have been studied with a reference to a 
universal class of recursive algorithms. In some cases, partial 
recursive functions have been used. In other cases, unrestricted 
grammars have been employed. The most popular have been 
utilization of Turing machines. A big diversity of new and old 
classes of algorithms exist that demand specific tools for 
exploration. 

Mathematics has invented such tools and one of the most 
efficient for dealing with diversity is the axiomatic method. This 
method has been also applied to the theory of algorithms, 
automata and computation when the axiomatic theory of 
algorithms, automata and computation was created [9]. In it, 
many profound properties of algorithms are derived based on 
some simple basic conditions (in the form of postulates, axioms 
and conditions). Namely, instead of proving similar results in 
various situations, it becomes possible to prove a necessary 
general result in the axiomatic setting and then to ascertain 
validity of this result for a particular case by demonstrating that 
all axioms (conditions) used in the proof are true for this case. In 
such a way the general result is projected on different situations. 
For instance, the theorem on undecidability of the Fixed Output 
Problem proved in [9] has more than 30 corollaries for various 
classes of algorithms, including the famous theorem about 
undecidability of the halting problem for Turing machines. 
Another theorem on recognizability of the Fixed Output Problem 
proved in [9] has more than 20 corollaries for various classes of 
algorithms, such as Turing machines, random access machines, 
Kolmogorov algorithms, Minsky machines, partial recursive 
functions, inductive Turing machines of the first order, periodic 

evolutionary Turing machines and limiting partial recursive 
functions. 

The axiomatic context allows a researcher to explore not only 
individual algorithms and separate classes of algorithms and 
automata but also classes of classes of algorithms, automata, and 
computational processes. As a result, axiomatic approach goes 
higher in the hierarchy of computer and network models, 
reducing in such a way complexity of their study. The suggested 
axiomatic methodology is applied to evaluation of possibilities 
of computers, their software and their networks with the main 
emphasis on such properties as computability, decidability, and 
acceptability. In such a way, it became possible to derive various 
characteristics of types of computers and software systems from 
the initial postulates, axioms and conditions. 

It is also worth mentioning that the axiomatic approach 
allowed researchers to prove the Church-Turing Thesis for an 
algorithmic class that satisfies very simple initial axioms [3,12]. 
These axioms form a system C considered in the previous 
section and this system provides a definite perspective on 
different classes of algorithms, ensuring that in these classes the 
Church-Turing Thesis is true, i.e., it is a theorem. 

Moreover, the axiomatic approach is efficient in exploring 
features of innovative hardware and unconventional 
organization.  

It is interesting to remark that algorithms are used in 
mathematics and beyond as constructive tools of cognition. 
Algorithms are often opposed to non-constructive, e.g., 
descriptive, methods used in mathematics. Axiomatic approach 
is essentially descriptive because axioms describe properties of 
the studied objects in a formalized way.  

Constructive mathematics is distinguished from its traditional 
counterpart, axiomatic classical mathematics, by the strict 
interpretation of the expression “there exists” (called in logic the 
existential quantifier) as “we can construct” and show the way 
how to do this. Assertions of existence should be backed up by 
constructions, and the properties of mathematical objects should 
be decidable in finitely many steps. 

However, in some situations, descriptive methods can be 
more efficient than constructive tools. That is why descriptive 
methods in the form of the axiomatic approach came back to the 
theory of algorithms and computation, becoming efficient tool in 
computer science. 

 

6 CONCLUSIONS  
This paper demonstrated the role of the axiomatic methods for 
different paradigms of mathematics.  

Classical mathematics utilizes global axiomatization and 
classical logic. 

Local mathematics utilizes local axiomatization, diverse logics 
and logical varieties. 

Reverse mathematics utilizes axiomatic properties 
decomposition and backward inference. 

Projective mathematics utilizes view axiomatization, logical 
varieties and properties proliferation. 

Here we considered only some consequences of new trends in 
the axiomatic approach to human cognition in general and 
mathematical cognition in particular. It would be interesting to 
study other consequences.  



An important direction for future work is to study hardware 
systems and information processing architectures by applying 
the axiomatic methods of the mathematical theory of information 
technology [8]. 
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From the Closed Universe to an Open World 
Mark Burgin1 and Gordana Dodig-Crnkovic2 

Abstract. There are different aspects and spheres of 
unconventional computations. In this paper, we analyze 
philosophical and methodological implications of algorithmic 
issues of unconventional computations. At first, we describe how 
the algorithmic universe was developed and analyze why it 
became closed in the conventional approach to computation. 
Then we explain how the new models of algorithms changed the 
algorithmic universe, making it open and allowing higher 
flexibility and superior creativity. As Gödel undecidability 
theorems imply, the closed algorithmic universe restricts 
essential forms of human cognition, while the open algorithmic 
universe eliminates such restrictions. 

1 INTRODUCTION 
Development of society is characterized by a tension between 
tradition and innovation. Tradition sustains society, while 
innovation moves society forward. Efficient functioning depends 
on the equilibrium between tradition and innovation. When there 
is no equilibrium, society declines: too much tradition brings 
stagnation and often collapse under the pressure of inner or/and 
outer forces, while too much innovation results in instability and 
often in rapture. 

The same is true for different areas and aspects of society. 
Here we are interested in computation, which becomes more and 
more important for society. Tradition in computation is 
represented by conventional computations, while unconventional 
computation characterizes the boldest and far-reaching 
innovations. 

It is possible to demarcate three areas in which computation 
can be unconventional: 

1. Novel hardware, e.g., quantum systems, provides material 
realization for unconventional computation. 

2. Novel algorithms, e.g., super-recursive algorithms, provide 
operational realization for unconventional computation.  

3. Novel organization, e.g., evolutionary computation or self-
optimizing computation, provides structural realization for 
unconventional computation. 

Here we discuss algorithmic issue of unconventional 
computation and analyze philosophical and methodological 
problems related to it, making a distinction between three classes 
of algorithms: recursive, subrecursive, and super-recursive 
algorithms. 1 

Each type of recursive algorithms form a class in which it is 
possible to compute exactly the same functions that are 
computable by Turing machines. Examples of recursive 
algorithms are partial recursive functions, RAM, von Neumann 
automata, Kolmogorov algorithms, and Minsky machines.  
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Each type of subrecursive algorithms forms a class that has 
less computational power than all Turing machines. Examples of 
subrecursive algorithms are finite automata, primitive recursive 
functions and recursive functions.  

Each type of super-recursive algorithms forms a class that 
has more computational power than all Turing machines. 
Examples of super-recursive algorithms are inductive and limit 
Turing machines, limit partial recursive functions and limit 
recursive functions. 

The main problem is that conventional types and models of 
algorithms make the algorithmic universe, i.e., the world of all 
existing and possible algorithms, closed because there is a rigid 
boundary in this universe formed by recursive algorithms, such 
as Turing machines, and described by the Church-Turing Thesis. 
This closed system has been overtly dominated by depressing 
incompleteness results, such as Gödel incompleteness theorems. 

Contrary to this, super-recursive algorithms controlling and 
directing unconventional computations break this boundary 
bringing people to an open algorithmic universe – world of 
unbounded creativity, development, and inspiration, putting no 
limits on human endeavor. 

The paper is organized as follows. First, we summarize how 
the closed algorithmic universe was created and what are 
advantages and disadvantages of living inside such a closed 
universe. Next, we describe the breakthrough brought about by 
the creation of super-recursive algorithms. In Section 4, we 
analyze implications for people’s cognition brought forth by 
super-recursive algorithms. The main effect is the immense 
growth of cognitive possibilities. … 

2 THE CLOSED UNIVERSE OF TURING 
MACHINES AND OTHER RECURSIVE 
ALGORITHMS 

Having an extensive experience of problem solving, 
mathematicians understood that solutions were based on various 
algorithms. That is why when they more and more encountered 
problems that they were not able to solve, mathematicians and 
especially experts in mathematical logic came to the conclusion 
that it was necessary to develop a rigorous mathematical concept 
of algorithm. Being, as always, very creative, mathematicians 
have suggested a diversity of exact mathematical models of 
algorithm as a general concept. The first models were λ-calculus 
developed by Church in 1931 – 1933, general recursive 
functions introduced by Gödel in 1934, ordinary Turing 
machines constructed by Turing in 1936 and in a less explicit 
form by Post in 1936, and partial recursive functions built by 
Kleene in 1936. Creating λ-calculus, Church was developing a 
logical theory of functions and suggested a formalization of the 
notion of computability by means of λ-definability. In 1936, 
Kleene demonstrated that λ-definability is computationally 
equivalent to general recursive functions. In 1937, Turing 
showed that λ-definability is computationally equivalent to 
Turing machines. Church was so impressed by these results that 



he suggested what was later called the Church-Turing thesis. 
Turing formulated a similar conjecture in the Ph.D. thesis that he 
wrote under Church's supervision. 

 It is interesting to know that the theory of Frege [8] actually 
contains λ-calculus. So, there were chances to develop a theory 
of algorithms and computability in the 19th century. However, at 
that time the mathematical community did not feel a need in 
such a theory and probably, would not accept it if somebody 
created it. 

 The Church-Turing thesis explicitly engineered a rigid 
boundary for the algorithmic universe, making this universe 
closed by Turing machines. Any algorithm from this universe 
was inside that boundary. 

After the first breakthrough, other mathematical models of 
algorithms were suggested. They include a variety of Turing 
machines: multihead, multitape Turing machines, Turing 
machines with n-dimensional tapes, nondeterministic, 
probabilistic, alternating and reflexive Turing machines, Turing 
machines with oracles, Las Vegas Turing machines, etc.; neural 
networks of various types – fixed-weights, unsupervised, 
supervised, feedforward, and recurrent neural networks; von 
Neumann automata and general cellular automata; Kolmogorov 
algorithms finite automata of different forms – automata without 
memory, autonomous automata, automata without output or 
accepting automata, deterministic, nondeterministic, 
probabilistic automata, etc.; Minsky machines; Storage 
Modification Machines or simply, Shönhage machines; Random 
Access Machines (RAM) and their modifications - Random 
Access Machines with the Stored Program (RASP), Parallel 
Random Access Machines (PRAM); Petri nets of various types – 
ordinary and ordinary with restrictions, regular, free, colored, 
and self-modifying Petri nets, etc.; vector machines; array 
machines; multidimensional structured model of computation 
and computing systems; systolic arrays; hardware modification 
machines; Post productions; normal Markov algorithms; formal 
grammars of many forms – regular, context-free, context-
sensitive, phrase-structure, etc.; and so on. As a result, the 
theory of algorithms, automata and computation has become one 
of the foundations for computer science. 

In spite of all differences between and diversity of algorithms, 
there is a unity in the system of algorithms. While new models of 
algorithm appeared, it was proved that any of them could not 
compute more functions than the simplest Turing machine with a 
one-dimensional tape. All this give more and more evidence to 
validity of the Church-Turing Thesis. 

Even more, all attempts to find mathematical models of 
algorithms that were stronger than Turing machines were 
fruitless. Equivalence to Turing machines has been proved for 
many models of algorithms. That is why the majority of 
mathematicians and computer scientists have believed that the 
Church-Turing Thesis was true. Many logicians assume that the 
Thesis is an axiom that does not need any proof. Few believe 
that it is possible to prove this Thesis utilizing some evident 
axioms. More accurate researchers consider this conjecture as a 
law of the theory of algorithms, which is similar to the laws of 
nature that might be supported by more and more evidence or 
refuted by a counter-example but cannot be proved.  

Besides, the Church-Turing Thesis is extensively utilized in 
the theory of algorithms, as well as in the methodological 
context of computer science. It has become almost an axiom. 

Some researchers even consider this Thesis as a unique absolute 
law of science, or more exactly, computer science. 

Thus, we can see that the initial aim of mathematicians was to 
build a closed algorithmic universe, in which a universal model 
of algorithm provided a firm foundation and as it was found 
later, a rigid boundary for this universe.   

It is possible to see the following advantages and 
disadvantages of the closed algorithmic universe. 

Advantages: 
1. Turing machines and partial recursive functions are 

feasible mathematical models. 
2. These and other recursive models of algorithms provide an 

efficient possibility to apply mathematical technique. 
3. The closed algorithmic universe allowed mathematicians to 

build beautiful theories of Turing machines, partial recursive 
functions and some other recursive and subrecursive algorithms. 

4. The closed algorithmic universe provides sufficiently exact 
boundaries for knowing what is possible to achieve with 
algorithms and what is impossible. 

5. The closed algorithmic universe provides a common formal 
language for researchers. 

6. For computer science and its applications, the closed 
algorithmic universe provides a diversity of mathematical 
models with the same computing power. 

Disadvantages: 
1. The main disadvantage of this universe is that its main 

principle - the Church-Turing Thesis - is not true. 
2. The closed algorithmic universe restricts applications and 

in particular, mathematical models of cognition. 
3. The closed algorithmic universe does not correctly reflect 

computing practice. 

3 THE OPEN WORLD OF SUPER-RECURSIVE 
ALGORITHMS 

In opposition to the general opinion, some researchers expressed 
their concern for the Church-Turing Thesis. As Nelson writes 
[13], "Although Church-Turing Thesis has been central to the 
theory of effective decidability for fifty years, the question of its 
epistemological status is still an open one.” There were also 
researchers who directly suggested arguments against validity of 
the Church-Turing Thesis. For instance, Kalmar [11] raised 
intuitionistic objections, while Lucas and Benacerraf discussed 
objections to mechanism based on theorems of Gödel that 
indirectly threaten the Church-Turing Thesis. In 1972, Gödel’s 
observation entitled “A philosophical error in Turing’s work” 
was published where he declared that: "Turing in his 1937, p. 
250 (1965, p. 136), gives an argument which is supposed to 
show that mental proce- dures cannot go beyond mechanical 
procedures. However, this argument is inconclusive. What 
Turing disregards completely is the fact that mind, in its use, is 
not static, but constantly developing, i.e., that we understand 
abstract terms more and more precisely as we go on using them, 
and that more and more abstract terms enter the sphere of our 
understanding. There may exist systematic methods of 
actualizing this development, which could form part of the 
procedure. Therefore, although at each stage the number and 
precision of the abstract terms at our disposal may be finite, both 
(and, therefore, also Turing’s number of distinguishable states of 
mind) may converge toward infinity in the course of the 
application of the procedure.” [10] 



Thus, pointing that Turing disregarded completely the fact 
that mind, in its use, is not static, but constantly developing, 
Gödel predicted necessity for super-recursive algorithms that 
realize inductive and topological computations [5]. Recently, 
Sloman [6] explained why recursive models of algorithms, such 
as Turing machines, are irrelevant for artificial intelligence. 

Even if we abandon theoretical considerations and ask the 
practical question whether recursive algorithms provide an 
adequate model of modern computers, we will find that people 
do not see correctly how computers are functioning. An analysis 
demonstrates that while recursive algorithms gave a correct 
theoretical representation for computers at the beginning of 
“computer era”, super-recursive algorithms are more adequate 
for modern computers. Indeed, at the beginning, when computers 
appeared and were utilized for some time, it was necessary to 
print out data produced by computer to get a result. After 
printing, the computer stopped functioning or began to solve 
another problem. Now people are working with displays and 
computers produce their results mostly on the screen of a 
monitor. These results on the screen exist there only if the 
computer functions. If this computer halts, then the result on its 
screen disappears. This is opposite to the basic condition on 
ordinary (recursive) algorithms that implies halting for giving a 
result. 

Such big networks as Internet give another important example 
of a situation in which conventional algorithms are not adequate. 
Algorithms embodied in a multiplicity of different programs 
organize network functions. It is generally assumed that any 
computer program is a conventional, that is, recursive algorithm. 
However, a recursive algorithm has to stop to give a result, but if 
a network shuts down, then something is wrong and it gives no 
results. Consequently, recursive algorithms turn out to be too 
weak for the network representation, modeling and study. 

Even more, no computer works without an operating system. 
Any operating system is a program and any computer program is 
an algorithm according to the general understanding. While a 
recursive algorithm has to halt to give a result, we cannot say 
that a result of functioning of operating system is obtained when 
computer stops functioning. To the contrary, when the operating 
system does not work, it does not give an expected result. 

Looking at the history of unconventional computations and 
super-recursive algorithms we see that Turing was the first who 
went beyond the “Turing” computation that is bounded by the 
Church-Turing Thesis. In his 1938 doctoral dissertation, Turing 
introduced the concept of a Turing machine with an oracle. This, 
work was subsequently published in 1939. Another approach 
that went beyond the Turing-Church Thesis was developed by 
Shannon [17], who introduced the differential analyzer, a device 
that was able to perform continuous operations with real 
numbers, and namely, such as operation of differentiation. 
However, mathematical community did not accept operations 
with real numbers as tractable because irrational numbers do not 
have finite numerical representations.  

In 1957, Grzegorczyk introduced a number of equivalent 
definitions of computable real functions. Three of Grzegorczyk’s 
constructions have been extended and elaborated independently 
to super-recursive methodologies: the, so-called, domain 
approach [18,19], type 2 theory of effectivity or type 2 recursion 
theory [20,21], and the polynomial approximation approach 
[22]. In 1963, Scarpellini introduced the class M1 of functions 
that are built with the help of five operations. The first three are 

elementary: substitutions, sums and products of functions. The 
two remaining operations are performed with real numbers: 
integration over finite intervals and taking solutions of Fredholm 
integral equations of the second kind.  

Another type of super-recursive algorithms was introduced in 
1965 by Gold and Putnam, who brought in concepts of limiting 
recursive function and limiting partial recursive function. In 
1967, Gold produced a new version of limiting recursion, also 
called inductive inference, and applied it to problems of learning. 
Now inductive inference is a fruitful direction in machine 
learning and artificial intelligence. One more direction in the 
theory of super-recursive algorithms emerged in 1967 when 
Zadeh introduced fuzzy algorithms. It is interesting that limiting 
recursive function and limiting partial recursive function were 
not considered as valid models of algorithms even by their 
authors. A proof that fuzzy algorithms are more powerful than 
Turing machines was obtained much later (Wiedermann, 2004). 
Thus, in spite of existence of super-recursive algorithms, 
researchers continued to believe in the Church-Turing Thesis as 
an absolute law of computer science. 

After the first types of super-recursive models had been 
studied, a lot of other super-recursive algorithmic models have 
been created: inductive Turing machines, limit Turing machines, 
infinite time Turing machines, general Turing machines, 
accelerating Turing machines, type 2 Turing machines, 
mathematical machines, δ-Q-machines,  general dynamical 
systems, hybrid systems, finite dimensional machines over real 
numbers, R-recursive functions and so on. 

However, the first publication where it was explicitly stated 
and proved that there are algorithms more powerful than Turing 
machines was [2]. 

The closest to conventional algorithms are inductive Turing 
machines of the first order because they work with constructive 
objects, all steps of their computation are the same as the steps of 
conventional Turing machines and the result is obtained in a 
finite time. In spite of these similarities, inductive Turing 
machines of the first order can compute much more than 
conventional Turing machines.  

Inductive Turing machines of the first order form only the 
lowest level of super-recursive algorithms. There infinitely more 
levels and as a result, the algorithmic universe becomes open. 
Taking into consideration algorithmic schemas, which go 
beyond super-recursive algorithms, we come to an open world of 
information processing, which includes the algorithmic universe. 
Openness of this world has many implications for human 
cognition in general and mathematical cognition in particular. 
For instance, it is possible to demonstrate that not only 
computers but also the brain can work not only in the recursive 
mode but also in the inductive mode, which is essentially more 
powerful and efficient. Some of them are considered in the next 
section.  

4 ABSOLUTE PROHIBITION IN THE 
CLOSED UNIVERSE AND INFINITE 
OPPORTUNITIES IN THE OPEN WORLD 

To provide sound and secure foundations for mathematics, 
David Hilbert proposed an ambitious and wide-ranging program 
in the philosophy and foundations of mathematics. His approach 
formulated in 1921 stipulated two stages. At first, it was 



necessary to formalize classical mathematics as an axiomatic 
system. Then, using only restricted, "finitary" means, it was 
necessary to give proofs of the consistency of this axiomatic 
system. 

Achieving a definite progress in this direction, Hilbert 
became very optimistic. In his speech in Königsberg in 1930, he 
made a very famous statement: 

Wir müssen wissen. Wir werden wissen.  
(We must know. We will know.) 

Next year the Gödel undecidability theorems were published 
[9]. They undermined Hilbert’s statement and his whole 
program. Indeed, the first Gödel undecidability theorem states 
that it is impossible to validate truth for all true statements about 
objects in an axiomatic theory that includes formal arithmetic. 
This is a consequence of the fact that it is impossible to build all 
sets from the arithmetical hierarchy by Turing machines. In such 
a way, the closed Algorithmic Universe imposed restriction on 
the mathematical exploration. Indeed, rigorous mathematical 
proofs are done in formal mathematical systems. As it is 
demonstrated (cf., for example, [7]), such systems are equivalent 
to Turing machines as they are built by means of Post 
productions. Thus, as Turing machines can model proofs in 
formal systems, it is possible to assume that proofs are 
performed by Turing machines.  

The second Gödel undecidability theorem states that for an 
effectively generated consistent axiomatic theory T that includes 
formal arithmetic and has means for formal deduction, it is 
impossible to prove consistency of T using these means. 

From the very beginning, Gödel undecidability theorems have 
been comprehended as absolute restrictions for scientific 
cognition. That is why Gödel undecidability theorems were so 
discouraging that many mathematicians consciously or 
unconsciously disregarded them. For instance, the influential 
group of mostly French mathematicians who wrote under the 
name Bourbaki completely ignored results of Gödel [12]. It is 
possible to suggest that the reason was not essentially rational 
but mostly psychological.  

However, later researchers came to the conclusion that these 
theorems have such drastic implications only for formalized 
cognition based on rigorous mathematical tools. For instance, in 
the 1964 postscript, Gödel wrote that undecidability theorems 
“do not establish any bounds for the powers of human reason, 
but rather for the potentialities of pure formalism in 
mathematics.”   

Discovery of super-recursive algorithms and acquisition of 
the knowledge of their abilities drastically changed 
understanding of the Gödel’s results. Being a consequence of the 
closed nature of the closed algorithmic universe, these 
undecidability results loose their fatality in the open algorithmic 
universe. They become relativistic being dependent on the tools 
used for cognition. For instance, the first undecidability theorem 
is equivalent to the statement that it is impossible to compute by 
Turing machines or other recursive algorithms all levels of the 
Arithmetical Hierarchy [15]. However, as it was stated in [3], 
there was a hierarchy of inductive Turing machines so that all 
levels of the Arithmetical Hierarchy were computable and even 
decidable by these inductive Turing machines. Complete proofs 
of these results were published only in 2003 due to the active 
opposition of the proponents of the Church-Turing Thesis [4]. 

This makes the Gödel’s results relative to the means used for 
proving mathematical statements because decidability of the 

Arithmetical Hierarchy implies decidability of the formal 
arithmetic. For instance, the first Gödel undecidability theorem 
is true when recursive algorithms are used for proofs but it 
becomes false when inductive algorithms are utilized. It was 
demonstrated, for example, in 1936 by Gentzen, who in contrast 
to the second Gödel undecidability theorem, proved consistency 
of the formal arithmetic using ordinal induction. 

5  THE OPEN WORLD AND THE INTERNET 
As we all know, the open world, or more exactly, the open world 
of knowledge, is an important concept for the knowledge 
economy. According to Rossini [16], it emerges from a world of 
pre-Internet political systems, but it has come to encompass an 
entire worldview based on the transformative potential of open, 
shared, and connected technological systems. The idea of an 
open world synthesizes much of the social and political 
discourse around modern education and scientific endeavor and 
is at the core of the Open Access (OA) and Open Educational 
Resources (OER) movements. While the term open society 
comes from international relations, where it was developed to 
describe the transition from political oppression into a more 
democratic society, it is now being appropriated into a broader 
concept of an open world connected via technology [16]. The 
idea of openness in access to knowledge and education is a 
reaction to the potential afforded by the global networks, but is 
inspired by the sociopolitical concept of the open society. 

Open Access (OA) is a knowledge-distribution model by 
which scholarly, peer-reviewed journal articles and other 
scientific publications are made freely available to anyone, 
anywhere over the Internet. It is the foundation for the open 
world of scientific knowledge, and thus, a principal component 
of the open world of knowledge as a whole. In the era of print, 
open access was economically and physically impossible. 
Indeed, the lack of physical access implied the lack of 
knowledge access - if one did not have physical access to a well-
stocked library, knowledge access was impossible. The Internet 
has changed all of that, and OA is a movement that recognizes 
the full potential of an open world metaphor for the network. 

In OA, the old tradition of publishing for the sake of inquiry, 
knowledge, and peer acclaim and the new technology of the 
Internet have converged to make possible an unprecedented 
public good: "the world-wide electronic distribution of the peer-
reviewed journal literature" [1]. 

The open world of knowledge is based on the Internet, while 
the Internet is based on computations that go beyond Turing 
machines. One of the basic principles of the Internet is that it is 
always on, always available. Without these features, the Internet 
cannot provide the necessary support for the open world of 
knowledge because ubiquitous availability of knowledge 
resources demands non-stopping work of the Internet. However, 
as it is proved in [5], if an automatic (computer) system works 
without halting, gives results in this mode and can simulate any 
operation of a universal Turing machine, then this automatic 
(computer) system is more powerful than any Turing machine. 
This means that this automatic (computer) system, in particular, 
the Internet, performs unconventional computations.   



6 CONCLUSIONS  
This paper shows how the universe (world) of algorithms 
became open with the discovery of super-recursive algorithms, 
providing more tools for human cognition and artificial 
intelligence.  

Here we considered only some consequences of the open 
world environment for human cognition in general and 
mathematical cognition in particular. It would be interesting to 
study other consequences of coming to an open world of 
algorithms and computation.  

It is known that not all quantum mechanical events are 
Turing-computable. So, it would be interesting to find a class of 
super-recursive algorithms that compute all such events or to 
prove that such a class does not exist. 

It might be interesting to contemplate relations between the 
Open Algorithmic Universe and the Open Science in the sense of 
Nielsen [14]. For instance, one of the pivotal features of the 
Open Science is accessibility of research results on the Internet. 
At the same time, as it is demonstrated in [5], the Internet and 
other big networks of computers are always working in the 
inductive mode or some other super-recursive mode. Moreover, 
actual accessibility depends on such modes of functioning. 
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