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Preface

Computability in Europe 2013 (CiE 2013) followed the Turing Centenary Con-
ference CiE 2012 in celebrating the enormous influence of Turing’s work on the
specific focus of the CiE conference series: the development of a multi-disciplinary
and modern view of computation and computability. The interest for computa-
tion in nature (which was also the motivation for Turing’s work on biological
pattern formation) as reflected in the title of CiE 2013, The Nature of Com-
putation, connects biology and computer science and has given rise to modern
disciplines of research as well as new perspectives on computation.

In particular, CiE 2013 was focused on the unexpected changes that stud-
ies on nature have brought to several areas of mathematics, physics, and com-
puter science. Two complementary research perspectives pervade the Nature of
Computation theme. One is focused on the understanding of new computational
paradigms, inspired by processes occurring in the biological world and resulting
in a deeper and modern understanding of the theory of computation. The other
perspective is on our understanding of how computations really occur in nature,
on how we can interact with these computations, and their applications.

CiE 2013 was the ninth meeting in the conference series Computability in
Europe organized by the Association CiE. The association promotes the devel-
opment of computability-related science, ranging from mathematics, computer
science and applications in various natural and engineering sciences, such as
physics and biology, as well as the promotion of related fields, such as philoso-
phy and history of computing. In particular, the conference series successfully
brings together the mathematical, logical and computer sciences communities
that are interested in developing computability related topics. This year this
scope was strengthened by the co-location of CiE 2013 with UCNC 2013 (Un-
conventional Computation and Natural Computation), with Giancarlo Mauri as
the chair of the programme committee.

The two conferences, CiE 2013 and UCNC 2013, were held at the University
of Milano-Bicocca in Milan, Italy. They shared one plenary invited talk, given
by Endre Szemerédi (Budapest & Piscataway NJ), winner of the Abel Prize in
2012, and two tutorials, one by Grzegorz Rozenberg (Leiden & Boulder CO)
and one by Gilles Brassard (Montréal QC). Moreover, some satellite events are
organized around the two conferences.

The eight previous CiE conferences were held in Amsterdam (The Nether-
lands) in 2005, Swansea (Wales) in 2006, Siena (Italy) in 2007, Athens (Greece)
in 2008, Heidelberg (Germany) in 2009, Ponta Delgada (Portugal) in 2010, Sofia
(Bulgaria) in 2011, and Cambridge (England) in 2012. The proceedings of these
meetings were all published in the Springer series Lecture Notes in Computer
Science. The annual CiE conference has become a major event and is the largest
international meeting focused on computability theoretic issues. The next meet-
ing in 2014 will be held in Budapest (Hungary).

The series is coordinated by the CiE Conference Series Steering Commit-
tee consisting of Lúıs Antunes (Porto, Secretary), Arnold Beckmann (Swansea),
Laurent Bienvenu (Paris), Natasha Jonoska (Tampa FL), Viv Kendon (Leeds),
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Benedikt Löwe (Amsterdam & Hamburg, chair), Mariya Soskova (Sofia & Berke-
ley CA), and Peter van Emde Boas (Amsterdam).

Programme Committee

The Programme Committee of CiE 2013 was responsible for the selection of the
invited speakers, the special session organizers and for running the reviewing
process of all submitted regular contributions. It consisted of Gerard Alberts
(Amsterdam), Lúıs Antunes (Porto), Arnold Beckmann (Swansea), Laurent Bi-
envenu (Paris), Paola Bonizzoni (Milan, co-chair), Vasco Brattka (Munich &
Cape Town, co-chair), Cameron Buckner (Houston TX), Bruno Codenotti (Pisa),
Stephen Cook (Toronto ON), Barry Cooper (Leeds), Ann Copestake (Cam-
bridge), Erzsébet Csuhaj-Varjú (Budapest), Anuj Dawar (Cambridge), Gianluca
Della Vedova (Milan), Liesbeth De Mol (Ghent), Jérôme Durand-Lose (Orléans),
Viv Kendon (Leeds), Bjørn Kjos-Hanssen (Honolulu HI), Antonina Kolokolova
(St. John’s NF), Benedikt Löwe (Amsterdam & Hamburg), Giancarlo Mauri
(Milan), Rolf Niedermeier (Berlin), Geoffrey Pullum (Providence RI & Edin-
burgh), Nicole Schweikardt (Frankfurt), Sonja Smets (Amsterdam), Susan Step-
ney (York), S.P. Suresh (Chennai), and Peter van Emde Boas (Amsterdam).

Structure and Programme of the Conference

The programme committee invited six speakers to give plenary lectures: Ulle
Endriss (Amsterdam), Lance Fortnow (Atlanta GA), Anna Karlin (Seattle WA),
Bernard Moret (Lausanne), Mariya Soskova (Sofia & Berkeley CA), and Endre
Szemerédi (Budapest & Piscataway NJ; joint invitee of CiE 2013 and UCNC
2013).

These plenary speakers were invited to publish abstracts or papers in this
volume. Karlin’s lecture was the 2013 APAL Lecture funded by Elsevier, Fort-
now’s lecture was the 2013 EACSL Lecture funded by the European Association
for Computer Science Logic, and Szemerédi’s lecture was funded by the Depart-
ment of Mathematics and its Applications of the University of Milano-Bicocca.
In addition to the plenary lectures, the conference had two tutorials by Gilles
Brassard (Montréal QC) and Grzegorz Rozenberg (Leiden & Boulder CO).

Springer-Verlag generously funded two awards that were given during the CiE
2013 conference. Nicolas de Rugy-Altherre was awarded the Best Student Paper
Award for his paper “Determinant versus Permanent: Salvation via Generaliza-
tion?” Shankara Narayanan Krishna, Marian Gheorghe, and Ciprian Dragomir
were awarded the Best Paper on Natural Computing Award for their paper “Some
Classes of Generalised Communicating P Systems and Simple Kernel P Sys-
tems.”

The conference CiE 2013 had six special sessions: two sessions Computational
Molecular Biology and Computation in Nature, were devoted to the special fo-
cus of CiE 2013. In addition to this, new challenges arising in computations
in the real world were faced in the session on Data Streams and Compression.
The remaining three sessions were on Algorithmic Randomness, Computational
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Complexity in the Continuous World, and History of Computation. Speakers in
these special sessions were selected by the special session organizers and could
contribute a paper to this volume.

Algorithmic Randomness.
Organizers. Mathieu Hoyrup (Nancy) and André Nies (Auckland).
Speakers. Johanna Franklin (Storrs CT), Noam Greenberg (Wellington),
Joseph S. Miller (Madison WI), Nikolay Vereshchagin (Moscow).

Computational Complexity in the Continuous World.
Organizers. Akitoshi Kawamura (Tokyo) and Robert Rettinger (Hagen).
Speakers. Mark Braverman (Princeton NJ), Daniel S. Graça (Faro), Joris
van der Hoeven (Palaiseau), Chee K. Yap (New York NY).

Computational Molecular Biology.
Organizers. Alessandra Carbone (Paris) and Jens Stoye (Bielefeld).
Speakers. Sebastian Böcker (Jena), Maŕılia D.V. Braga (Duque de Caxias),
Andrea Pagnani (Torino), Laxmi Parida (Yorktown Heights NY).

Computation in Nature.
Organizers. Mark Delay (London ON) and Natasha Jonoska (Tampa FL).
Speakers. Jerome Durand-Lose (Orléans), Giuditta Franco (Verona), Lila
Kari (London ON), Darko Stefanovic (Albuquerque NM).

Data Streams and Compression.
Organizers. Paolo Ferragina (Pisa) and Andrew McGregor (Amherst MA).
Speakers. Graham Cormode (Florham Park NJ), Irene Finocchi (Rome),
Andrew McGregor (Amherst MA), Marinella Sciortino (Palermo).

History of Computation.
Organizers. Gerard Alberts (Amsterdam) and Liesbeth De Mol (Ghent).
Speakers. David Alan Grier (Washington DC), Thomas Haigh (Milwaukee
WI), Ulf Hashagen (Munich), Matti Tedre (Stockholm).

All authors who have contributed to this conference are encouraged to submit
significantly extended versions of their papers with unpublished research content
to Computability. The Journal of the Association CiE.

Organisation and Acknowledgements.

The conference CiE 2013 was organised by Stefano Beretta (Milan), Paola Boniz-
zoni (Milan), Gianluca Della Vedova (Milan), Alberto Dennunzio (Milan), Ric-
cardo Dondi (Bergamo), Giancarlo Mauri (Milan), Yuri Pirola (Milan) and Raf-
faella Rizzi (Milan).

The Steering Committee of the conference series CiE is concerned about the
representation of female researchers in the field of computability. In order to
increase female participation, the series started the Women in Computability
(WiC) programme in 2007, first funded by the Elsevier Foundation, then taken
over by the publisher Elsevier. We were proud to continue this programme with
its successful annual WiC workshop and a grant programme for junior female
researchers in 2013.
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entities for their essential financial support (in alphabetic order): the Associa-
tion for Symbolic Logic (ASL), the Department of Mathematics and its Appli-
cations and the Department of Informatics, Systems and Communication, both
of the University of Milano-Bicocca, Elsevier B.V., the European Association
for Computer Science Logic (EACSL), the European Association for Theoreti-
cal Computer Science (EATCS), IOS Press, Springer-Verlag and the University
of Milano-Bicocca. We would also like to acknowledge the support of our non-
financial sponsors, the Association Computability in Europe (CiE).

June 11, 2013
Milano

Paola Bonizzoni
Vasco Brattka
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Efficient Computation of the Gap-Weighted
Subsequence Kernel?

Slimane Bellaouar1, Hadda Cherroun1, and Djelloul Ziadi2

1 Laboratoire LIM, Université Amar Telidji, Laghouat, Algérie
{s.bellaouar,hadda_cherroun}@mail.lagh-univ.dz

2 Laboratoire LITIS - EA 4108, Université de Rouen, Rouen, France
Djelloul.Ziadi@univ-rouen.fr

Abstract. In this paper, we present a novel approach to compute effi-
ciently the gap weighted subsequence kernel (GWSK). We have started
by the construction of a match list L(s, t) = {(i, j) : si = tj} where s and
t are the strings to be compared. Then, we have constructed a layered
range tree and a list of lists. The whole process takes O(|L| log |L|+ pK)
time and O(|L| log |L|+K) space, where |L| is the size of the match list,
p is the length of the GWSK and K is the total reported points by range
queries over all the entries of the match list.

Keywords: string kernel, computational geometry, layered range tree,
range query

1 Introduction

Kernel methods [1] were proposed as an alternative solution to the limitation of
traditional machine learning algorithms applied, solely, on linear separable prob-
lems. They project the data into a high dimensional feature space where linear
learning machines based on algebra, geometry and statistics can be applied.
Hence, non-linear relations can be discovered. Moreover, the kernel methods
enables other types of data (biosequences, images, graphs, . . . ) to be processed.

Strings are considered among the important data types. Therefore, a great
effort of research has been devoted to string kernels that are widely used in the
fields of bioinformatics and natural language processing. The philosophy of all
string kernels can be reduced to different ways to count common substrings or
subsequences that occur in the two strings to compare, say s and t.

There are two main approaches to improve the computation of the gap-
weighted subsequence kernel (GWSK). The first one is based on dynamic pro-
gramming paradigm; Lodhi et al. [2] have applied dynamic programming paradigm
to the suffix version of the GWSK. Later, Rousu and Shawe-Taylor [3] have pro-
posed an improvement to the dynamic programming approach. They have used
a set of match lists combined with a sum range tree. The trie-based approach [4]

? This work is supported by the MESRS - Algeria under Project 8/U03/7015.
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is based on depth first traversal on an implicit trie data structure. The number
of gaps is restricted, so the computation is approximate.

Motivated by the efficiency of the computation, a key property of the kernel
methods, in this paper, we will focus on improving the GWSK computation. We
begin by the construction of a match list L(s, t) = {(i, j) : si = tj} that contains
only the required data to the computation. The main idea is that the GWSK
computation corresponds to 2-dimensional range queries on a layered range tree
(a range tree enhanced by the fractional cascading technique). The final data
structure built is a list of lists. The overall time complexity is O(|L| log |L|+pK),
where |L| is the size of the match list and K is the total reported points by range
queries over all the entries of the match list.

The rest of this paper is organized as follows. Section 2 deals with some
concept definitions used in the other sections. In section 3, we recall formally
the GWSK computation. We review three efficient computations of the GWSK,
namely, dynamic programming, trie-based and sparse dynamic programming
approaches. Section 4 is devoted to the presentation of our contribution. Section 5
includes conclusions and discussion.

2 Preliminaries

This section deals with required concepts to understand the rest of this paper.
Let Σ be an alphabet of a finite set of symbols. The number of symbols in Σ
is denoted by |Σ|. |s| denotes the length of the string s. Σn denotes the set of
all finite strings of length n, and Σ∗ denotes the set of all strings. The notation
[s = t] is a boolean function that returns

{
1 if s and t are identical;
0 otherwise.

The ith element of the word s is denoted by si. The string s(i : j) denotes
the substring sisi+1...sj of s. Accordingly, the string t is a substring of a string
s if there are strings u and v such that s = utv (u and v can be empty). The
substrings of length n are referred to as n-grams (or n-mers).

The string t is a subsequence of s if there exists an increasing sequence of
indices I = (i1, ..., i|t|) in s, (1 ≤ i1 < ... < i|t| ≤ |s|) such that tj = sij , for
j = 1, ..., |t|. In the literature, we use t = s(I) if t is a subsequence of s in
the positions given by I. The empty string ε is indexed by the empty tuple. The
length of the subsequence t is denoted by |t| = |I| which is the number of indices,
while l(I) = i|t| − i1 + 1 refers to the number of characters of s covered by the
subsequence t.

3 Gap-Weighted Subsequence Kernels

The GWSK adopts a new weighting method that reflects the degree of contiguity
of a subsequence in the string. In order to measure the distance of non contiguous

2



elements of the subsequence, a gap penalty λ ∈]0, 1] is introduced. Formally, the
mapping function φp(s) in the feature space F can be defined as follows:

φpu(s) =
∑

I:u=s(I)

λl(I), u ∈ Σp.

The associated kernel can be written as:

Kp(s, t) = 〈φp(s), φp(t)〉 =
∑

u∈Σp

∑

I:u=s(I)

∑

J:u=t(J)

λl(I)+l(J).

A suffix kernel is defined to assist in the computation of the GWSK. The asso-
ciated embedding is given by:

φp,Su (s) =
∑

I∈I|s|p :u=s(I)

λl(I), u ∈ Σp,

where Ikp denotes the set of p-tuples of indices I with ip = k (see Section 2).
The associated kernel can be defined as follows:

KS
p (s, t) = 〈φp,S(s), φp,S(t)〉

=
∑

u∈Σp

φp,Su (s).φp,Su (t).

The GWSK can be expressed in terms of its suffix version as follows:

Kp(s, t) =

|s|∑

i=1

|t|∑

j=1

KS
p (s(1 : i), t(1 : j)), (1)

with KS
1 (s, t) = [s|s| = t|t|] λ2.

3.1 Naive Implementation

The computation of the similarity of two strings (sa and tb) is conditioned by
their final symbols. In the case where a = b, we have to sum kernels of all prefixes
of s and t. Hence, a recursion has to be devised:

KS
p (sa, tb) = [a = b]

|s|∑

i=1

|t|∑

j=1

λ2+|s|−i+|t|−jKS
p−1(s(1 : i), t(1 : j)). (2)

The computation of equation (2) leads to a complexity of O(p(|s|2|t|2)).

3.2 Efficient Implementations

We will present three methods that compute the GWSK efficiently. The first
is based on a dynamic programming approach [2], the second is the trie-based
method [4] and the third is a sparse dynamic programming based approach [3].
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Dynamic Programming Approach. The starting point of the dynamic pro-
gramming approach is the suffix recursion given in equation (2). From this equa-
tion, we can consider a separate dynamic programming table DPp for storing
the double sum:

DPp(k, l) =

k∑

i=1

l∑

j=1

λk−i+l−j KS
p−1(s(1 : i), t(1 : j)). (3)

It is easy to observe that: KS
p (sa, tb) = [a = b]λ2DPp(|s|, |t|)).

Computing ordinary DPp for each (k, l) would be inefficient. So we can devise a
recursive version of equation (3) with a simple counting device:

DPp(k, l) = KS
p−1(s(1 : k), t(1 : l)) + λDPp(k − 1, l) +

λDPp(k, l − 1)− λ2DPp(k − 1, l − 1).

Consequently, the complexity of the GWSK is O(p |s||t|).

Trie-based Approach. This approach is based on search trees known as tries,
introduced by E. Fredkin in 1960. The key idea of the trie-based approach is
that leaves play the role of the feature space indexed by the set Σp. In the
literature, there exists a variant of trie-based gap weighted subsequence kernels.
For instance the (p,m)-mismatch string kernel [4] and restricted GWSK [5].

In the present section, we try to describe a trie-based GWSK presented in
[3] that slightly differ from the one cited above [5]. Given that each node in
the trie corresponds to a co-occurrence between strings, the algorithm stores all
matches s(I) = u1 · · ·uq, I = i1 · · · iq in such node. In parallel, it will maintain
a list of alive matches Ls(u, g) that records the last index iq (g is the number
of gaps in the match). Notice that in the same list we are able to record many
occurrences with different gaps. Similarly, the algorithm is applied to the string
t. The process will continue until achieving the depth p where the kernel will be
evaluated as follows:

Kp(s, t) =
∑

u∈Σp

φpu(s)φ
p
u(t) =

∑

u∈Σp

∑

gs,gt

λgs+p|Ls(u, gs)| · λgt+p|Lt(u, gt)|.

Given that, there exists
(
p+m
m

)
different entries at leaf nodes, the worst-case time

complexity of the algorithm is O(
(
p+m
m

)
(|s|+ |t|)).

Sparse Dynamic Programming Approach. This approach is built on the
fact that in many cases, most of the entries of the DP matrix are zero and
do not contribute on the result. Rousu and Shawe-Taylor [3] have proposed a
solution using two data structures. The first one is a set of match lists instead
of the KS

p matrix. The second one is a range sum tree, which is a B-tree, that
replaces the DPp matrix. It is used to return the sum of n values within an
interval in O(log n) time. Their algorithm runs in O(p|L| logmin(|s|, |t|)), where
L = {(i, j)|si = tj}.

4



4 List and Layered Range Tree based Approach

Looking forward to improving the complexity of GWSK, our approach is based
on two observations. The first one concerns the computation of KS

p (s, t) that is
required only when s|s| = t|t|. Hence, we have kept only a list of index pairs of
these entries rather than the entire suffix table, L(s, t) = {(i, j) : si = tj}. If we
consider the example which computes Kp(gatta, cata), the list generated is

L(gatta, cata) = {(2, 2), (5, 2), (3, 3), (4, 3), (2, 4), (5, 4)}.

In the rest of the paper, while measuring the complexity of different compu-
tations, we will consider, |L|, the size of the match list L(s, t) as the parameter
indicating the size of the input data.

The complexity of the naive implementation of the list version is O(p|L|2),
and it seems not obvious to compute KS

p (s, t) efficiently on a list data structure.
In order to address this problem, we have made a second observation that the
suffix table can be represented as a two-dimensional space (plane) and the entries
where s|i| = t|j| as points in this plane.

At the light of this observation, the computation of KS
p (s, t) can be inter-

preted as an orthogonal range query. In the literature, there exist several data
structures that are used in computational geometry. We have examined a spa-
tial data structure known as Kd-tree [6, 7, 8]. It records a total time cost of
O(p(|L|

√
|L| + K)) for computing the GWSK, where K is the total of the re-

ported points. It is clear that this relative amelioration is not sufficiently satisfac-
tory. So we adopted another spatial data structure, called range tree [7, 8, 9, 10],
which has better query time for rectangular range queries. We will describe such
data structure and its relationship with GWSK in the following sub sections.

4.1 Suffix Table Representation

The entries (k, l) in L(s, t) correspond to a set S of points in the plane, where
the index pairs (k, l) play the role of the point coordinates. The set S is rep-
resented by a 2-dimensional range tree, where nodes represent points in the
plane. Thereby, representing the suffix table tend to be the construction of a
2-dimensional range tree. A range tree, denoted by RT is primarily a balanced
binary search tree (BBST) augmented with an associated data structure. In
order to build such data structure, first, we consider the set Sx of the first co-
ordinate (x-coordinate) values of all the points in S. Thereafter, a BBST called
x-RT is constructed with points of Sx in the leaves. Both internal or leaf nodes
v of x-RT are augmented by a 1-dimensional range tree, it can be a BBST or
a sorted array, of a canonical subset P (v) on y-coordinates, denoted by y-RT .
The subset P (v) is the points stored in the leaves of the sub tree rooted at the
node v. Figure 1 illustrates the construction process of a 2-dimensional range
tree.

In the case where two points have the same x or y-coordinate, we have to
define a total order by using a lexicographic one. It consists to replace the real

5



Fig. 1. Layered range tree RT related to KS
p (gatta, cata)

number by a composite-number space [7]. The composite number of two reals x
and y is denoted by x|y, so for two points, we have:

(x|y) < (x′|y′)⇔ x < x′ ∨ (x = x′ ∧ y < y′).

In such situation, we have to transform the range query [x1 : x2] × [y1 : y2]
related to a set of points in the plane to the range query [(x1| − ∞) : (x2| +
∞)]× [(y1| −∞) : (y2|+∞)] related to the composite space.

Based on the algorithm analysis of computational geometry algorithms, our
2-dimensional range tree requires O(|L| log |L|) storage and can be constructed
in O(|L| log |L|) time. This leads to the following lemma.

Lemma 1. Let s and t be two strings and L(s, t) = {(i, j) : si = tj} the match
list associated to the suffix version of the GWSK. A range tree for L(s, t) requires
O(|L| log |L|) storage and takes O(|L| log |L|) construction time.

4.2 Location of Points in a Range

We recall that computing the recursion for the GWSK given by the equation
(2) can be interpreted as the evaluation of a 2-dimensional range query applied
to a 2-dimensional range tree. Such evaluation locates all points that lie in the
specified range.

A useful idea, in terms of efficiency, consists on treating a rectangular range
query as a two nested 1-dimensional queries. In other words, let [x1 : x2]×[y1 : y2]
be a 2-dimensional range query, we first ask for the points with x-coordinates in
the given 1-dimensional range query [x1 : x2]. Consequently, we select a collection
of O(log |L|) subtrees. We consider only the canonical subset of the resulted
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subtrees, which contains, exactly, the points that lies in the x-range [x1 : x2]. At
the next step, we will only consider the points that fall in the y-range [y1 : y2].
The total task of a range query can be performed in O(log2 |L|+ k) time, where
k is the number of points that are in the range. We can improve it by enhancing
the 2-dimensional range tree with the fractional cascading technique which is
described in the following subsection.

4.3 Fractional Cascading

The key observation made during the invocation of a rectangular range query is
that we have to search the same range [y1 : y2] in the associated structures y-
RT of O(log |L|) nodes found while querying the x-RT by the range query [x1 :
x2]. Moreover, there exists an inclusion relationship between these associated
structures. The goal of the fractional cascading consists on executing the binary
search only once and use the result to speed up other searches without expanding
the storage by more than a constant factor.

The application of the fractional cascading technique introduced by [11] on
a range tree creates a new data structure so called layered range tree. We will
illustrate such technique through a simple of GWSK computing in Fig. 1.

Using this technique, the rectangular search query time becomes O(log(|L|+
k), where k is the number of reported points. For the computation of KS

p (s, t)
we have to consider |L| entries of the match list. The process iterates p times,
therefore, we get a time complexity of O(p|L| log |L| + K) for evaluating the
GWSK, where K is the total of reported points over all the entries of L(s, t).
This result combined to that of Lemma. 1 lead to the following Lemma:

Lemma 2. Let s and t be two strings and L(s, t) = {(i, j) : si = tj} the match
list associated to the suffix version of the GWSK. A layered range tree for L(s, t)
uses O(|L| log |L|) storage and it can be constructed in O(|L| log |L|) time. With
this layered range tree, the GWSK of length p can be computed in O(p(|L| log |L|+
K)), where K is the total number of reported points over all the entries of L(s, t).

4.4 List of lists Building and GWSK Computation

Another observation leads us to pursue our line of reasoning about the improve-
ment of the GWSK computation complexity. It is obvious to state that point
coordinates, in our case, in the plane remain unchanged during the entire pro-
cessing. So instead of invoking the 2-dimensional range query multiple times
according to the evolution of the parameter p, it is more beneficial if we do the
computation only once. Accordingly, in this phase, we extend our match list to
be a list of lists (Fig. 2), where each entry (k, l) points to a list that contains
all the points that lie in the corresponding range. Algorithm 1 builds this list
of lists. The complexity of the construction of the list of lists is the complexity
of invoking the 2-dimensional range query over all the entries of the match list.
This leads to O(|L| log |L|+K) time complexity.
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Algorithm 1 List of Lists Creation
Require: match list L(s, t) and Layered Range Tree RT

for each entry (k, l) ∈ L(s, t) do
{Preparing the range query}
x1 ← 0
y1 ← 0
x2 ← k − 1
y2 ← l − 1
relatedpoints ← 2D-RANGE-QUERY(RT , [(x1| −∞) : (x2|+∞)]× [(y1| −∞) :
(y2|+∞)]
while There exists (i, j) ∈ relatedpoints do

add (i, j) to (k, l)-list
end while

end for
Ensure: List of Lists LL(s, t): The match list augmented with lists containing reported
points

Fig. 2. List of lists inherent to KS
1 (gatta,cata).

Once the list of lists constructed, the GWSK computation will sum over all
the reported points stored on it. The process is described in Algorithm 2. The
cost of this computation is O(K). Since we will evaluate the GWSK for p ∈
[1..min(|s|, |t|)], this leads to a complexity of O(pK). So the over all complexity
is O(|L| log |L| + pK) which include the construction of the list of lists and the
computation of GWSK in the strict sense. This leads to the following theorem
that summarizes the result for the computation of the GWSK.

Theorem 1. Let s and t be two strings and L(s, t) = {(i, j) : si = tj} the match
list associated to the suffix version of the GWSK. A layered range tree and a list
of lists for L(s, t) require O(|L| log |L|+K) storage and they can be constructed
in O(|L| log |L| + K) time. With these data structures, the GWSK of length p

8



can be computed in O(|L| log |L|+ pK), where K is the total number of reported
points over all the entries of L(s, t).

Algorithm 2 GWSK computation
Require: List of Lists LL(s, t), subsequence length p and penalty coefficient λ

for q=1:p do
{Initialization}
K(q)← 0
KPS(1 : |max|)← 0
for each entry (k, l) ∈ LL(s, t) do

for each entry r ∈ (k, l)− list do
(i, j)← r.Key
KPS(i,j) ← r.V alue
KPS(k, l)← KPS(k, l) + λk−i+l−j KPS(i,j)

end for
K(q)← K(q) +KPS(k, l))

end for
{Preparing LL(s, t) For the next computation}
for each entry (k, l) ∈ KPS do

Update LL(k, l) with KPS(k, l)
end for

end for
Ensure: Kernel values Kq(s, t) = K(q) : q = 1, . . . , p

5 Conclusion

We presented a novel algorithm that efficiently computes the gap weighted sub-
sequence kernel (GWSK). Our approach is refined over three phases. We begin
by the construction of a match list L(s, t) that contains, only, the information
that contributes in the result. In order to locate, efficiently, the related positions
for each entry of the match list, we have constructed a layered range tree. At
last, we have built a list of lists to compute efficiently the GWSK. The Whole
task takes O(|L| log |L|+ pK) time and O(|L| log |L|+K) space, where p is the
length of the GWSK and K is the total number of reported points.

The reached result gives evidence of an asymptotic complexity improvement
compared to that of a naive implementation of the list version O(p |L|2). On the
other hand, our intermediate data structure, the layered range tree is output
sensitive. It means that our computation implies, only, required data. However,
this dictates to conduct empirical analysis to compare our contribution to other
approaches. This will be the subject of a future research.

Nevertheless, based on the asymptotic complexities of the different approaches
and the experiments presented in [3], we make some discussions. The dynamic
programming approach is faster when the DPp table is nearly full. This case
is achieved on short strings and on long strings if the alphabet is small. The
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trie-based approach is faster on medium-sized alphabets but it suffers from gap
length restriction. Furthermore, recall that our approach and the sparse dynamic
programming one are proposed in the context where the most of the entries of
the DPp table are zero. This case occurred for large-sized alphabets. From the
asymptotic complexity of the sparse approach, O(p|L| logmin(|s|, |t|)), it is clear
that its efficiency depends on the size of the strings. For our approach it depends
only on the number of common subsequences. Under these conditions our ap-
proach outperforms for long strings. Theses discussions will be validated by a
future empirical study.

A noteworthy advantage is that our approach separates the process of re-
quired data location from the strict computation one. This separation limits the
impact of the length of the GWSK on the computation. It have influence, only,
on the strict computation process. Moreover, such separation property can be
favorable if we assume that the problem is multi-dimensional, e.g. comparing
several strings in the same time. In terms of complexity, this can have influence,
only, on the location process by a logarithmic factor. Indeed, the layered range
tree can report points that lies in a rectangular range query in O(logd−1 |L|+k),
in a d-dimensional space. At the implementation level, great programming effort
is supported by well-studied and ready to use computational geometry algo-
rithms. Hence, the emphasis is shifted to a variant of string kernel computations
that can be easily adapted.
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Abstract. Reaction systems model living organisms as systems sustain-
ing themselves through reaction processes and receiving contributions
from the environment. In the classical model, the system is completely
open and the environment is completely unpredictable, contributing to
system evolution via a set-theoretic union operation. We discuss variants
in which the environment can be modeled as a function or relation involv-
ing the state of the system and in which communication occurs through
specific channels. Moreover, we discuss models of environment contribu-
tion via intersection and symmetrical difference, rather than union.

1 Introduction

Reaction systems [6], a novel paradigm of nature-inspired computing, model liv-
ing organisms by defining self-sustainable sets of reactions which can take place
inside of them. In particular, a reaction can occur if the system’s current config-
uration: (1) contains all the reactants needed for it, and (2) does not contain any
inhibitor preventing it. As a result, the original configuration is replaced with
the products of the reaction. Hence, a reaction does not describe a mechanism of
consumption and production of individual, distinct resources. Rather, reaction
systems can be considered as defining a type calculus in which some types of
element are produced only if some types of element, the reactants, are available
and other types, the inhibitors, are absent. The main distinction with respect
to traditional resource-based approaches, e.g. multiset rewriting [1, 3, 4, 2, 14], is
that no counting of resources occurs, so that all possible reactions in a configura-
tion occur simultaneously without conflicts even if their sets of reactants are not
disjoint, and that unused resources are not maintained between reactions: in a
reaction system, if a type of element is not produced by one of the reactions oc-
curring on a configuration, it will not appear in the next configuration. Although
counting is not required in models based on DNA computing [15], as all neces-
sary copies are assumed to be present, these models still assume that resources
persist even if not reproduced, as a system boundaries preserve its identity; a
reaction system exists as long as it is able to sustain a set of reactions.

Moreover, organisms are modeled as open systems, accepting any contribu-
tion from the environment. Hence. in addition to the reaction mechanism, the
evolution of a reaction system depends on the injection of other types of elements
from the environment, determining the configuration on which the next set of
reactions will occur. In the classical model of reaction systems the environment
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is completely unpredictable, i.e. there is no relation between the current sys-
tem configuration and the contribution provided by the environment. However,
it is often the case that the latter presents some form of dependence on the
current state of the system. For example in osmotic processes, the concentra-
tion of substances at the system boundaries determines the gradient of intake
for those substances. In social systems, adversarial or collaborative interactions
may develop by having other systems sending input towards the system under
study to orient its evolution. Moreover, in classical reaction systems the system
is completely open, i.e. whatever the environment contributes becomes part of
the system’s configuration. Again, systems might present filtering mechanisms
which treat input from the environment in a different way, for example as a form
of protection, or combine it only with matching or complementary resources.

These considerations motivate us to explore variants which constrain environ-
mental contribution in different ways, without modifying the notion of reaction.
First, we consider a model in which the environment contribution depends, either
in a deterministic or a non-deterministic way, on the current configuration. We
observe that compliance or not with two simple boundary conditions modifies
the computational power of the model. Second, we consider that only certain
types of elements can be contributed by the environment, whereas the others
have to be produced by the system itself, and show that this restriction does not
extend the computational power of functional environments. Third, we study
different ways in which the contribution of the environment can be integrated in
the configuration. While the classical model is based on set-theoretic union, we
explore mechanisms based on intersection and symmetrical difference, discussing
the possibility of forcing the system to perform only some types of evolution.

Paper organisation. After recalling the classical model of reaction systems in
Section 2, we explore three types of restrictions on the environment in Section 3,
and the use of different set-theoretical operations in Section 4. We discuss related
work in Section 5, and conclude the paper and discuss future work in Section 6.

2 Background

We recall here the basic formal notions on reaction systems (see e.g. [6]).
Let S be a finite set of elements, called a support. A reaction in S is a triple a

= (Ra, Ia, Pa), with: Ra∪Ia∪Pa ⊆ S, Ra∩Ia = ∅, and none of Ra, Ia, Pa empty1.
A reaction a is enabled in a configuration2 D ⊂ S iff Ra ⊆ D and Ia ∩D = ∅.
We call Ra the set of reactants, Ia the set of inhibitors and Pa the set of products
for the reaction a. We consider sets of reactions, denoted by A = {a1, . . . , an},
where each ai is a reaction in S. Note that any set of reactions can be assumed
to act on the same support S, by just taking S =

⋃
ai∈ARai ∪ Iai ∪ Pai . Given

a configuration D, we call enA(D) the set of reactions from A enabled in D.
A reaction system is a pair A = (S,A). A reaction step on D ⊂ S is defined

as D ⇒ D′ = resA(D), where resA(D) =
⋃
a∈enA(D) Pa. An evolution step is

1 Having a rule (X,Y, ∅) would be the same as lacking rules with Ra = X, Ia = Y .
2 D must be a proper non-empty subset of S for any reaction to be enabled in it.
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defined as D′ ⇒ W = (D′ ∪ C), where C represents the contribution from the
environment. By representing the system overall evolution by a sequence of sets,
the composition of a reaction and an evolution step give rise to a subsequence
D ·W . In principle, one could consider the distinct sequences D, C and W of
reaction steps, contributions, and evolution steps for a system A, respectively.
We indicate with [α] the constant repetition of a subsequence α and call non-
terminating a sequence which does not have the form α · [∅].

We denote by CISTS(A) and STS(A) the sets of sequences of evolution
steps (i.e. of all possible W for A) where C = ∅ at all steps (i.e. the system is
context-independent) and with arbitrary C at all steps, respectively. We define
STS(S) (CISTS(S)) as the set of possible sets of sequences of evolution steps
(with C = ∅ at all steps) for any possible reaction system on S. Note that even if
the system produces an empty configuration in a reaction step, the environment
can sustain it by injecting new entities.

3 Constraints on the environment

We discuss now different ways in which the contribution of the environment can
be constrained. In particular, we consider functional, relational or channelled
environments, showing the relevance of boundary conditions in determining the
overall sequence of system evolutions. In all these cases, we consider that the
contribution of the environment is merged with the product of a reaction system
in the classical way, i.e. via the union operation.

3.1 Functional environments

We model the environment contribution as a function ψ : ℘(S) → ℘(S) on the
result of a reaction, where ℘(S) denotes the powerset of S, i.e. the set of all its
subsets; hence we have D′ = resA(W ), C = ψ(D′) and W ′ = D′ ∪ C. If ψ is
such that ψ(S) = ψ(∅) = ∅, we say that ψ respects the boundary conditions (ψ
is BC). Conversely, ψ is non-BC if ψ(W ) 6= ∅ for at least one of W = ∅, S.

We now consider a few examples of reaction systems on a set S of two ele-
ments, the minimum cardinality of S for which a reaction system can be defined.
Any set of reactions A on S has rules of the form (X,Y, Z), with X ∪Y = S and
Z ⊆ S. We obtain the following possible schemes of reaction systems, where Z1

and Z2 are non-empty subsets of S.

1. A = {(X,Y, Z1)}.
2. A = {(X,Y, Z1), (Y,X,Z2)}, with Z1 6= Z2.
3. A = {(X,Y, Z1), (Y,X,Z1)}.

Example 1. Let ψ be a constant BC function with ψ(W ) = {z} for W ⊂ S,
W 6= ∅, S, z ∈ S, the cases z = ∅ or z = S being trivial. Then we have the
following W sequences:

1. For A of type 1, supposing the initial configuration is X, we have
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– For X = {z} = Z1, STS(A) = [X].
– For Z1 6= {z}, STS(A) = X · S · [∅].

2. For A of type 2, we have:
– For X = {z} = Z1, STS(A) = [X].
– For X = {z}, Y ∩ Z1 6= ∅, STS(A) = X · S · [∅].
– For X 6= {z}, X ∩ Z1 = ∅, STS(A) = X · Y · Z2 · α. The form of α

depends on whether Z2 is a singleton or not.
Analogous results are obtained by exchanging X with Y and Z1 with Z2.

3. For A of type 3, we have:
– For X = {z}, Y ∩ Z1 = ∅, STS(A) = [X].
– For X = {z}, Y ∩ Z1 6= ∅, STS(A) = X · S · [∅].
– For X 6= {z}, X 6⊂ Z1, X = Z2, STS(A) = [X · Y ].

Example 2. Let ψ be a constant non-BC function, so that ψ(W ) = {z} for
W ⊆ S, z ∈ S Then we have the following W sequences:

1. For A of type 1, supposing the initial configuration is X, we have:
– For X = {z} = Z1, STS(A) = [X].
– For X = {z}, Y ∩ Z1 6= ∅, STS(A) = [X · S].

2. For A of type 2, we have:
– For X 6= {z}, X 6⊂ Z1, STS(A) = X · S · [{z}].

Analogous results are obtained by exchanging X with Y and Z1 with Z2.
3. For A of type 3, we have:

– For X = {z}, Y ∩ Z1 = ∅, STS(A) = [X].
– For X = {z}, Y ∩ Z1 6= ∅, STS(A) = [X · S].
– For X 6= {z}, X 6⊂ Z1, X = Z2 STS(A) = [X · Y · S].

Example 3. Let ψ be the complement function, i.e. ψ(W ) = S \W for W ⊆ S,
which is obviously non-BC and models an osmosis process. For any reaction
system A, starting with X we would have STS(A) = X · [S].

We call FSTSψ(A) the set of sequences for a reaction system A and a func-
tional environment ψ, FSTS(A) the set of sequences for A and any functional,
non-BC, environment, and FSTS(S) the set of sequences for any reaction sys-
tem on S and any functional non-BC, environment. Theorems 1 and 2 formalise
the relevance of boundary conditions.

Theorem 1. Given a reaction system A with functional, BC, environment ψ,
there exists a reaction system A′ such that the set of the possible sequences of
context-independent evolution steps for A′ is equal to the set of possible sequences
of evolution steps for A and ψ.

Proof. We build the reaction system A′ = (S,A′) such that A′ contains a rule
for each possible evolution of a configuration, except those which would result
in an empty configuration as the result of a reaction step. Since ψ is BC, in this
case also the contribution from the environment would be empty. Formally, we
write: ∀W ⊂ S[(W 6= S ∧W 6= ∅ ∧ resA(W ) 6= ∅) =⇒ (W,S \W, resA(W ) ∪
ψ(resA(W ))) ∈ A′]. Note that this is a reaction system, as none of W , S \
W , resA(W ) ∪ ψ(resA(W )) under the assumptions above can be empty. It is
immediate to see that CISTS(A′) = STS(A).
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Theorem 2. CISTS(S) ⊂ FSTS(S) ⊂ STS(S).

Proof. The first inclusion derives from the fact that a context-independent envi-
ronment can be simulated by a functional non-BC environment equipped with
the identity function ψ, i.e. ψ(W ) = W for W ⊆ S. For strictness, note that no
sequence in CISTS(S) can contain a subsequence Y ·X, with Y = ∅ or Y = S,
for any X ⊂ (S), X 6= ∅, which is instead possible for a system with functional
environment (e.g. for a constant function ψ). That FSTS(S) is a proper subset
of STS(S) derives from the fact that, while all sequences in FSTS(S) are of
course within STS(S), the latter, due to the arbitrary nature of the contribution
from an unconstrained environment, contains also sequences with subsequences
of the form S ·X · α · S · Y , with X,Y ⊂ S, X 6= Y which are not possible for a
sequence in FSTS(S).

3.2 Relational environments

We model the environment contribution via a relation ρ ⊂ ℘(S)×℘(℘(S)), where
the first element of each pair represents the result of a reaction, and the second
element is a subset of entities compatible with the current configuration. We
then have D′ = resA(W ), C ∈ ρ(D′) and W ′ = D′ ∪ C.

Obviously a functional environment is a particular case of relational environ-
ment, where all the second components of ρ are singletons. Moreover, in the case
where each second component is the whole powerset ℘(S), we have the classical
model of reaction systems, while if each second component is the empty set we
have context-independent reaction systems. Interesting effects might be reached
by relations that ensure that some inhibitor for some reaction a is always present
in each second component, which makes it possible to restrict sequences, so that
a never occurs. The dual case where the set of reactants for some reaction a is
always provided (and no inhibitor is ever provided) does not necessarily force a
to occur, as some inhibitor could be produced by the reaction step anyway.

3.3 Channels

Channels model a situation in which the environment can contribute only some
types of elements, and not any possible subset of S. An input channel is a subset
χ ⊂ S such that the environment can contribute only subsets of χ. We then have
D′ = resA(W ), C ⊂ χ and W ′ = D′ ∪C. The cases in which the environment is
functional or relational result accordingly, i.e. C = ψ(D′) ∩ χ or C = C ′ ∩ χ for
some C ′ ∈ ρ(D′). It is easy to note that channels can be simulated by relations,
by defining ρ so that for each W ⊆ S and for each χi ⊂ χ, we have (W,χi) ∈ ρ.

In a different perspective, one can define output channels, so that only some
types of elements can be communicated from the reaction system to the envi-
ronment, for it to evaluate its contribution. In this case, let ξ ⊂ S be the output
channel. The function ψ and the relation ρ will be computed on D′ ∩ ξ. Again,
output channels can be directly simulated within the function or the relation.
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4 Different forms of contribution

In Section 3, we have considered the classical way of defining the environment
contribution via a union operation. In this case, the contribution is always a
positive one, even if it can adversely affect the behaviour of the system, for
example by introducing inhibitors. We now consider other types of operation,
which can intervene to remove from the current configuration some element. We
consider in all cases a functional environment.

4.1 Intersection

An intersecting environment models a synchronisation process, where only ele-
ments which are consistently produced by both the system and the environment
are maintained. Again, we model the environment via a function ψ : ℘(S) →
℘(S) on the result of a reaction, but now we model the evolution process by
defining D′ = resA(W ) and W ′ = D′ ∩ ψ(D′). We call FSTSI(A) the set of
all possible sequences of evolutions for a reaction system A with functional en-
vironment and contribution restricted to intersection.

Let us suppose that CISTS(A) does not contain terminating sequences.
Then, all its sequences are of the form S1 = Z · α · [X] (i.e. resA(X) = X) or
S1 = Z · α · [X · δ1 · · · · · δn] (i.e. resA(X) = δ1 and resA(δn) = X) for some X
with X 6= ∅ and X 6= S. For any X ⊆ S, such that X ∩ ψ(X) = ∅, any initial
sequence of the form α ·X can only proceed, when using intersection, as α ·X ·[∅].
We therefore consider the following cases, for X ′ = ψ(X) and Y = (X ′∩X) 6= ∅.

1. Y = X ′. Then the system will produce sequences of the form S′1 = Z · β ·
X ′ ·Y ·γ, for some sequence γ, if there exists an m such that β = β1 · · · · ·βm
with β1 = resA(Z) ∩ ψ(resA(Z)) and resA(βm) ∩ ψ(resA(βm)) = X.

2. Y = X. Then the system will produce sequences of the form S′1 = Z · β · [X]
and sequences of the form form S′2 = Z · β ·X · (δ1 ∩ ψ(δ1)) · δ′, for some δ′,
under the same conditions for β.

For the case (Y 6= X) and (Y 6= X ′), no particular conclusion can be drawn.
We can now prove Theorem 3.

Theorem 3. The following hold:

1. For any X,X ′ ⊂ S with ψ(X) = X ′, FSTSI(A) admits a sequence of the
form α · [X ′] iff CISTS(A) admits a sequence of the form [X · β ·X ′].

2. If all the sequences in CISTS(A) are of the form α · [X · β] and ψ(X) ⊃ X
for all such X, then FSTSI(A) admits non terminating sequences.

One can study the relation between contribution via union and intersection
with respect to different characteristics of the reaction systems. A duality result
ensues for a particular case. For a set X ⊂ S, we denote by X its complement
with respect to S. We say that a reaction system A = (S,A) is autodual if it
enjoys the following property: a = (Ra, Ia, Pa) ∈ A⇔ a′ = (Ia, Ra, Pa) ∈ A.
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Proposition 1 establishes a connection between the autoduality property of
reaction systems and the set-theoretic duality of intersection and union. We
denote by FSTSψ(A,W ) the set of evolution sequences of a reaction system
A, starting from an initial configuration W and with a functional environment
ψ contributing via union. Similarly, we use FSTSψI (A,W ) for the case of a
functional environment contributing via intersection.

Proposition 1. Let A = (S,A) be an autodual reaction system, D a configura-
tion of it and ψ a functional environment. Then there exists a functional environ-

ment ψ′ such that D·δ1·· · ··δn ∈ FSTSψ(A, D)⇔ D·δ1·· · ··δn ∈ FSTSψ
′

I (A, D).

Proof. We define ψ′ as follows: for each W ⊂ S we have ψ′(W ) = ψ(W ). Then
given a configuration D, for each a ∈ enA(D) we have: D ∩ Ia = ∅, from which
we infer D ⊇ Ia = Ra′ . Hence, an evolution step applying exactly a in the
configuration D and using ψ via union will produce W = Pa ∪ ψ(Pa), while in

the configuration D, using ψ′ and intersection, we will have W ′ = Pa ∩ψ(Pa) =
Pa ∩ ψ(Pa) = W for De Morgan’s law. The thesis follows by extension to the
union of the products of all rules in enA(D).

4.2 Symmetrical difference

An environment which contributes via symmetric difference between the result
of a process and the result of the function models a challenging process, where an
element can remain in the system only if it is produced by an identifiable source,
the system itself or the environment. We define the operation of symmetrical
difference, denoted by ∆, as X∆Y ≡ X \ Y ∪ Y \X. As before, we model the
environment through a function ψ : ℘(S)→ ℘(S) but now the evolution process
is modeled as D′ = resA(W ), W ′ = D′∆ψ(D′). We call FSTS∆(A) the set
of all possible sequences of evolutions for a reaction system A with functional
environment and contribution restricted to symmetrical difference.

Note that an osmotic process, modeled in Section 3.1 by the function cal-
culating the complement, will produce the same sequences if the contribution
of the environment is produced via the union or via the symmetrical difference
operator. In particular, if ψ calculates the complement, except for the cases de-
fined by the boundary conditions, then all sequences have the form Z · [∅]. We
are therefore interested in the case where ψ(X) 6= S \X for all X ⊂ S.

Under this assumption, we study the differences between the three types of
contribution. As discussed in Section 3.2 for the case of relations, an environment
contributing with union can add elements to a configuration of a system, so
that a functional environment can systematically forbid a given reaction a in a
configuration by always introducing at least one inhibitor, as well as ensuring
that the set of reactants for a is always present, but it cannot allow such a
reaction if at least one inhibitor for a is already present in the configuration, as
the result of a reaction step. On the other hand, an environment contributing
with intersection can exclude some elements from a configuration of a system,
so that it can allow a given reaction a in a configuration containing all the
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necessary reactants by removing any inhibitor already present, and it can forbid
an a by removing some of its reactants, i.e. not presenting it for contribution.
However, neither union nor intersection can be used to force the system to always
apply a certain reaction, i.e. to define a self-sustaining behaviour in presence of
contributions from the environment.

On the contrary, an environment contributing with symmetrical difference
can remove inhibitors and introduce reactants for a at the same time, thus
forcing the execution of a on any configuration. Let a = (Ra, Ia, Pa) be the
reaction we want to be forcefully executed. Then, for each W ⊂ S, we define ψ
so that ψ(W ) = (Ra \W ) ∪ (Ia ∩W ), i.e. ψ provides all the missing reactants
and all and only the inhibitors already present in W . The operator ∆ will then
take care of removing all the inhibitors and add all the needed reactants.

Moreover, the evaluation of the contribution through symmetrical difference
can emulate both the cases of contribution through union or intersection.

In the first case, let ψ be the function defining an environment which con-
tributes through union. We define a new function ψ′ such that for each W ⊂ S,
ψ′(W ) = ψ(W ) \W . In this case, for each evolution step in FSTSψ(A) there is

an identical evolution step in FSTSψ
′

∆ (A). In a similar way, let ψ be the func-
tion defining an environment which contributes via intersection. We define a new
function ψ′ such that for each W ⊂ S, ψ′(W ) = W \ψ(W ). In this case, for each

evolution step in FSTSψI (A) there is an identical evolution step in FSTSψ
′

∆ (A).
Theorem 4 follows from the arguments above.

Theorem 4. Given a reaction system A, such that no two rules ai, aj ∈ A have
Rai ⊆ Raj and Iai = Iaj , we have FSTS(A) ⊆ FSTS∆(A) and FSTSI(A) ⊆
FSTS∆(A). If A admits evolution steps where more than one rule can occur,
both inclusions are strict.

Proof. We only need to prove strictness of the inclusion. This derives by extend-
ing the ability of symmetrical difference to force the execution of a rule to also
prevent the execution of any other rule. Suppose that A = {a1, . . . , an}, that we
want to force a1 to execute and that there are configurations of A where more
than one rule, can execute besides a1. By defining ψ(W ) = (Ra \ (W ) ∪ ((Ia ∪⋃
i=2,...,n(Rai \Ra1)) ∩W ) only a1 can be executed in any W .

5 Related work

To the best of our knowledge, this is the first paper which discusses different
modalities of contribution from the environment. As such, a number of notions
from the classical model could be adapted to the new model. In particular, the
notion of causality [7] can be extended to account for the contribution from func-
tional environments, so that the product influence and the resource dependence
of a set of elements can now consider also the elements that the environment
will provide, based on the resulting configuration. Due to Theorem 1, this mod-
ification is relevant only for the case where the environment is non-BC.
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Functions have been considered in the framework of reaction systems under
two respects. On the one hand, the functions computed by reaction systems [12]
have been studied. That kind of analysis can be extended to include the com-
position with the environmental contribution. On the other hand, measurement
functions have been defined to annotate configurations with the result of specific
measures, leading to the introduction of a notion of time in reaction systems [13].
In this case, however, functions produce elements in a different domain, without
directly contributing to the configuration.

A notion of structured environment is discussed in [8], where it is used to
model duration, i.e. the persistence of an element for a certain number of steps,
even if it is not sustained by any reaction. This allows the modeling of elements
with a decay time. This mechanism is not directly realisable with our notion of
functional environment, which only depends on the products of the last reaction
step, but would require a stateful environment.

The role of the environment in the determination of system behaviours has
been usually approached through assume/guarantee approaches, where one pred-
icates properties of the behaviour under certain assumptions on the context.
Techniques have been developed in different areas, and recently in the area of
verification of concurrent systems [10].

The notion of channel is analogous to that of filters in networks of evolution-
ary processors [9, 11], where only strings which belong to specific languages can
be communicated. From the discussion in Section 3.3, we have observed that
functional environments can simulate the use of channels. Similarly, it has been
shown in [5] that the position of filters, whether on edges or inside nodes, is
irrelevant with respect to the computational power of such networks.

6 Conclusions and future work

We have presented a number of variants on the classical model of reaction sys-
tems, analysing different types of constraints on the environmental contribution.

We have shown that the notion of a functional environment not respecting
boundary conditions introduces a new class of families of sequences, intermediate
between the families of sequences from context-independent systems and those
from systems with unconstrained environments. Moreover, the use of symmetri-
cal difference to further constrain the contribution from a functional environment
provides a powerful tool to control the evolution of a system.

The proposed mechanisms are motivated by the need to model situations in
which a system is immersed in an environment, which is in turn influenced by the
system state, and can exhibit reactive, collaborative, or adversarial behaviours.

We have not placed any specific restriction on the nature of the functions
modeling the environment, so that future work will consider them. In particu-
lar, we have considered a stateless environment, in which the contribution only
depends on the system configuration. It might be interesting to study the case
where the contribution also depends on some environmental state, generalising
the extension to durations in [8]. This leads naturally to a model where the
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environment is in turn a network of reaction systems, communicating through
channels. As hinted at in Section 5, the model could then also place restrictions
on both sides of the communication channel.

Similarly, we plan to expand the study of the interplay between specific types
of reaction set and specific types of environment contribution, that has been
restricted here to the case of autodual systems.
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Abstract. The notion of computation is historically developing just like other
fundamental nations, depending on both the development of related theory and on
practical applications. Instead of providing a definite, once-and-for-all definition,
we analyze the notion of computation and argue that we are far from complete
understanding of what computation is and what it could be developed into. This
paper presents a study in the nature of contemporary computation, contributing
with computation typologies: essential, spatial, temporal, representational and
hierarchy-level based. Drawing parallels with the historical development of the
idea of number we argue that the concept of computation must necessarily de-
velop. We thus address the development of models of computation, with empha-
sis on the development potential of natural/physical/embodied computation and
unconventional computing. Our analysis suggests how better understanding of
computation both as a model and as the underlying physical processes is needed
than we have today. Finally, we indicate possible directions for future research.

1 Introduction

Many researchers have asked the question ”What is computation?” trying to find a uni-
versal definition of computation or, at least, a plausible description of this important
type of processes (cf. for example [1] [2] [3] [4] [5] [6]).

Some did this in an informal setting based on computational and research prac-
tice, as well as on philosophical and methodological considerations. Others strived to
build exact mathematical models to comprehensively describe computation, and when
the Turing machine was constructed and accepted as a universal computational model
(referring to Church’s endorsement), they imagined achieving the complete and exact
definition of computation. However, the absolute nature of a Turing machine model as
”The model of computation” to which all other possible models are equivalent, was dis-
proved and in spite of all efforts, our understanding of computation remains too vague
and ambiguous.

This vagueness of foundations has resulted in a variety of approaches, including
approaches that contradict each other. For instance,Copeland [3] writes ”to compute
is to execute an algorithm.” Active proponents of the Church-Turing Thesis, such as
[7] claim computation is bounded by what Turing machines are doing. For them the
problem of defining computation was solved long ago with the Turing machine model.
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On the other hand, Wegner and Goldin insist that computation is an essentially broader
concept than an algorithm [8] and propose an interactive view of computing. At the
same time [9] argues that computation is symbol manipulation. Neuroscientists on the
contrary describe sub-symbolic computation in neurons. [10]

Existence of various types and kinds of computation, as well as a variety of ap-
proaches to the concept of computation, shows the complexity of understanding of
computation. To work out the situation, we analyzed historical developments in sci-
ence and mathematics when attempts were made at finding comprehensive definitions
of basic scientific and mathematical ideas.

For instance, mathematicians tried to define a number for millennia. However, all
the time new kinds of numbers were introduced changing the comprehension of what
a number is. Looking back we see that at the beginning, numbers came from count-
ing and there was only a finite amount of numbers. Then mathematicians found a way
to figure out the infinite set of natural numbers, constructing it with 1 as the building
block and using addition as the construction operation. As 1 played a specific role in
this process, for a while, mathematicians excluded 1 from the set of numbers. At the
same time, mathematicians introduced fractions as a kind of numbers. Later they under-
stood that fractions are not numbers but only representations of numbers. They called
such numbers rational as they represented a rational, that is, mathematical, approach to
quantitative depiction of parts of the whole. Then a number zero was discovered. Later
mathematicians constructed negative numbers, integer numbers, real numbers, imagi-
nary numbers and complex numbers. It looked like as if all kinds of numbers had been
already found. However, the rigorous representation of complex numbers as vectors in
a plane gave birth to diverse number-like mathematical systems and objects, such as
quaternions, octanions, etc. Even now only few mathematicians regard these objects as
numbers.

A little bit later, the great mathematician Cantor [11] introduced transfinite num-
bers, which included cardinal and ordinal numbers. So, the family of numbers was
augmented by an essentially new type of numbers and this was not the end. In the 20th
century, [12] introduced nonstandard numbers, which included hyperreal and hyper-
complex numbers. Later [13] founded surreal numbers and [14] established hypernum-
bers, which included real and complex hypernumbers. This process shows that it would
be inefficient to restrict the concept of a number by the current situation in mathemat-
ics. This history helps us also to come to the conclusion that it would be unproductive
to restrict the concept of computation by the current situation in computer science and
information theory.

In this paper, we present a historical analysis of the concept of computation before
and after electronic computers were built and computer science emerged, demonstrat-
ing that history brings us to the conclusion that efforts in building such definitions by
traditional approaches would be inefficient, while an effective methodology is to find
essential features of computation with the goal to explicate its nature and to build ade-
quate models for research and technology.

Consequently, we study computation in the historical perspective, demonstrating
the development of this concept on the practical level related to operations performed
by people and computing devices, as well as on the theoretical level where computation
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is represented by abstract (mostly mathematical) models and processes. This allows
us to discover basic structures inherent to computation and to develop a multifaceted
typology of computations.

The paper is organized in the following way. In Section 2, we study the structural
context of computation, explicating the Computational Triad and the Shadow Compu-
tational Triad. In Section 3, we develop computational typology, which allows us to
extract basic characteristics of computation and separate fundamental computational
types. The suggested system of classes allows us to reflect a natural structure in the
set of computational processes. In Section 4 we present the development of computa-
tional models, and particularly natural computing. Finally, we summarize our findings
in Section 5.

2 Structural Context of Computation

The first intrinsic structure, the Computational Dyad was introduced in [15], (Figure 1):

Fig. 1: The Computational Dyad

The Computational Dyad reflects the existing duality between computations and
algorithms. According to [5], in the 1970s Dijkstra defined an algorithm as a static de-
scription of computation, which is a dynamic state sequence evoked from a machine
by the algorithm. Later a more systemic explication of the duality between computa-
tions and algorithms was elaborated. Namely, computation is a process of information
transformation, which is organized and controlled by an algorithm, while an algorithm
is a system of rules for a computation [4]. In this context, an algorithm is a compressed
informational/structural representation of a process.

Note that a computer program is an algorithm written in (represented by) a program-
ming language. This shows that an algorithm is an abstract structure and it is possible
to realize one algorithm as different programs (in different programming languages).
Moreover, many people think that neural networks perform computations without al-
gorithms. However, this is not true because neural networks algorithms have represen-
tations that are different from traditional representations of algorithms as systems of
rules/instructions. The neural networks algorithms are represented by neuron weights
and connections between neurons. This is similar to hardware representation/realization
of algorithms in computers (analog computing). However, the Computational Dyad is
incomplete because there is always a system that uses algorithms to organizes and con-
trols computation. This observation shows that the Computational Dyad has to be ex-
tended to the Computational Triad (cf. Figure 2).

Note that the computing device can be either a physical device, such as a computer,
or an abstract device, such as a Turing machine, or a programmed (virtual or simulated)
device when a program simulates some physical or abstract device. For instance, neu-
ral networks and Turing machines are usually simulated by programs in conventional
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Fig. 2: The Computational Triad

computers. Or Java virtual machine can be run on different operating systems and is
processor and operating system independent.

Besides, with respect to architecture, it can be an embracing device, in which com-
putation is embodied and exists as a process, or an external device, which organize
and control computation as an external process. It is also important to understand the
difference between algorithm and its representation or embodiment. An algorithm is
an abstract structure, which can be represented in a multiplicity of ways: as a computer
program, a control schema, a graph, a system of cell states in the memory of a computer,
a mathematical system, such as an abstract finite automaton, etc.

In addition, there are other objects essentially related to computation. Computation
always goes in some environment and within some context. Computation always works
with data, performing data transformations. Besides, it is possible to assume that com-
putation performs some function and has some goal (for some agent) even if we don’t
know this goal. The basic function of computation is information processing. These
considerations bring us to the Shadow Computational Triad (cf. Figure 3).

Fig. 3: The Shadow Computational Triad
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Thus, the Shadow Computational Triad complements the Computational Triad re-
flecting that any computation has a goal, goes on in some context, which includes en-
vironment, and works with data. In a computation, information is processed by data
transformations.

3 Computational Typology

There are many types and kinds of computations utilized by people and known to peo-
ple. The structure of the world [16] implies the following classification.

3.1 Existential/substantial typology of computations

According to the substrate carrying on computation, we distinguish the following types:

– Physical or embodied computations.
– Abstract or structural computations.
– Mental or impersonalized computations.

In agreement with contemporary science, abstract and mental computations are al-
ways based on some embodied computations. The difference is on the level of organiza-
tion/level of abstraction. The existential types from this typology have definite subtypes,
as follows.

– Physical or embodied computations.
1. Biological computations.
2. Chemical computations.
3. Technological computations.

– Structural/abstract computations.
1. Symbolic computations.
2. Subsymbolic computations.
3. Iconic computations.

There are connections between these types. For instance, as [17] suggests, the prin-
ciple of object formation may be an example of the transition from a stream of mas-
sively parallel subsymbolic microfunctional events to symbol-type, serial processing
through subsymbolic integration. In addition to the existential typology, there are other
typologies of computations.

3.2 Spatial typology of computations

According to the spatial aspect, computations can be categorized in the following way.

1. Centralized computations where computation goes controlled by a single algorithm.
2. Distributed computations where there are separate algorithms that control compu-

tation in some neighbourhood. Usually a neighbourhood is represented by a node
in the computational network.
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3. Clustered computations where there are separate algorithms that control computa-
tion in clusters of neighbourhoods.

Turing machines, partial recursive functions and limit Turing machines are models
of centralized computations. Neural networks, Petri nets and cellular automata are mod-
els of distributed computations. Grid automata in which some nodes represent networks
with the centralized control [4] and the World Wide Web are systems that perform clus-
tered computations.

3.3 Temporal typology of computations

1. Sequential computations, which are performed in linear time.
2. Parallel or branching computations, in which separate steps (operations) are syn-

chronized in time.
3. Concurrent computations, which do not demand synchronization in time.

Note that while parallel computation is completely synchronized, branching com-
putation is not completely synchronized because separate branches acquire their own
time and become synchronized only in interactions.

3.4 Representational or operational typology of computations

1. Discrete computations, which include interval computations.
2. Continuous computations, which include fuzzy continuous computations.
3. Mixed computations, some include discrete and continuous processes.

Digital computer devices and the majority of computational models, such as finite
automata, Turing machines, recursive functions, inductive Turing machines, and cel-
lular automata, perform discrete computations. Examples of continuous computations
are given by abstract models, such as general dynamical systems [18] and hybrid sys-
tems [19], and special computing devices, such as the differential analyzer [20] [21].
Mixed computations include piecewise continuous computations, combining both dis-
crete computation and continuous computation. Examples of mixed computations are
given by neural networks [22], finite dimensional machines and general machines of
[23].

3.5 Hierarchy of levels of computation

In [6] three generality levels of computations are introduced.

1. On the top and most abstract/general level, computation is perceived as any trans-
formation of information and/or information representation.

2. On the middle level, computation is distinguished as a discretized process of trans-
formation of information and/or information representation.

3. On the bottom, least general level, computation is recognized as a discretized pro-
cess of symbolic transformation of information and/or symbolic information repre-
sentation.
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There are also spatial levels or scales of computations, according to the size of
computational devices:

1. The macrolevel includes computations performed by macroscopic systems such as
electromechanical devices, vacuum tubes and/or transistors, as well as mechanical
calculators.

2. The microlevel includes computations performed by integrated circuits.
3. The nanolevel includes computations performed by fundamental parts that are not

bigger than a few nanometers.
4. The molecular level includes computations performed by molecules.
5. The quantum level includes computations performed by atoms and sub-atomic par-

ticles.

There are no commercially available nanocomputers, molecular or quantum com-
puters in existence at present. However, current chips produced by nanolithography are
close to computing nanodevices because their basic elements are less than 100 nanome-
ters in scale.

4 Natural Computing

The development of computing, both machinery and its models, continues. We are used
to quick increase of computational power, memory and usability of our computers, but
the limit of miniaturization is approaching as we are getting close to quantum dimen-
sions of hardware. One of the ideals of computing ever since time of Turing is intelligent
computing which would besides mechanical include even intelligent problem solving.
Currently, there is a development of cognitive computing aimed towards human abilities
to process/organize/understand information.

At the same time development of computational modelling of human brain has for
a goal to reveal the exact mechanisms of human brain function that will help us under-
stand not only how humans actually perform symbol processing when they follow an
algorithm, but also how humans in the first place create algorithms or models. Those
new developments can be seen as a part of the research within the field of natural com-
puting, where natural system performing computation is human brain.

However, natural computing has a much broader scope. According to the Handbook
of Natural Computing [24] natural computing is ”the field of research that investigates
both human-designed computing inspired by nature and computing taking place in na-
ture.” It addresses both computational models inspired by the natural systems, computa-
tion performed by natural materials and computational nature of processes taking place
in (living) nature. It includes among others areas of cellular automata and neural com-
putation, evolutionary computation, molecular computation and quantum computation
and nature-inspired algorithms and alternative models of computation.

An important characteristic of the research in natural computing is that knowledge
is generated bi-directionally, through the interaction between computer science and nat-
ural sciences. While the natural sciences are rapidly absorbing ideas, tools and method-
ologies of information processing, computer science is broadening the notion of com-
putation, recognizing information processing found in nature as natural computation.
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[25] [26] [27] That development led Denning [28] to argue that computing today is a
natural science. We can add that natural sciences today are permeated by computing in
forms of computational tools, models and conceptualizations.

This new concept of computation with inspiration in natural information processing
allows among others learning about non-deterministic complex computational systems
with self-* properties (self-organization, self-configuration, self-optimization, self-healing,
self-protection, self-explanation, and self-awareness. Through its layered architecture
of computational processes, natural computation provides a basis for a unified under-
standing of phenomena of embodied cognition, intelligence and knowledge generation.
[29] [30]

In addition to the current developments within natural computing with its emphasis
on physical computation, there is an important development in the field of unconven-
tional algorithms. It is worth to notice the complementarity of axiomatics and construc-
tion, as emphasized in [31] for the case of unconventional algorithms, both elements
being necessary for the progress in our understanding of computation. Here new pow-
erful tools are brought forth by local mathematics, local logics, logical varieties and the
axiomatic theory of algorithms, automata and computation. Further work includes study
of natural computation by unconventional algorithms and constructive approaches.

5 Conclusions and Future Work

In order to bring more structure in the current discussion about the nature of com-
putation we give an account of computation typologies: essential, spatial, temporal,
representational and hierarchy-level. The historical development of the idea of number
suggests that the concept of computation as well historically develops and we indicate
current directions of development. We find that especially promising steps forward are
natural computing and unconventional computing.

Among the issues for the future research, there are numerous open problems re-
lated to the nature of information and computation, as well as to their relationships.
How is information dynamics represented in computational systems, in machines, in
living organisms and in the physical world in general? How to relate natural computa-
tional processes with information systems, knowledge management and understanding
of intelligence?
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TOWARDS A CHURCH-TURING-THESIS FOR INFINITARY
COMPUTATIONS

MERLIN CARL

Abstract. We consider the question whether there is an infinitary analogue
of the Church-Turing-thesis. To this end, we argue that there is an intuitive
notion of transfinite computability and build a canonical model, called Ideal-
ized Agent Machines (IAMs) of this which will turn out to be equivalent in
strength to the Ordinal Turing Machines defined by P. Koepke.

1. Introduction

Since [ITTM], various generalizations of classical notions of computability to
the transfinite have been given and studied. The Infinite Time Turing Machines
(ITTMs) of Hamkins and Lewis generalized classical Turing machines to transfinite
working time. Ordinal Turing Machines (OTMs) (see [OTM]) and Ordinal Register
Machines (ORMs) further generalized this by allowing working space of ordinal size.
Recently, a transfinite version of λ-calculus was introduced and studied [Sey]. It
was soon noted (see e.g. [Fi]) that the corresponding notion of computability enjoys
a certain stability under changes of the machine model: For example, the sets of
ordinals computable by OTMs and ORMs both coincide with the constructible
sets of ordinals.

A similar phenomenon is known from the models of classical computability: Tur-
ing machines, register machines, recursive functions, λ calculus etc. all lead to the
same class of computable functions. In the classical case, this is taken as evidence
for what is known as the Church-Turing-Thesis (CTT ), i.e. the claim that these
functions are exactly those computable in the ‘intuitive sense’ by a human being
following a rule without providing original input. This thesis plays an important
role in mathematics: It underlies, for example, the - to our knowledge undisputed1

- view that Matiyasevich’s theorem [Ma] settles Hilbert’s 10th problem or that Tur-
ing’s work [Tu1] settles the Entscheidungsproblem. The study of recursive functions
gets a lot of its attraction from this well-grounded belief that they coincide with
this intuitive notion of computability.

It therefore seems natural to ask whether something similar can be said about
transfinite models of computation, i.e. whether these models are mere ‘ordinaliza-
tions’ of the classical models or whether they actually ‘model’ something, whether
there is an intutive concept of transfinite computability that is captured by these
models: Hence, we ask for an infinitary Church-Turing-thesis (ICTT ).
There seems to be some evidence that a satisfying ICTT should be obtainable.
Beside the stability of the corresponding notion of computability mentioned above,
it also became common to describe and communicate the activity of such machines
in rather informal terms: Rather than writing an actual program for e.g. deciding

1It has been remarked that there are challenges to the claim that no physical device could decide
such questions, see e.g. [Hog] and [NeGe]. However, here we are interested in the capabilites of
idealized computing agents. Whether what such devices do can be considered to be a computation
in the intuitive sense rather than the observation of an incomputable process is a question we won’t
consider here.
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number-theoretical statements with an ITTM , it generally suffices to explain that
the machine will e.g. ‘search through the naturals for a witness’. It usually soon
becomes clear to someone with a basic familiarity with these models that such a
method can indeed be implemented and will lead to the right results. Indeed, we
will usually find such a ‘process description’ much easier to grasp than an actual
implementation. This indicates that we indeed possess an intuitive understand-
ing of what these machines can do which is based on an understanding of infinite
processes rather than the formal definition of the machine. We aim at connecting
infinitary models of computation with a natural notion. Here, ‘natural’ means that
the notion can be obtained and described independently from the models and that
it is in some sense present in normal (mathematical) thinking. Such a notion should
furthermore serve as a background thesis explaining the equivalence of the different
models, should (in analogy with the classical Church-Turing-thesis) justify the use
of informal ’process descriptions’ to prove the existence of formally specified pro-
grams and, ideally, allow mathematically fruitful applications, similar to the role
the classical CTT plays in e.g. Hilbert’s 10th problem.
In this work, we offer evidence for the claim that notions of transfinite computation
are indeed naturally present in mathematical (and possibly in everyday) thinking
and that these notions are captured by the transfinite machine models we men-
tioned.2 This will allow us to formulate an ICTT .

This article is structured as follows: We begin by describing an approach of
mathematical philosophy initiated by P. Kitcher [Ki], where mathematical objects
are modelled as mental constructions of idealized agents. We also indicate that such
idealizations are indeed present in understanding mathematics. After that, we work
towards a formal notion of a computing transfinite agent, obtaining the notion of
an Idealized Agent Machine (IAM). Then, we show that the computational power
of an IAM coincides with that of OTMs and ORMs (which we will summarize
under the term ‘standard models’ from now on). Finally, we state (a candidate for)
an ICTT and discuss whether it meets the above requirements.

2. Idealized Constructions and Idealized Agents in Mathematics

In this section, we briefly describe the view on the philosophy of mathematics
described in [Kitcher]. We use his account as a demonstration that the concept of
transfinite agents can be motivated and has arisen completely independent from our
considerations. Furthermore, we want to indicate how these views can be fruitful for
infinitary computations (and vice versa) and bring them into interaction. Finally,
his work serves us as a first introduction to the notion of idealized agents. We
will then demonstrate that this notion seems indeed to be present in mathematical
language and understanding.

2.1. Kitcher’s idealized-agents-view of mathematics. In a nutshell, Kitcher
attempts to justify an empiricist account of mathematics by describing mathematics
as an idealization of operations with real-world objects like grouping them together,
adding an object to a pile of objects etc. These actions in themselves already are a
kind of primitive mathematics, limited by our practical constraints. What is usually
called mathematics is obtained by forming a theory of idealized operations in a
similar way that, say, a theory of idealized gases is formed: We abstract away from
certain ‘complicating factors’ like e.g. our factual incabability of indefinitely adding
objects to a collection. Mathematics is then the study of idealized operations, or,
equivalently, of the operations of idealized agents.

2To be precise, we will argue for this claim in the case of OTMs and ORMs. Whether similar
approaches are available for other models as well is briefly adressed at the end of this paper.
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Upon reading this, one might wonder how this account is supposed to make sense
of the large parts of mathematics which, like axiomatic set theory, deal with actual
infinite objects. Kitcher’s reply to this is simply that this is a mere question of the
degree of idealization:

[Ki], p. 146: I see no bar to the supposition that the sequence of
stages at which sets are formed is highly superdenumerable, that
each of the stages corresponds to an instant in the life of the con-
structive subject, and that the subject’s activity is carried out in
a medium analogous to time, but far richter than time. (Call it
‘supertime’.) ... The view of the ideal subject as an idealization
of ourselves does not lapse when we release the subject from the
constraints of our time.

Comparing Kitcher’s account of axiomatic set theory with his treatment of arith-
metic or intuitionistic mathematics, mathematical areas can roughly be character-
ized by the degree of idealization, i.e. by considering how remote the underlying
operations are from our actual capabilities. The agent working in ‘supertime’ men-
tioned in the quote above seems to belong to a benchmark of idealization. As this
is the degree of idealization corresponding to set theory in Kitcher’s account, we
will refer to it as the ‘idealized agent of set theory’ from now on.3

Not unexpectedly, several issues with this approach can and have been raised:
E.g. about the ontological status of these idealized agents (discussed in [Ho]),
whether this degree of idealization still admits an explanation of the applicability
of mathematics, whether and how certain large cardinals can be accomodated in
this account etc. Nevertheless, the imagination of an idealized agent or an idealized
mental activity seems to be in the background of large parts of mathematical un-
derstanding in one way or the other. In fact, there are numerous common figures of
speech in mathematical textbooks and even more in spoken conversation that point
to such (implicit) notions: For example, in many proofs of the Bolzano-Weierstraß-
theorem, ‘we’ are supposed to ‘pick’ a number from a subintervall containing infin-
tely many elements of a given sequence. One might find this problematic: In a naive
sense, of course, we cannot do this, as in general, we will not know which intervall
that is.4 However, this problem doesn’t seem to come up in understanding this
proof. In fact, agent-based formulations generally seem to increase understanding
and make constructions more imaginable rather than leading into conflicts with our
factual limitations. A similar observation holds for e.g. proofs of the well-ordering
principle from the axiom of choice, and in general for many uses of transfinite
recursion or transfinite induction. Another example would be the various places
in mathematical logic where constructions are explained by interpreting them as
transfinite ‘games’ between two ‘players’.

2.2. Degrees of idealization and the Church-Turing-Thesis. In the Church-
Turing-Thesis, recursiveness is stated to capture the intuitive meaning of ‘com-
putable’. However, if the intuitive meaning of ‘computable’ is taken as ‘possible
for a human being working without understanding’, then literally, this is of course
false: What we can actually do is very limited: In general, a recursive function is
far away from being computable by ‘a man provided with paper, pencil, and rub-
ber, and subject to strict discipline’ ([Tu]). But this fact is quite irrelevant for e.g.

3Similar ideas are mentioned in other accounts on the philosophy of mathematics. For example,
in [Wa], S. 182, we find the following: ‘The overviewing of an infinite range of objects presupposes
an infinite intuition which is an idealization. Strictly speaking, we can only run through finite
ranges (and perhaps ones of rather limited size only).’

4This is the reason why Bolzano-Weierstrass is intuitionistically invalid.
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Hilbert’s 10th problem, which asks for a ‘finite’ procedure, not a practical one. In
the CTT , we are hence in fact facing a notion of an idealized computing subject.

Usually, this idealization goes from certain factual bounds to ‘arbitarily large,
but finite’. But there seems to be a distinguished intuitive notion of computability
going beyond this: For example, there is little to no trouble with the idea of testing
all even numbers for being a sum of at most two primes. In fact, this thought
experiment seems to be at least part of the reason the Goldbach conjecture is
generally assumed to have a definite truth value. On the other hand, no such
intuition supports the idea of e.g. searching through V looking for a bijection
between R and ℵ1, not even if one assumes CH to have a definite truth value.5 The
idea of a transfinite systematic procedure for obtaining certain objects or answering
certain questions hence allows for a clear distinction: Not every formulation that
at the surface looks like a ‘process description’ is eligible as an indication of a
computation of an idealized agent. Our goal is to find an exact characterization of
those procedures that are.

3. A model for idealized Agents

Even if one accepts that, beyond finiteness, clear degrees of idealization of our
activity can be concretely captured, the standard models are not as canonical a
model of it as e.g. Turing machines are in the finite case. In the one direction, it
does indeed seem plausible that the actions of an OTM are available to a transfi-
nite idealized agent and that hence everything computable by an OTM should be
computable by such an agent: The aspects of an OTM -computation going beyond
classical computability consist in elementary limit operations like forming the limes
inferior of a sequence of 0s and 1s. But the other direction is not as clear: For ex-
ample, the limit rule of OTMs seems to be rather arbitrary. The intuition here is
that other reasonable choices of limit rules will not change the class of computable
objects, but it is exactly the intuition leading there that we want to capture here.
We see no direct path from idealized agents to the standard models known so far.
Our approach is hence to develop a formal notion of a transfinitely computing agent
modelled after our intuition and then see how it relates to the standard models. It
turns out that it does indeed describe the same notion of computability, which we
consider a good piece of evidence for our thesis.

The notion we are about to develop will be called Idealized Agent Machines
(IAMs). IAMs are meant to give a very liberal account of the computational
activity of idealized agents. In fact, one might get the impression that what we
model as a single step of an IAM is really a series of lengthy sub-computations
and that we are hence far to generous in attributing abilities to our idealized agent.
However, we will demonstrate that even this liberal notion is equivalent to the
standard models. Therefore, we don’t need to claim that IAMs are a very accurate
model for the intuition of transfinite computations: we only need it to be strong
enough to include that intuition. We can then argue that if such an intuition is
really present - as we tried to show above, then it is grasped by the standard models,
as, in the end, we will arrive at the following implications:

OTM -computable
=⇒
(1)

computable by the idealized agent of set theory

=⇒
(2)

IAM -computable

=⇒
(3)

OTM -computable

5Searching through L or its stages, on the other hand, seems again quite reasonable, as L is
canonically well-ordered.
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Here, implication (3), being a claim about two notions expressable in the language
of set theory, is provable (in ZFC) and implication (1) is very natural (see above).
It is step (2) that depends on the plausibility of the analysis and modelling we are
about to give.

An ideal computing agent works as follows: At each time, he has a complete
memory of his earlier computational activity. Also, he has a working memory
where he may store information. We assume that the working memory consists of
separate ‘places’, each containing one symbol from a finite alphabet.6

The agent is working in according with instructions that determine his activity.
Certainly, any kind of operation that can be considered an idealization of an activity
we are actually capable of must be describable by finite means. We hence stipulate
that the instructions are given by some finite expressions. Based on the instructions,
it must be possible at each time to determine what to do (e.g. which new symbols
to write) on the basis of the computational activity so far. We propose to model
this in the following way: There should be a first-order formula φ(x, y) such that,
if the computational activity so far is given by c and p is a place in the memory,
φ(c, p, s) holds iff s is the the symbol that should be written in place p after c.
Here, it must be possible to evaluate φ by mere inspection of c. Even if ‘inspection’
may be taken in an idealized sense here as well, this should certainly mean that the
appearing quantifiers should in some sense be ‘bounded’ by c. We will make this
precise below.7

This description does not depend on any assumptions on the structure of time. It
is hence sufficiently general to yield a notion of transfinite computability once an
appropriate notion of transfinite time is introduced.

3.1. Supertime and Superspace. In the passage quoted in the first paragraph,
Kitcher suggests that set theory can be considered as the outcome of the mental
activity of an idealized agent working in ‘a medium analogous to time, but far richer
than time’. Here, we want to argue that the only sensible choice for such a medium
are ordinals. In his argumentation, it is also implicitely assumed that the agent not
only has a non-standard working time, but also the ability to ‘store’ the outcome of
his work, e.g., infinite memory or at least infinite writing space. We will argue that
it is natural and harmless to assume that the writing space of an idealized agent is
indexed by ordinals.

Certainly, we intend a notion of time as a medium of a deterministic computation
to be a linear ordering. But we can say more. The computational activity has to
start at some point. Every other state may depend on this earlier state and hence
has to take place at a moment after the starting point. Hence, the ‘medium of
computation’ has to have a unique minimal element.

Whenever the agent has carried out a certain amount of computational activity,
he has to know what to do next, i.e. there must be a unique next state for him
to assume. This next state has to take place at some point of time. Hence, the
medium in which he computes has to contain a unique next element after those
through which the activity passed so far. Put differently: For every initial segment
of time, there has to be a unique time point preceeded by all moments in the initial
segment and only by those.

6The finiteness of the alphabet could in fact be dropped without changing the class of com-
putable functions we ultimately obtain. However, we consider this a reasonable assumption for
the notion we are about to model and hence decided against taking the effort to demonstrate this.

7The choice of first-order logic might be objectional; we feel that e.g. second-order logic would
be inappropriate, for it would require the agent to have access to an external notion of set which is
not determined from his computational activity. However, we are certainly interested in plausible
alternatives and whether they would turn out to lead to an equivalent notion of computability.

34



This leads to the following notion of ‘supertime’: A ‘supertime’ is a linearly
ordered set8 (X,≤) with a unique minimal element µ and such that, for every proper
initial segment I of X, there is a ≤-minimal xI ∈ X such that ∀t ∈ It < xI . It is
now easy to see that this means that all candidates for supertime are (isomorphic
to) ordinals:
Proposition 1. Let (X,≤) be a linearly ordered set such that, for every I ( X
which is downwards closed (i.e. x < y ∈ I implies x ∈ I), there is a minimal xI ∈ X
such that ∀t ∈ It < xI . Then (X,≤) is isomorphic to an ordinal.
Proof. Note that ∅ is downwards closed in (X,≤) and let µ := x∅. Obviously, µ is
the unique minimal element of X.
Let A ⊆ X. Consider the set Y := {x ∈ X|x < A}. It is easy to see that Y is an
initial segment of X. We claim that xY is a minimal element of A.
To see that xY ∈ A, assume otherwise. As every element smaller than xY is in Y
and hence smaller than every element of A, it follows that xY < A. But this implies
xY ∈ Y , so xY < xY , a contradiction. So xY ∈ A and every z < xY satisfies z /∈ A.
Thus xY is indeed a minimal element of A. As ≤ is linear, xY is unique with this
property.
This implies that (X,≤) is a well-ordered set. Hence, it is isomorphic to an ordinal.

�
However, not all ordinals are suitable as such a medium: For example, if our

medium allows two procedures to be carried out, it should also allow to carry out
one after the other. Also, it should be possible to have a procedure as a ‘subroutine’
of another to be repeatedly called by the other. Finally, the class of ordinals itself
provides an attractive unification of appropriate computation times; hence we allow
computations carried out without fixing a particular ordinal in advance.
Appropriate candidates for supertime hence turn out to be ordinals which are closed
under ordinal addition and multiplication and On itself. In the following, we will
- for the sake of simplicity - focus on the broadest case where the underlying time
is On. Note that this notion of supertime matches well with the way transfinite
constructions are commonly communicated and imagined: It is completely normal
to relate stages of such a construction by expressions coming from the relation of
time points and state that e.g. ‘earlier on, we made sure that’. In fact, it is hard
to talk about transfinite constructions avoiding such expressions.

We imagine our agent to be equipped with a sufficient supply of place for writing
symbols. We assume that this space is partioned into slots and that each slot is
uniquely recognizable. There is a canonical well-ordering on the set of used slots:
Namely, each slot is at some point of time used for the first time. Via this property,
this slot is henceforth identifiable. We may hence assume for our convenience that
the slots are indexed with ordinals from the very beginning: That is, the working
memory is at any time a function from some ordinal α into the set S of symbols.9

Finally, even if we allow - as we will - several symbols to be re-written in one
step, an adequate model of computing time and space should also impose some
bounds on the space that can be actually used after computing for τ many steps.
We model this intuition by the extra condition that, at time τ , only slots with index
in τ may contain written symbols.10

8The outcome might be different if one would allow ‘class time’. We don’t pursue this further
here.

9This point could be strengthened by modelling space in a more general way and then prov-
ing the resulting notion to be equivalent with the one obtained here. However, this requires a
cumbersome analysis and the gain in plausibility seems to be too limited to justify it.

10This condition may seem to be too strict compared to the overall very liberal model we set
up. However, this choice is technically the least cumbersome; furthermore, we conjecture from
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3.2. Idealized Agent Machines. We will now describe a formal model for the
concept developed above. The instructions will be given by a first-order statement
in an appropriate language, which can be evaluated on the basis of an initial segment
of a computation.

We let Lc be the first-order language with equality, a binary function symbol
C(x, y) and a binary relation symbol ≤. The intended meaning of C(x, y) = z is
that, at time x, z is the symbol in the yth place, while ≤ is the ordering relation
of ordinals.
If A is a finite set (the alphabet) and τ an ordinal, then a τ -state for A is a function
f : α→ A, where α ≤ τ . We denote the class of τ -states for A by SτA.
A function F with dom(F ) =: τ ∈ On and F (ι) ∈ SιA for all ι < τ is called an A-
τ -precomputation. For F an A-τ -precomputation, an Lc-formula φ, ~s ∈ A<ω, ~α ∈
(τ+1)<ω, we define [φ(~α,~s)]Fτ , the truth value of φ(~α,~s) in F , recursively (omitting
the parameters where possible): [C(α, β) = x]Fτ = 1 if α < β or F (α)(β) = x,
otherwise [C(α, β) = x]Fτ = 0; [x ≤ y]Fτ = 1 iff x, y ∈ On and x ≤ y, otherwise
[x ≤ y]Fτ = 0; [x = y]Fτ = 1 iff x = y, otherwise [x = y]Fτ = 0; [¬φ]Fτ = 1 − [φ]Fτ ;
[φ ∧ ψ]Fτ = [φ]Fτ [ψ]Fτ ; and [∃xφ(x)]Fτ = 1 iff there is ι ∈ τ such that [φ(ι)]Fτ = 1,
otherwise [∃xφ(x)]Fτ = 0.
An Lc-formula φ(x, y, z) is an IAM -program iff, for all τ ∈ On, α ≤ τ and all
A-τ -precomputations F , there is exactly one s ∈ A such that [φ(τ, α, s)]Fτ = 1. If
φ is an IAM -program, A a finite set, τ ∈ On and F an A-τ -precomputation, then
we define Sφ,τ,F : τ → A, the state of the IAM -computation with φ at time τ after
F , by letting Sφ,τ,F (α) be the unique s ∈ A such that φ(F, α, s) holds for α < τ .
Furthermore, we define Iτφ, the τ -th initial segment of the IAM -computation with φ
at time τ , recursively by letting I0φ := ∅, Iτ+1

φ := {(τ,Sφ,τ,Iτφ)}∪Iτφ and Iλφ :=
⋃
ι<λ Iιφ

for λ a limit ordinal.
So far, our machines have no notion of halting. We therefore assume that all our
IAMs have a special symbol H in their alphabet. The IAM -computation by φ is
said to have stopped at time τ iff Iφ,τ (τ)(0) = H, i.e. if the first symbol in the
memory at time τ is H.
An IAM -computation by φ will hence start with an empty tape and then repeatedly
apply the S-operator to obtain the next state, taking unions at limits.
It is easy to see from the boundedness of the formula evaluated in each step that
this notion of computability is absolute insofar IAM -computations are absolute
between transitive models of ZFC. We can also account for computations with a
non-empty input and computations with parameters in these terms by adjusting
the initial memory content.

Definition 2. X ⊆ On is IAM -computable iff there exists an IAM -program φ
such that, for every α ∈ On, there is τ ∈ On such that, if χα is the characteristic
function of α in On and F = (0, χα), we have Sφ,τ,F (0) = H and Sφ,τ,F (1) = 1 iff
α ∈ On.
Similarly, f : On → On is IAM -computable iff there is an IAM -program φ such
that, for every α ∈ On, there is τ ∈ On such that Sφ,τ,F (0) = H, Sφ,τ,F (f(α)+1) = 1
and Sφ,τ,F (ι) = 0 for ι /∈ {0, f(α) + 1}, where again F = (0, χα) and χα is the
characteristic function of α in On.
We say that a set X ⊆ On or a function f : On → On is IAM -computable from
finitely many ordinal parameters iff there exists a finite set p ⊂ On, an IAM -
program φ using the alphabet A and an a ∈ A such that φ computes X (or f ,

our experience so far that every bound that is reasonably explicit in τ will ultimately lead to the
same class of computable functions.
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respectively) when the following change is made for all τ < α ∈ On in the definition
of the α-th state Sφ,α,Iαφ : If β ∈ p, then Sφ,α,Iαφ (β) is set to a.

4. Idealized Agent Machines, ordinal computability and the ICTT

Having developed our formal model for infinitary computations, it is now rather
straightforward to show that, in terms of computability, it is equivalent to the stan-
dard models. As the elobarate versions are quite long and cumbersome, we merely
sketch the arguments here.

Lemma 3. (a) There is an Lc-formula φlim such that, for any precomputation
F with dom(F ) = τ , we have [φ]Fτ = 1 iff τ is a limit ordinal. Furthermore, the
statement α = β + 1 is expressable by an Lc-formulas succ(α, β).
(b) Let A ⊂ ω be finite. There is an Lc-formula φliminf (x, y) such that, for any
τ ∈ On, a ∈ On, b ∈ A and any A-τ -precomputation F , [φliminf (a, b)]Fτ holds iff
b = lim inf ((F (ι))(a))ι<τ .
(c) Let P be an OTM -program, and let σ = (i, α, t) be a triple coding a state
in the computation with P , where i is codes the current state of the program, α
the head position and t : τ → {0, 1} the tape content. There are Lc-formulas
φPstate(i, α, t, j), φPhead(i, α, t, β) and φPtape(i, α, t, s) such, for any pre-computation
F with dom(F ) = γ + 1, [φstate(i, α, t, j)]

F
γ+1 = 1, [φPhead(i, α, t, β)]Fγ+1 = 1 and

[φPtape(i, α, t, s)
F
γ+1 = 1 hold iff applying P in the state σ leads into the new state

(j, β, t′), where t′ : τ + 1→ {0, 1} is given by t′(α) = s and t′(ζ) = t′(ζ) for ζ 6= α.

Proof. (a) Take φlim to be ∀x∃y(x ≤ y ∧ ¬(x = y)). First assume that τ is a
limit ordinal. Then [φlim]Fτ = 1− [∃x∀y(¬(x ≤ y) ∨ x = y))]Fτ . Now
[∃x∀y(¬(x ≤ y)∨x = y))]Fτ = 1 iff there exists x ∈ τ with [∀y(¬(x ≤ y)∨x = y)] =
1, which is equivalent to [¬∃y(x ≤ y ∧ x 6= y)]Fτ = 1 ↔ [∃y(x ≤ y ∧ x 6= y)]Fτ = 0,
which means that there is no y < τ such that [x ≤ y ∧ x 6= y]Fτ = 1, i.e. such that
x ≤ y ∧ x 6= y holds. But such an x obviously cannot exist if τ is a limit ordinal.
The other direction works in the same way, again by simply unfolding the definition
of the truth predicate. The second statement is similarly immediate.

(b) As A = {a1, ..., an} is finite, we can define ≤ on A by taking a < b to be∨
ai≤b ai = a. Now take φ(a, b) to be ∃x∀z(x ≤ z =⇒ b ≤ C(z, a) ∧ ∀x∃z(x ≤

z ∧ C(z, a) = b).
(c) The required formulas are immediate from P and the fact that limit ordinals

are Lc-definable. To give an example, if P requires to change from state i to state
j1 when the symbol under the reading head (at position α) is currently ι1 and to
state j2 when the symbol is ι2, we can express this through the Lc-formula
φi(α, j) ≡ ∃γ(((¬∃βsucc(γ, β) ∧ ((C(γ, α) = ∧j = j1) ∨ (C(γ, α) = ∧j = j2))). �

Theorem 4. Let f : On→ On be OTM -computable. Then f is IAM -computable.

Proof. Let P be an OTM -program for computing f . Suppose wlog that P uses
s ≥ 3 many states and put A := {0, 1, ..., s}. We will represent states of the OTM -
computation as sequences (ai|i ∈ α) where a0 ∈ {1, 2, ..., s} codes the inner state of
the machine and the aι code the tape content. Let bi = ai+1 for i ∈ ω and bι = aι
otherwise. To express the head position, we put bι = 2 if the ιth cell of the Turing
tape contains a 0 and the head is currently at position ι, bι = 3 if the ιth tape
content is 1 and the head is currently at position ι; otherwise, the bι will just agree
with the tape content.
Using lemma 3, one can now construct an Lc-formula φ such that Iαφ represents the
state and tape content of P at time α in the way we described. �
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Theorem 5. Let x ⊂ On be a set of ordinals. Then x is IAM -computable from a
finite set of ordinals iff it is OTM -computable from a finite set of ordinals.

Proof. By [Koe], x ⊆ On is OTM -computable from finitely many ordinal param-
eters iff x ∈ L. But it is not hard to see by adapting the theorem above that
OTM -computations in finitely many parameters can be simulated by an IAM that
hence every OTM -computable x is also IAM -computable. On the other hand,
as IAM -computations are definable in L, every x IAM -computable from finitely
many ordinal parameters must be an element of L. Hence the classes of IAM -
computable sets of ordinals and OTM -computable sets of ordinals both coincide
with the constructible sets of ordinals and hence with each other. �
Theorem 6. f : On→ On is IAM -computable iff it is computable by an ordinal
Turing machine (OTM) without parameters.

Proof. (Sketch) We saw above that an OTM can be simulated on an IAM .
For the other direction, we indicate how to simulate an IAM by an OTM . Let a
finite A and an IAM -program φ be given.11 To see how to emulate one computation
step, assume we have safed the sequence s := (sι|ι < τ) of IAM -states up to IAM -
computing time τ so far on an extra tape T1, separated by an extra symbol. The
techniques from [OTM] for evaluating the bounded truth predicate can then be
adapted to compute sτ on a second tape, using a third tape as a scratch tape. For
this, we compute, for each α ≤ τ , [φ(τ, α, s)]sτ for each s ∈ A until we find the
unique s̄ with [φ(τ, α, s̄)]sτ = 1, so that sτ (α) = s̄. Finally, we copy sτ to the end of
T1 to obtain a representation of (sι|ι < τ + 1). �

This shows, up to our analysis in section 3 and the restriction to working time
and space On, that the intuitive concept of transfinite computability coincides
with OTM -computability. Hence, we can finally close this section by stating our
candidate for an ICTT :
Infinitary Church-Turing-Thesis: A function f : On→ On is computable by
the idealized agent of set theory following a deterministic rule iff it is computable

by an OTM .

5. Conclusion and further Work

We have argued that there is an intuitive notion of transfinite computability
and that rendering it precisely leads us to a notion of transfinite computability
equivalent with ORM - and OTM -computability. Consequently, the constructible
hierarchy was obtained as the realm of this idealized activity. This suggests that
these models indeed capture some general intuitive concept and hence that results
about these models can be interpreted as results about this notion. Accordingly,
one should expect interesting applications to general mathematics: For example,
one might consider measuring the complexity of an object or a function by the com-
putational ressources necessary to compute it. This would give a precise meaning
to the question whether certain objects granted to exist by indirect proofs can be
‘concretely constructed’, even if this construction is allowed to be transfinite. In
particular, it suggests connections of transfinite computability to reverse mathe-
matics as exhibited in [KoeWe].

However, our argument has the drawback of being model-dependent: We develop
a certain notion of computability from the informal idea of an idealized agent,
hopefully along plausible lines. It would be preferable to have a formal notion of

11Note that a variant of an OTM working with finitely many symbols σ1, ..., σn can be simu-
lated by an OTM using only 0 and 1 by representing si as 0...0︸︷︷︸

n−i

1...1︸︷︷︸
i

.

38



transfinite computation not refering to a particular model; this could be obtained
by an appropriate axiomatization of transfinite computations similar to approaches
that have been made in the classical case. (See e.g. [DeGu]. See also [KoeSy].)

Another question is whether a similar approach will work for other models like
e.g. ITTMs. This is likely to be more difficult, as our coarse approach of approx-
imating the activity of an idealized agent is not available here: As it is shown in
[FrWe], there are natural alternative choices for the limit rules that lead to larger
classes of computable functions.
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Abstract. Given a complete graph G = (V,E), a positive length func-
tion on edges, and two subsets R of V and R′ of R, the selected-internal
Steiner tree is defined to be an acyclic subgraph of G spanning all vertices
in R such that each vertex of R′ does not belong to a leaf of the sub-
graph. The bottleneck selected-internal Steiner tree problem is to find a
selected-internal Steiner tree T for R and R′ in G such that the length of
the largest edge in T is minimized. In this paper, we show the bottleneck
selected-internal Steiner tree problem is NP-complete. We also show that
there is no polynomial time approximation algorithm achieving a perfor-
mance ratio of (2− ǫ), ǫ > 0, for the bottleneck selected-internal Steiner
tree problem on metric graphs (i.e., a complete graph and the lengths of
edges satisfy the triangle inequality) unless P = NP . Then, we extend
to show that if the instance is not a metric graph (i.e., the lengths of
edges do not satisfy the triangle inequality), there is no polynomial time
approximation algorithm achieving a performance ratio of (α(|V |) − ǫ),
ǫ > 0, for the bottleneck selected-internal Steiner tree problem unless
P = NP , where α(|V |) is any computable function of |V |. Finally, we
present the first known approximation algorithm with performance ratio
of 3 for the bottleneck selected-internal Steiner tree problem on metric
graphs.

Keywords: approximation algorithm, NP-complete, Steiner tree, ter-
minal Steiner tree problem, selected-internal Steiner tree problem, bot-
tleneck selected-internal Steiner tree problem, sensor network facility al-
location, engineering change orders in VLSI design

1 Introduction

The Steiner tree problem (STP) is one of the fundamental problems in network
design [7, 11, 12, 22]. Given an arbitrary graph G = (V,E), a subset R ⊆ V of
vertices, and a positive length function on edges, a Steiner tree is used to find
a connected and acyclic subgraph of G that spans all vertices in R. The given
vertices R are usually referred to as terminals and other vertices V \R as Steiner
vertices. The length of a Steiner tree is defined to be the sum of the lengths of
all its edges. The STP is concerned with the determination of a Steiner tree with
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minimum length in G [7, 11, 12, 22]. The STP was shown to be NP-complete [15]
and MAX SNP-hard [2]. Hence, some polynomial-time approximation algorithms
with constant ratios had been proposed [1, 3, 4, 17, 24, 30–33] instead of exact
algorithms for the STP. The STP has many important applications in VLSI
design, network communication, computational biology etc. [5, 7, 11, 12, 16, 22,
23, 25].

Motivated by the (sensor) network facility allocation and engineering change
orders (ECO) in VLSI design, Hsieh and Yang [19] presented a variant of the
STP, called the selected-internal Steiner tree problem (SISTP). Given a complete
graph G = (V,E), a positive length function on edges, and two subsets R ⊆ V
and R′ ⊂ R, a Steiner tree for R in G is a selected-internal Steiner tree if
all terminals in R′ are internal vertices of this Steiner tree. The selected-internal
Steiner tree problem (SISTP) is concerned with finding a selected-internal Steiner
tree for R and R′ in G whose total edge length is minimized [19, 26]. Without
loss of generality, we assume |R \ R′| ≥ 2 for the SISTP, otherwise the solution
of SISTP may not exist. Then Hsieh and Yang [19] showed that the SISTP
is NP-complete and MAX SNP-hard. They also presented a 2ρ-approximation
algorithm for the SISTP on metric graphs (i.e., a complete graph and the lengths
of edges satisfy the triangle inequality), where ρ is the best-known performance
ratio for the STP (currently ρ = ln 4 + ǫ ≈ 1.39 [4]). Li et al. [26] designed a
(ρ + 1)-approximation algorithm which has the current best performance ratio
for the SISTP on metric graphs. A similar problem to the SISTP is the internal
Steiner tree problem. The internal Steiner tree problem (ISTP) is assumed that
R′ = R and the purpose is to find a selected-internal Steiner tree for R in G
with minimum total edge length. Huang et al. [21] gave a (2ρ+1)-approximation
algorithm for the ISTP on metric graphs.

Although the SISTP is defined by a min-sum objective function, some appli-
cations of network and VLSI routing are considered in the bottleneck (min-max)
objective function [7, 11, 12, 22]. Hence, we propose a variant of the SISTP with
bottleneck objective function, called as the bottleneck selected-internal Steiner
tree problem. Given a complete graph G = (V,E), a positive length function on
edges, and two subsets R ⊆ V and R′ ⊂ R, the bottleneck edge of a Steiner tree
is an edge with the largest length in the Steiner tree. The bottleneck selected-
internal Steiner tree problem (BSISTP) is concerned with the determination of a
selected-internal Steiner tree for R and R′ in G with minimum length of the bot-
tleneck edge. For other related problems of the BSISTP, the bottleneck Steiner
tree problem (BSTP) is to find a Steiner tree T in G with minimum length of
the bottleneck edge [8, 13]. However, the bottleneck Steiner tree problem can be
solved exactly in polynomial time [13]. A contrary problem of SISTP is the par-
tial terminal Steiner tree problem (PTSTP) which is to find a minimum length
Steiner tree T for R and R′ in G such that all vertices of R′ must be leaves of
T [18, 20]. For the PTSTP on metric graphs, Hsieh et. al. [18, 20] showed that
this problem is NP-complete and gave a (2ρ− ( ρ

3ρ−2 ))-approximation algorithm.

A special case of the PTSTP is the terminal Steiner tree problem (TSTP). The
TSTP is assumed that R′ = R and the purpose is to find a minimum total
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edge length Steiner tree for R in G such that all vertices of R must be leaves
of T [3, 11, 22, 27, 28]. Since the TSTP had been shown to be NP-complete [27,
28], Chen, Lu and Tang [6], Fuchs [14], Drake and Hougardy [10], proposed 2ρ-
approximation algorithms for the TSTP on metric graphs, independently, where
ρ is the best-known performance ratio for the STP [4]. Then Martineza, Pinab,
and Soares [29] designed a (2ρ− ( ρ

3ρ−2 ))-approximation algorithm which has the
current best performance ratio for the TSTP on metric graphs. Chen, Lu and
Tang [6] also defined a bottleneck version of the TSTP, called as the bottleneck
terminal Steiner tree problem (BTSTP). BTSTP is to find a Steiner tree T for
R in G with minimum length of the bottleneck edge such that all vertices of R
must be leaves of T . However, the BTSTP can be solved exactly in polynomial
time [6]. In this paper, we show the BSISTP is NP-complete. We also show that
there is no polynomial time approximation algorithm achieving a performance
ratio of (2− ǫ), ǫ > 0, for the BSISTP on metric graphs unless P = NP . Then,
we extend to show that if the instance is not a metric graph (i.e., the lengths
of edges do not satisfy the triangle inequality), there is no polynomial time ap-
proximation algorithm achieving a performance ratio of (α(|V |) − ǫ), ǫ > 0, for
the BSISTP unless P = NP , where α(|V |) is any computable function of |V |.
Finally, we present the first known approximation algorithm with performance
ratio of 3 for the BSISTP on metric graphs.

The rest of this paper is organized as follows. In Section 2, we prove the NP-
completeness and hardness of approximation results for the BSISTP. In Section
3, we describe our 3-approximation algorithm to solve the BSISTP. Finally, we
give the concluding remarks in Section 4.

2 Hardness Results for the BSISTP

In this section, we show that the BSISTP is NP-complete even when the instance
is a metric graph. This result also implies that the BSISTP cannot be approxi-
mated in polynomial time to within a ratio of (2 − ǫ), ǫ > 0, on metric graphs
unless P = NP . Then it is easy to extend that unless P = NP , the BSISTP can-
not be approximated in polynomial time to within a ratio of (α(|V |)− ǫ), ǫ > 0,
for any computable function α(|V |) if the instance is not a metric graph. In order
to show the BSISTP is NP-complete, we define the bottleneck selected-internal
Steiner tree decision problem as follows.

Bottleneck Selected-Internal Steiner Tree Decision Problem
Instance: A positive integer m, a complete graph G = (V,E), a positive length

function ℓ on edges, and two subsets R ⊆ V and R′ ⊂ R.
Problem: Does there exist a selected-internal Steiner tree for R and R′ in G

such that the length of the bottleneck edge is less than or equal to m?

Now, we show that the bottleneck selected-internal Steiner tree decision prob-
lem is NP-complete by the reduction from the Hamiltonian path problem, which
is a common NP-complete problem [9]. We define the Hamiltonian path problem
as follows.
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Hamiltonian Path Problem
Instance: A graph G and two vertices x and y.
Problem: Does there exist a path from x to y passing each vertex of G exactly

once?

Theorem 1. The decision version of the bottleneck selected-internal Steiner tree
problem is an NP-complete problem even when the instance is a metric graph .

Proof. First, it is easy to see that the bottleneck selected-internal Steiner tree
decision problem is in NP. Then, we show the reduction: the transformation from
the Hamiltonian path problem to the bottleneck selected-internal Steiner tree
decision problem. Let a graph G = (V,E) with two vertices vx and vy be an
instance of the Hamiltonian path problem. Now, we construct an instance of
bottleneck selected-internal Steiner tree decision problem, say a complete graph
Ĝ = (V̂ , Ê), a positive length function ℓ on edges, two subsets R ⊆ V and
R′ ⊂ R, and a positive integer m, as follows.

m = 1.
V̂ = {V } ∪ {va}, where va is an auxiliary vertex.
R = V and R′ = V \ {vx, vy}.
For each edge (u, v) ∈ Ê,

ℓ(u, v) =

{
1, if (u, v) ∈ E
2, otherwise.

(1)

Clearly, the lengths of edges satisfy the triangle inequality. Now, we show that
there is a Hamiltonian path of G from vx to vy if and only if there is a bottleneck

selected-internal Steiner tree for R and R′ in Ĝ such that the length of the
bottleneck edge is m.

(Only if) Assume that there is a Hamiltonian path of G from vx to vy. It is
clear this Hamiltonian path is a bottleneck selected-internal Steiner tree T for
R and R′ in Ĝ and the length of each edge of T is 1.

(If) there is a bottleneck selected-internal Steiner tree T = (VT , ET ) for R
and R′ in Ĝ such that the length of the bottleneck edge is 1. Clearly, all incident
edges of va cannot be contained in ET since the lengths of these edges are larger
than 1. Hence, the vertex va does not belong to VT . However, for all possible
bottleneck selected-internal Steiner trees for R and R′ in Ĝ, only at most three
vertices {vx, vy, va} can be leaves. Hence, the bottleneck selected-internal Steiner
tree T is a Hamiltonian path of G from vx to vy. ⊓⊔

The next theorems show hardness of approximation results for the BSISTP.
For convenience, we let lenb(T ) denote the length of the bottleneck edge in any
selected-internal Steiner tree T .

Theorem 2. Assuming P 6= NP , there is no polynomial time approximation
algorithm achieving a ratio of (2− ǫ), ǫ > 0, for the BSISTP on metric graphs.
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Proof. By the reduction of Theorem 1, let T̃ denote the optimal solution in Ĝ
for the BSISTP (i.e., a selected-internal Steiner tree for R and R′ in Ĝ with
minimum length of the bottleneck edge). By Theorem 1, the graph G has a

Hamiltonian path iff lenb(T̃ ) = 1 in Ĝ for the BSISTP. In other words, the
graph G has no Hamiltonian path iff each selected-internal Steiner tree in Ĝ has
length of the bottleneck edge larger than 1. Assume that there exists a (2− ǫ)-
approximation algorithm, denoted by A2−ǫ, for the BSISTP in polynomial time.
Note that running the algorithm A2−ǫ in Ĝ outputs all possible solutions of which

the lengths of the bottleneck edges are either 1 or 2. Hence, if the lenb(T̃ ) = 1
in Ĝ for the BSISTP, running Algorithm A2−ǫ in Ĝ products a selected-internal
Steiner tree T with the lenb(T ) = 1. By Theorem 1, there exists a Hamiltonian

path in graph G. If the lenb(T̃ ) = 2 in Ĝ for the BSISTP, running Algorithm
A2−ǫ in Ĝ produces a selected-internal Steiner tree T with the lenb(T ) = 2 that
implies the graph G has no a Hamiltonian path. ⊓⊔

Theorem 3. Assuming P 6= NP , there is no polynomial time approximation
algorithm achieving a ratio of (α(|V |)− ǫ), ǫ > 0, for the BSISTP, where α(|V |)
is any computable function of |V |.

Proof. The Proof is similar to the Theorem 2. Let a graph G = (V,E) with two
vertices vx and vy be an instance of the Hamiltonian path problem. Now, we
construct an instance of BSISTP, say a complete graph Ḡ = (V̄ , Ē), a positive
length function ℓ on edges, and two subsets R ⊆ V and R′ ⊂ R.

V̄ = {V } ∪ {va}, where va is an auxiliary vertex.

R = V and R′ = V \ {vx, vy}.
For each edge (u, v) ∈ Ē,

ℓ(u, v) =

{
1, if (u, v) ∈ E
α(|V |), otherwise. (2)

Clearly, the lengths of edges do not satisfy the triangle inequality. We let
T̃ denote the optimal solution in Ḡ for the BSISTP. We also let Aα(|V |)−ǫ be
the (α(|V |) − ǫ)-approximation algorithm for the BSISTP in polynomial time.

Clearly, the graph G has a Hamiltonian path iff lenb(T̃ ) = 1 in Ḡ for the BSISTP
by Theorem 1. In other words, the graph G has no Hamiltonian path iff each
selected-internal Steiner tree in Ḡ has length of the bottleneck edge larger than
1. Note that running algorithm Aα(|V |)−ǫ in Ḡ outputs all possible solutions of
which the lengths of the bottleneck edges are either 1 or α(|V |). Hence, if the
lenb(T̃ ) = 1 in Ḡ for the BSISTP, running Algorithm Aα(|V |)−ǫ in Ḡ produces
a selected-internal Steiner tree T with the lenb(T ) = 1. Hence, there exists a

Hamiltonian path in graph G. If the lenb(T̃ ) = α(|V |) in Ḡ for the BSISTP,
running Algorithm Aα(|V |)−ǫ in Ḡ products a selected-internal Steiner tree T
with the lenb(T ) = α(|V |) that implies the graph G has no a Hamiltonian path.

⊓⊔
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3 A 3-Approximation Algorithm for the BSISTP

BSISTP (Bottleneck Selected-Internal Steiner Tree Problem)
Instance: A complete graph G = (V,E) with a positive length function ℓ on

edges, and two subsets R ⊆ V and R′ ⊂ R, where the length function ℓ is
metric.

Problem: Find a selected-internal Steiner Tree for R and R′ in G such that the
length of the bottleneck edge is minimized.

In this section, we will present a 3-approximation algorithm to solve the
above BSISTP, whose length function is metric, in polynomial time. For any
arbitrary selected-internal Steiner tree T , we let lenb(T ) denote the length of
the bottleneck edge in T . First, we use the exact algorithm for the BSTP [13] to
construct a Steiner tree S = (VS , ES) for R in G whose length of the bottleneck
edge in S is minimized. Then, select any two vertices {va, vb} in R\R′ (Note that
|R \ R′| ≥ 2) and recursively visit all vertices in VS from va to vb exactly once
by taking a full walk of the tree S and skipping vertices, but without skipping
more than three consecutive intermediate edges in S. For the Steiner tree S, we
can easily convert S into a rooted tree with the root va. Hence, without loss of
generality, let va be the root of S and let P = (p1 = va, p2, p3, . . . , ph = vb) be
the path between the two vertices va and vb in S. Let Tr be a tree rooted at
r, we use a recursive procedure Traversal(Tr, f lag) to determine the traversal
order for a tree Tr and flag ∈ {0, 1} is to determine the order of root visited.
Now, we use Algorithm 1 to transform S into a selected-internal Steiner tree
T = (VT , ET ) (i.e., visiting each the vertex in VS from va to vb exactly once to
form a Hamiltonian path in an induced subgraph G′ = (VS , E

′) of G).

Algorithm 1: transforming S into a selected-internal Steiner tree T
1. Let VT = VS and a global variable γ = φ be a vertex which is the last visited

vertex before each recursive call the Traversal(Tr, f lag).
2. call Traversal(Tp1

,1).
3. For i = 2 to h do

call Traversal(Tpi
,0). end For

We describe the recursive procedure Traversal(Tr, f lag) as follows.

Procedure Traversal(Tr, f lag)
1. If flag = 1 then

1.1 Visit the root r.
1.2 If the root r of Tr is not va then add an edge (γ,r) to ET . endif
1.3 Let γ = r.
endif

2. For each child β of the root except the vertex in P do
recursively call Traversal(Tβ ,1-flag). end For

3. If flag = 0 then
3.1 Visit the root r.
3.2 If the root r of Tr is not va then add an edge (γ,r) to ET . endif
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3.3 Let γ = r.
endif

Lemma 1. Algorithm 1 returns a selected-internal Steiner tree T for R and R′

in G with lenb(T ) ≤ 3 ∗ lenb(S).

Proof. Clearly, after running Algorithm 1, T is a selected-internal Steiner tree
for R and R′ in G since the tree T only has two leaves {va, vb} in R \R′. Notice
that procedure Traversal visit the root frst if flag is 1, and last if flag is 0. For
the procedure Traversal, we add an edge to ET only in step 1.2 and 3.2. Without
loss of generality, we visit each subtree of the tree Tpi

from left subtree to right
subtree for 1 ≤ i ≤ h except the subtree Tpi+1

. For each edge (u, v) in ET ,
we let the vertex v be the next visited vertex after procedure Traversal visiting
the vertex u. For each vertex u, we distinguish between the following two cases
(i) flag=1(ii) flag=0. For the former case (i), Fig. 1 shows all possible cases of
the next visited vertex v after visiting the vertex u according to the procedure
Traversal. There are four cases of the vertex v: (1) v is a grandchild of u and
flag = 1. (2) v is a sibling of u and flag = 1. (3) v is father of u and flag = 0
(4) v is a child (also, leaf of S) of u and flag = 0. For the case (1) and (2), it can
easily be checked that the edge (u,v) in ET is skipping 2 consecutive edges of the
tree S. For the case (3) and (4), the the edge (u,v) in ET is also an edge in ES .
For the later case (ii), Fig. 2 shows all possible cases of the next visited vertex v
after visiting the vertex u according to the procedure Traversal. There are also
four cases of the vertex v: (1) v is the child of sibling of u and flag = 1. (2) v is a
sibling of father of u and flag = 1. (3) v is grandfather of u and flag = 0 (4) v is
a sibling (also, leaf of S) of u and flag = 0. For the case (1) and (2), it can easily
be checked that the edge (u,v) in ET is skipping 3 consecutive edges of the tree
S. For the case (3) and (4), it can easily be checked that the edge (u,v) in ET
is skipping 2 consecutive edges of the tree S. Then Fig. 3 shows the four cases
of connecting the last visited vertex of tree Tp1

to the first visited vertex of tree
Tp2

which is at most skipping 3 consecutive edges of the tree S . For 2 ≤ i ≤ h,
Fig. 4 shows the two cases of connecting the last visited vertex of tree Tpi

to the
first visited vertex of tree Tpi+1

which is at at most skipping 2 consecutive edges
of the tree S. By triangle inequality, we have lenb(T ) ≤ 3 ∗ lenb(S). ⊓⊔

Now, for clarification, we describe the approximation algorithm for BSISTP
as follows.

Algorithm APX
Input: A complete graph G = (V,E) with a positive length function ℓ on edges,

and two sets R ⊂ V of terminals and R′ ⊂ R of internal vertices, where the
length function is metric.

Output: A selected-internal Steiner tree T for R and R′ in G.
1. Use exact algorithm for the BSTP [13] to find a Steiner tree S in G.
2. If S is not a selected-internal Steiner tree for R and R′ in G then

Use Algorithm 1 to transform S into a selected-internal Steiner tree T .

The result of this section is summarized in the following theorem.
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Fig. 1. Four cases of the edge (u, v) in ET when flag of vertex u is one, where the
vertex v is the next visited vertex after visiting the vertex u. The bold dashed line in
each case is an edge in ET .

Fig. 2. Four cases of the edge (u, v) in ET when flag of vertex u is zero, where the
vertex v is the next visited vertex after visiting the vertex u. The bold dashed line in
each case is an edge in ET .

Fig. 3. Four cases of connecting the last visited vertex of tree Tp1 to the first visited
vertex of tree Tp2 . The bold dashed line in each case is an edge in ET .

Fig. 4. Two cases of connecting the last visited vertex of tree Tpi to the first visited
vertex of tree Tpi+1 . The bold dashed line in each case is an edge in ET .
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Theorem 4. There is an algorithm finding a 3-approximation solution of the
BSISTP of a metric graph in O(|E|) time.

Proof. Visiting each vertex in the Steiner tree S for Algorithm 1 takes O(|VS |)
time. Hence, the time-complexity of Algorithm APX is dominated by the cost
of the step 1 for running the exact algorithm for the BSTP (currently, the time

complexity is O(|E|) [13]). Let T̃ and S be the optimal solutions for the BSISTP

and BSTP for R and R′ in G, respectively. Since T̃ is also a Steiner tree for
R in G, we have lenb(S) ≤ lenb(T̃ ). By Lemma 1, Algorithm APX returns a
3-approximation solution for the BSISTP. Therefore, the theorem is proved. ⊓⊔

4 Conclusion

In this paper, we have investigated the BSISTP and shown that the BSISTP is
NP-complete on metric graphs. We have also shown that unless P = NP , the
BSISTP cannot be approximated in polynomial time to within a ratio of (2− ǫ)
and (α(|V |) − ǫ), ǫ > 0, on metric and non-metric graphs, respectively. Finally,
we have proposed the first known approximation algorithm with performance
ratio of 3 for the BSISTP on metric graphs. For future research, improving the
approximation ratio for the BSISTP is an immediate direction. Another direction
for future research is whether the BSISTP is also NP-complete when the size of
vertex sets R or R′ is constant.
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Abstract. This paper analyses autonomous agents – one of the most im-
portant areas of Artificial Intelligence – under a historical perspective,
in order to highlight how computational paradigms behave differently
toward their conception, modeling and implementation. The main the-
sis is that autonomous agents, initially conceived as a useful metaphor
to explore unexpected ways of the theory and practice of computation,
eventually became an instrument to understand both the world of Nature
and the virtual worlds created by humans through computing machines,
which is particularly apt to describe the pervasive process of digitisation
of information happening nowadays. To sustain this thesis, a special at-
tention will be given to contemporary applications of multi-agent systems
– such as gaming, swarm intelligence or social network simulation.

Keywords: Computational paradigms, Autonomous Agents, Multi-Agent
Systems, History of Computing

1 Introduction

In this paper, we explore the world of autonomous agents, which represent one of
the last frontiers of Artificial Intelligence (A.I.) and at the same time a long tra-
dition of research in the field of applied computability, with unexpected results
which could not be foreseen in the early days, in particular in its recent areas
of application. In fact, the computing landscape drastically changed in the last
decades: from a focus on standalone computer systems to a situation character-
ized by distributed, open and dynamic heterogeneous systems that must interact,
and must operate effectively within rapidly changing circumstances and with in-
creasing quantities of available information. In this context, agents constitute
a suitable design metaphor, that provides designers and developers with a way
of structuring an application around autonomous, communicative and flexible
elements [28]. However, as observed by Nwana, there is a lack of agreement of
what agents are, for at least two reasons:

Firstly, agent researchers do not own this term in the same way as fuzzy
logicians/AI researchers own the term fuzzy logic – it is one that is
used widely in everyday parlance as in travel agents, estate agents, etc.
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Secondly, even within the software fraternity, the word agent is really
an umbrella term for a heterogeneous body of research and development
[30].

It is feasible to consider as the underlying assumption of the ‘software fra-
ternity’ that ‘agents’ are pieces of software. The ‘intelligence’ of these agents is
the capability to be autonomous in the environment, which can be summarised
in this way: the ability to be reactive responding in a timely fashion to changes
that occur around; the instinct to exhibit a goal-directed behaviour by taking
the initiative; the wish to interact with other entities through a common lan-
guage, the skill of choosing a plan to reach one or more goals, preferably through
the learning from past experience. In the sequel, we will use the expression Au-
tonomous Agents (A.A.) to indicate this particular family of softwares, while
the term ‘agent’ alone would indicate both entities based on biology (e.g. human
beings, other animals) or Turing machines (i.e., robots in the physical world;
softbots in wide computer networks; taskbots embedded in specific hardware,
etc.). Here, we follow Wooldridge and Jennings, who define an agent – valid in
general – as ‘one who, or which, exerts power or produces an effect’ [38], while
this effect is exercised through actions in a given environment, that can influence
the behaviour of an agent, which is dynamically responsive. However, they go
along with the definition of software-based agents where the first property is
rightly autonomy, i.e., the ability to operate without the direct intervention of
humans or others, while having some kind of control over their own actions and
internal state. Moreover, A.A. usually show reactivity (to the environment, and
this implies some kind of perception), proactivity (opportunistic, goal-directed
behaviour, taking the initiative where appropriate) and social abilities (i.e., ap-
propriate interaction with other agents).

The paper is structured as follows. In section 2, the birth of A.A. will be re-
called as a novel programming paradigm, and how this paradigm was interpreted
by the different communities of computer scientists, according to the schools they
belong. Then, section 3 will explore what happens when autonomous agents are
put together, forming coherent Multi-Agent Systems (MAS). Finally, the con-
crete applications of MAS will be discussed in section 4, in order to show how the
main areas of application of MAS influenced backwards the modelling of MAS
themselves and eventually the very concept of A.A. In the conclusion (section 5),
an evaluation of A.A. as a paradigm of computation apt to interpret the current
trends of the computational turn, i.e., after year 2000.

2 Autonomous Agents as a Programming Paradigm

Paraphrasing Roland Barthes, the Agenthood Degree Zero is the seminal paper
by Shoham published in 1990, where A.A. were proposed as a specific program-
ming paradigm [36]. It is worth noticing, that in that year we were in the middle
of the so-called ‘second winter’ of A.I.: according to Russell and Norvig, that
period started in 1988, after the fall of the A.I. industry and the failure of the
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‘Fifth Generation’ project [35]. Already in 1984, McCarthy – the inventor of the
expression A.I. itself in 1956, and since then a leading figure in the community
– had expressed dissatisfaction for the results of expert systems of the time,
advocating for a movement back to the original goals – i.e., to general, flexible,
autonomous systems – on a new basis [29]. From the other side, in 1990 Brooks
launched his program of a nouvelle A.I., no more purely based on software, and
hence disincarnate, but rather embodied in robots [5].

The novelty brought by Shoham is simple: instead of programming objects,
which pass messages in response to methods, in principle without constraints
in terms of parameters (state of basic unit) or types (messages), it is more
effective to constrain the object as an A.A., with constraints on methods, for
instance ‘honesty, consistency’ and on parameters, like ‘beliefs, commitments,
capabilities, choices’ [36]. Therefore, agent oriented programming is proposed as
a specialisation of object oriented programming. The success of A.A. was great
and rapid: only five years later, Russell and Norvig will publish the first edition
of the most important textbook of A.I. ever in 1995, where they state explicitely
and undoubtedly that ‘A.I. is the study of agents’ [35].

However, a relevant part of the A.I. community of that period (but not only)
was not keen to think – and hence program – in terms of object-orientation,
whose relation with A.I. passes through the concept of Marvin Minsky’s frame,
but it is extraneous to the symbolic approaches of A.I. (see [6] for details on
the history of the object-oriented paradigm). According to Wooldridge and Jen-
nings, it is not by chance that soon the instruments of Computational Logic
(CL) were advocated to model agenthood, starting from Daniel Dennet’s con-
cept of intentional system: according to him, the behaviour of an agent (and an
A.A. in particular) can be predicted by the method of attributing belief, desires
and rational acumen [38]. In particular, in 1991 Rao and Georgeff proposed an
abstract architecture called BDI (Belief, Desire, Intention) in order to face the
problem of continuous and non deterministic evolution of the environment [32].
BDI is formally define in terms of modal logic, where Belief, Desire, Intention
are understood as modalities. In the first place, it is necessary that a component
in the system state represent the world information and update appropriately
this information after each sensing action. This component, called belief, may
be implemented as a variable, a database, a set of logical expressions or some
other data structure. Beliefs are essential because the world is dynamic (past
events need therefore to be remembered), and the system only has a local view
of the world. In A.I. terms, beliefs represent knowledge of the world. However, in
computational terms, beliefs are just some way of representing the world state,
be it the value of a variable, a relational database, or symbolic expressions in
predicate calculus.

Moreover, as the system is resource bounded, it is desirable to cache im-
portant information rather than recompute it from base perceptual data. But
an agent must have information also about the objectives to be accomplished.
Desires – within the BDI architecture, or, more commonly though somewhat
loosely, “goals” – form another essential component of system state. The rep-
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resentation of desires implies the modellisation of the information about the
objectives to be accomplished, the priorities and payoffs associated with the
various objectives. Thus, desires can be thought as representing the “motiva-
tional” component of an agent. In order to define the process of choice of actual
agent’s course of actions, the definition of the selection function is crucial, which
determines which desires will be actually pursued. The selection function in-
volves means-end analysis, and the weighting of competing alternatives. Also, in
a changing environment the possibility of reconsideration in presence of new cir-
cumstances must be foreseen. The selection function generates intentions, which
are desires that the agent has committed to achieve. Thus, intentions capture
the “deliberative” component of an agent. Intentions are stronger than desires:

My desire to play basketball this afternoon is merely a potential influ-
encer of my conduct this afternoon. It must vie with my other relevant
desires [. . . ] before it is settled what I will do. In contrast, once I intend
to play basketball this afternoon, the matter is settled: I normally need
not continue to weigh the pros and cons. When the afternoon arrives, I
will normally just proceed to execute my intention. [4]

Formally, an intention is a feasible desire, i.e., a desire which can be satisfied
in practice, as the agent is able to devise and execute a plan to achieve it. Com-
putationally, intentions may simply be a set of executing threads that can be
appropriately interrupted upon receiving feedback from the possibly changing
world. Rather than try to recreate every new plan from first principles, practical
BDI architecture [33] includes a support structure to manage the planning pro-
cess of an agent. This structure that works as a cache, contains parameterized
“plans” for use in future situations. Semantically, these plans can be viewed as
a special kind of belief. It is important to notice that, according to Bratman
[4], agents should persist with their intentions (as long as they are satisfiable),
i.e., they should be committed to those intentions. Commitment is an impor-
tant property that, if implemented, creates a safer scenario for the other agents,
including the user: in fact, they are able to expect that an agent will not arbi-
trarily modify its behaviour, as discussed also by Cohen and Levesque [8], that
provided one of the best-known and most influential contributions to the study
of intentions and commitments and in general to the theory of “rational agents”.

The BDI approach has been realized (though in a simplified form) in the
AgentSpeak programming language [33, 34], that has several implementations
and extensions. Among the existing BDI virtual machines, we shall mention at
least Jason1 and JACK2. However, Kowalski pointed out that BDI agent-based
systems, though formally defined in terms of modal logics, only have implemen-
tations (like those mentioned above) defined in procedural languages, which are
based on the mathematical model of computation originally proposed by Emil
Post; such implementations are normally considered out of the computational

1 See the official web page for details: http://jason.sourceforge.net/wp/.
2 See the official web page for details http://www.agent-software.com.au/

products/jack.
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Logic tradition [25] – however, Martin Davis has argued that the uniform al-
gorithm by Robinson on which is based for example the Prolog programming
language is nothing more than the L.C.M. process by Post, hence there is a small
point of contact between the two traditions (see [15] for details).

The Abductive Logic Programming (ALP) agent model defined by Kowalski
and Sadri in 1999 uses logic both at a level of specification and implementa-
tion [26], overcoming the limits of the implementations of BDI. The ALP agent
model shows how logic can support every capability of A.A., maintaining both a
close connection with the environment and the power of reasoning offered by a
symbolic approach. However, abductive reasoning should be extended by other
known techniques in CL, i.e., temporal reasoning, constraint logic programming,
and preference reasoning based on logic programming with priorities. Therefore,
the KGP (Knowledge, Goals and Plans) agent model [23, 2] was proposed. The
formulation of the KGP architecture, even if takes BDI model as a starting point,
uses CL in an innovative manner in order to specify the individual state of an
agent, its reasoning capabilities, state transitions and control. Through these
capabilities, KGP agents are able to live in open and dynamic environments.
The authors emphasize that CL allows an agent to maintain a view of the en-
vironment, decide what its goals should be depending on the current circum-
stances, plan (incrementally) for these chosen goals and interleave this with plan
incremental execution, react to environment received information, re-evaluate
previous decisions in the light of the new information and adapt as necessary
by changing or augmenting its goals and plan. For a full treatment of the CL
foundations of KGP agents, see [24].

Many other approaches to defining agent architectures in computational logic
exist, among which one has to mention at least MetateM [16] (based on modal
temporal logic), 3APL [22] (which facilitates specification of cognitive agent
behaviour using actions, beliefs, goals, plans, and rules), Impact [37] (which
provides techniques and tools to build agents, also on top of existing legacy
code), and DALI [9, 11, 12] (a prolog-like logic programming language, where the
reactive, proactive and social behaviour of DALI agents is triggered by several
kinds of events: external, internal, present and past events). For a recent survey
on computational logic agents, the reader may refer to [17].

Despite the differences among the different approaches, a logical agent is
in general based upon an “agent program” which consists of a knowledge base
and of a set of rules aimed at providing the entity with the needed capabilities.
Rules may include object-level rules and meta-(meta-. . .)rules that determine
the agent behaviour. The knowledge base may itself include rules, which either
define knowledge (and meta-knowledge) in an abstract way or constitute part of
the agent knowledge. The knowledge base constitutes in fact the agent “mem-
ory” while rules define the agent behaviour. An underlying inference engine,
or more generally a control mechanism, puts an agent at work. Agents evolve
in time, as a result of both their interaction with the environment and their
own self-modifications. In summary, all logical agent-oriented architectures and
languages, or “agent models”, exhibit at least the following basic features (for
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a general discussion about logical agent models the reader may see, e.g., [17]
and [14], and for a general logical semantics for evolving agents [13]): a logical
core, that for instance in both KGP and DALI is a logic program; reactivity,
i.e., the capability of managing external stimuli; proactivity, i.e., the capability
of devising, managing and pursuing internal “initiatives”; the capability of per-
forming actions and executing plans; the capability of recording and elaborating
“experiences” related to what has happened and has been done in the past; the
capability of communicating with other agents; a basic cycle that interleaves the
application of formerly specified capabilities; e.g., in DALI the basic cycle is inte-
grated within the logical core via an extended resolution, while in KGP the basic
cycle has a meta-level definition; in both cases, this cycle can be customized by
the programmer under various respects.

The above features allow logical agents to be intelligent, so as to face changing
situations by modifying their behaviour, or their goals, or the way to achieve their
goals. This in fact requires agents to be able to perform, interleave and combine
various forms of commonsense reasoning, possibly based upon different kinds of
representation.

3 Autonomous Agents put together

Agents are social entities and this is a relevant property: they exist in an en-
vironment containing other agents, with which they will generally be expected
to interact in some way. In fact, application domains are so often large, sophis-
ticated and unpredictable that the only solution is to develop a considerable
number of specialized entities, each one with a reduced point of view of the
world. In 2001, Adams observes that not only a MAS is more complex than a
single agent system, but further issues should be considered, such as the ‘com-
munication mechanisms, environmental and world knowledge maintenance as
well as communication, and societal issues such as which agent is assigned to
a particular task’ [1]. In a MAS there is no global system control, data are de-
centralized and computation is asynchronous. As observed by Wooldridge and
Jennings, the classic “divide and conquer” methodology of traditional software
engineering is not apt for a MAS, as ‘agents must be able to interact in a flexible,
context dependent manner (hence the need for social abilities, responsiveness,
and proactiveness) rather than through some fixed and predetermined set of
interface functions. Also, the unpredictability of the domain means that the
agents must be both responsive to change and proactive.’ [38] Moreover, in-
teraction is one of the most important features. When multiple entities share
an environment, it is not trivial to control their behaviours and to synchronize
their activities: individual needs can determine overall system goals failure. In
order to solve common problems coherently, agents must communicate amongst
themselves and coordinate their activities. In fact, no agent possesses a global
view of the entire agency to which it belongs, as this is simply not feasible in
any community of reasonable complexity. Consequently, agents have only local
views, goals and knowledge that may interfere with rather than support other
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agents’ actions. Coordination is vital to prevent chaos during conflicts. Generally,
communities of agents are used to solve a problem collectively, but sometimes
agents have egoistic interests that pursue the detriment of others. These two
general strategies have generated two modalities of interaction: cooperation and
competition. The basic premise of this coordination form is that an agent cannot
solve an assigned problem using local resources/expertise. Thus it will decom-
pose the problem into sub-problems and try to find other willing agents with the
necessary resources/expertise to solve these sub-problems. The assignment of
the sub-problems is solved by a contracting mechanism. It consists of a manager
agent contract announcement, submission of contracting agents bids in response
to the announcement, and the evaluation of the manager submitted bids, which
leads to awarding a sub-problem contract to the contractor(s) with the most
appropriate bid(s). The study of how groups of agents work is a central issue in
MAS, and results from game theory are applied accordingly to cope with it: e.g.,
multi-modal logics were recently proposed to formalise teamwork in MAS [10].

The comparison with real-world, human societies is immediate and striking:
the natural consequence is to consider MAS as a reasonable – although rather
simplified – model of Nature and human societies.

4 Multi-Agent Systems in action

Complex real-world problems require to cope with complexity, meaning both at
a level of computability and of domain modelling. The joint behaviour of agents
– dealing with cooperation and competition – has proven to be a good way to
cope with complexity in a lot of areas in recent years. In 2005, a survey of the
state-of-the-art on cooperative MAS by Panait and Luke states that:

Much of the multi-agent learning literature has sprung from historically
somewhat separate communities – notably reinforcement learning and
dynamic programming, robotics, evolutionary comutation, and complex
system. . . We think that there are two features of multi-agent learning
which merit its study as a field separate from ordinary machine learning.
First, because multi-agent learning deals with problem domains involving
multiple agents, the search space involved can be unusually large [. . . ]
Second, multi-agent learning may involve multiple learners, each learning
and adapting in the context of others. [31]

The interesting fact is, that MAS are more and more considered a field of
research per se, with its own unique features and open problems – such as the
machine learning issue. Another important trend is given by the interaction
between A.A. and biological agents in hybrid environments. On one hand, the
decrease in the costs of robots at the end of the 20th century let researchers to
apply MAS in real-world environments: one of the most popular examples is the
RoboCup competition, founded in 1997, where robots play football matches.3 On

3 For details, see the official web page: http://www.robocup.org/, retrived in January
the 13th, 2013.
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the other hand, ‘serious gaming’ – a field of research where computer games are
used for serious purposes, i.e., besides entertainment, typically education, but
also economic simulation – permits to observe A. A. play with human agents
in the same virtual environment. Hybrid environments (both in the real or vir-
tual worlds) raise again the A.I. issue of emotion, applied to A.A. For instance,
Bates describe A.A. not only in terms of reactivity and goals, but also in terms
of emotions and social behaviour [3]. In this emotional architecture, happiness
and sadness occur when the agent’s goals succeed or fail. Pride, shame, reproach
and admiration arise when an action is either approved or not. These judgments
are made according to the agent’s standards, which represent moral beliefs and
personal standards of performance. Foner proceeds beyond Bates, in describing
what an agent must be by studying a software agent named Julia, which inter-
acts with people in MUDs (Multi-User Dungeons), a hybrid environment where
people chat and get together with A.A. in rooms, originally text-based, then
with avatars – the most famous being Second Life, see [27] for a critique. This
case study includes issues of personality, anthropomorphism, expectations and
other human attributes [18].

5 Conclusion

Despite the apocalyptic alarms of the intelligent machines conquering our real
world and so putting humanity in enslavement, facts show a different real-
ity: nowadays, humans more and more interact through the ‘internet galaxy’
(Castells) eventually reshaping their social (and political), at least since year
2000 [7]. According to Floridi, the digitisation of the infosphere (i.e., the global
complex system made of processes, services and relations between informational
organisms) was made in three steps: first, formal and natural language data,
then multimedia documents (sounds, images and motions), became digitised;
second, user interfaces passed from punched cards to visualisation (WIMP sys-
tems, i.e., Windows, Icon, Manu, Pointer) and then manipulation (3D graphic
interfaces, immersive environment with avatars); third, convergence and integra-
tion of the digitised data through the connection of environment via computer
networks [20]. The result is that the underlying concept that unifies every type
of agents is information: informational organisms (inforgs) are defined as bio-
logical agents acting in a environment through engineered artefacts, producing
information [19]. After the digitisation of the infosphere, a new class of compu-
tational inforgs is become more and more important, where at least part of the
engineered artefacts are based on a Von Neumann machine, with specific traits
[21]. According to this line, A. A. can be seen as a special case of computational
inforgs, where the engineered artifact shows a degree of autonomy in dealing
with the human counterpart. Therefore, MAS can be an exceptional promising
field of research in order to explain and shape the hybrid environments which
constitute the infosphere in which agents of all kind live together.
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Abstract. Chaitin’s notion of program elegance, that is of the smallest
program to satisfy some specification, does not explicitly take account
of the balance between a formal notation’s expressive power and the
richness of its semantics. To explore this wider space of elegance, we are
investigating realisations of the Busy Beaver game (BBG) which involves
finding programs of given size that produce maximal outputs.
Like elegance, BBG is undecidable. Canonically, BBG is represented us-
ing Turing machines, but there has been very little investigation into
alternative formulations. Thus, we are exploring BBG in a number of
classic models of computability, using empirical and analytic heuristics
to find optimal BBG instances. Such experiments will be used as a basis
for drawing comparisons between the expressive power of Turing ma-
chines and other models of computation with a view to gaining a deeper
understanding of the expressive power of computer languages.
In this paper, we re-introduce the Random Access Stored Program ma-
chine (RASP) and build an analogue of the BBG for these machines.
Though the BBG for any fixed precision RASP model is trivially com-
putable, the expressivity of the model renders exhaustive search infeasi-
ble as we increase the size of our machine. Thus, we explore the space of
BBG RASP machines using both brute force and genetic search methods.

Keywords: Elegance, Busy Beaver, Computability, Genetic Algorithms, Brute Force,

RASP Machine

1 Motivation

Chaitin has extensively investigated the concept of elegant programs [3]. A pro-
gram P , calculating a function f is said to be elegant if there is no other program
which both calculates f and is smaller (by source code characters) than P .

Using Lisp, Chaitin has produced a contradictory program elegantF inder
which is combined with the rules to some formal axiomatic system (FAS) FAS.
Say we wish to find the shortest expression F for a function f . We invoke
elegantF inder and FAS such that they enumerate all programs in size order
and test them each to see if they calculate f and are therefore F .

Once elegantF inder has found F , it runs F in order to obtain its value
and returns it. In doing this, we can see that elegantF inder also calculates f .
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This becomes paradoxical when we consider the relative sizes of the programs
involved. If F is smaller (in number of characters) than |elegantF inder|+|FAS|,
then our elegant program is F . However, if F is larger (possibly calculating a
very complex f), then because elegantF inder runs F once it has been found, it
turns out that elegantF inder is actually our elegant program for f !

The problem of finding a our elegant program F is quite convincingly un-
computable, however it also raises some related questions about the expressive
power of languages. Taking the size of interpreters/compilers into account, is
a function in a high-level language like Lisp any smaller than in a lower level
language like C, or even an Assembly-like language? Intuitively, we can see that
lower level languages or models require simpler ‘back end’ infrastructure to be
executed by the commonplace Von Neumann architecture, but is there a sweet
spot in the ratio of program complexity to interpreter complexity where we can
develop short programs and have them execute/compile quickly? And if there
is, can we deduce or prove where that spot is and develop an ‘elegant language’
to take advantage?

Elegance is undecidable. However, we hypothesise that by realising the same
computations in different models of computation, we can obtain heuristic infor-
mation that allows us to draw useful comparisons of elegance. Thus, this paper
discusses the implementation of the Busy Beaver game (BBG) in the Random
Access Stored Program (RASP) architecture – which is similar to the RAM
machine – and considers the size of the resulting search space and attempts to
navigate it. The BBG itself is a problem in which every solution is elegant (we
can phrase it as looking for the smallest machine to output a given integer), so
producing this problem in both representations will help give us the experimental
data that we need.

2 The Busy Beaver Game

The ‘Busy beaver game’, was formulated by Radó [8] in order to show an example
of a simple undecidable problem. It is the problem of defining an instance of a
Turing machine such that, when started on a blank tape it produces as much
output as possible before halting. The Turing machine is the canonical model
for exploring the busy beavers and it is what the majority of the hunters use due
to its well defined operations and the relative simplicity of instance generation.
When we limit our machines to a particular size of states – and symbols when
Brady extended his machine in 1988 [1] – we create a competition between
machine designers to find the ‘champion machine’ for that size. The ‘champion
machine’ for a class is defined as the machine which either produces the most
output or performs the highest number of shifts before halting, compared to
other machines of that class.

Radó formalises his game using n ‘state’ Turing machines and uses this as
a method of classifying the machines. He defines a valid entry into the BB-n
classification as a pair (M, s) where M is the Turing machine of n states and s
is the exact number of steps that M has run for before halting.
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There are two competitions in the BBG: The greatest number of shifts, and
the greatest number of non blank symbols left on the tape. We characterise the
shift number for a given machine as s, and the maximum shifts for a class as S.
Likewise, the non-blank symbols for an individual machine is σ and for a class,
we use Σ.

This method gives us an easy way to validate and score an entry, we simply
run M for s steps and – if the machine has halted – record the number of non
blank symbols on the tape. If the output is larger than the previous record, we
call M our new champion.

After Brady extended the game to machines with more than two symbols [7],
a new metric for classifying machines was used. Instead of Radós original BB-n
classification, we now classify a BBG entrant as a machine BB(n, k) which is a
Turing machine with n states and k symbols.

Present Landscape. At the time of writing, 4 classes of busy beaver machines
have had confirmed S and Σ scores with machines to match: BB(1,2), BB(2,2)
BB(3,2) and BB(4,2). Marxen and Buntrock [6] have established lower bounds
for BB(5,2) at S(5, 2) ≥ 47, 176, 870 and Σ(5, 2) ≥ 4098.

The father and son team of Terry and Shawn Ligocki have made progress in
exploring the space of machines with more than 2 symbols by using simulated
annealing techniques to obtain high scoring machines. They currently hold the
record for many of these classes.

Table 1, compiled by Pascal Michel [7] shows the current records for a few of
the classes as of June 2012.

Table 1. Currently known lower bounds of the explored classes.

Date Discoverer(s) Bounds

1963 Radó, Lin S(2, 2) = 6, Σ(2, 2) = 4
S(3, 2) = 21, Σ(3, 2) = 6

1964 Brady S(4, 2) = 107, Σ(4, 2) = 13

February 1990 Marxen, Buntrock S(5, 2) ≥ 47, 176, 870, Σ(5, 2) ≥ 4098

February 2005 T. and S. Ligocki S(2, 4) ≥ 40, 737, Σ(2, 4) ≥ 3, 932, 964

November 2007 T. and S. Ligocki S(3, 3) ≥ 119, 112, 334, 170, 342, 540, Σ(3, 3) ≥ 374, 676, 383
S(2, 5) > 1.9× 10704 ,Σ(2, 5) > 1.7× 10352

December 2007 T. and S. Ligocki S(3, 4) > 5.2× 1013036, Σ(3, 4) > 3.7× 106518

January 2008 T. and S. Ligocki S(4, 3) > 1× 1014072, Σ(4, 3) > 1.3× 107936

S(2, 6) > 2.4× 109866, Σ(2, 6) > 1.9× 104933

June 2010 Kropitz S(6, 2) > 7.4× 1036534, Σ(6, 2) > 3.4× 1018267

3 The Random Access Stored Program Model

The Random Access Stored Program (RASP) machine model from Elgot and
Robinson [4], is a computational model similar to the Random Access Memory
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(RAM) machine but with the distinction that the internal variables of the state
machine, as well as the program itself, is stored in memory along with the data.

This idea that the machine only has a single block of memory means that a
program can potentially read and write to any address in the memory – which
allows for programs which modify themselves while they are being executed. The

A RASP machine is arranged as an array M of size l, where each location
(or register) in M can hold a single natural number and each register is referred
to by a natural number address. The state machine uses the first 3 registers for
specific tasks – although that doesn’t prevent any external read/write operation
to take place. The top 3 registers of M are defined to be: the program counter
(PC), the instruction register (IR), and the accumulator (ACC). The PC contains
the memory address of the current instruction, the IR is used for decoding the
instruction, and the ACC is the register which the numerical instructions modify
and which is tested by the conditional instruction.

We can define the RASP machine to be either bounded or unbounded depend-
ing on how concrete we desire the instance of the model to be. An unbounded
RASP machine is of an arbitrary size and each register can hold a natural num-
ber of unbounded size. The bounded RASP is specified in n bits, the size of the
machine is set as 2n registers numbered 0 to 2n − 1, each register can also hold
a natural number x in the range 0 ≤ x < 2n.

An equivalent definition is as a pair (N,K), where N is the number of regis-
ters in the machine and K is the maximum integer that can be expressed. This
allows us to easily define RASP machines with unbounded registers which can
hold finite integers (∞,K), or finite registers which themselves are unbounded
(N,∞). For the rest of this paper – unless otherwise stated – RASP “n-bit
machines” will be of the form (2n, 2n − 1)

In the bounded RASP, over and underflow of a register is not treated as a
special case. For example, when the machine executes the final instruction in the
memory, the next increment of the PC (currently set to 2n − 1) will overflow it
to 0 and the running of the machine continues as normal.

RASP Instructions and Programs. A RASP machine program is a sequence
of natural numbers of length ≤ 2n − 3. When the machine is instantiated, the
top 3 registers are set to (3 0 0), which is a zeroed IR and ACC and the PC is
pointing to the first line of the program.

The execution of instructions by the machine follows the standard fetch-
decode-execute cycle:

1. Copy into the IR, the instruction contained in the memory location pointed
to by the contents of the PC.

2. Read the IR and decode which instruction the contents refer to.
(a) If the instruction is not recognised – halt.
(b) If the instruction takes a parameter – increment the PC and repeat step

1 to obtain it.
3. Execute the instruction.
4. Increment the PC, if the PC becomes equal to K – overflow to 0.
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The instructions that can be executed by the machine are listed below.

– HALT – Halt execution.
– INC – Increment the accumulator.
– DEC – Decrement the accumulator.
– LOAD c – Load the value c into the accumulator.
– STO m – Store the value of the accumulator in register m.
– JGZ m – Set the PC to the value m if the accumulator is greater than zero.
– OUT – print the character ‘1’.
– CPY m – Copy the contents of register m into the accumulator.

LOAD, STO, JGZ, and CPY also require an operand which is assumed to
be located in the proceeding memory location. In the case of these instructions,
another fetch is performed in order to retrieve the operand. If the RASP machine
attempts to interpret an integer which isn’t an instruction, it halts as if it has
executed the HALT instruction.

The state machine for the RASP machine uses a map to match an opcode
to one of the above instructions. This allows us to produce arbitrary injective
mappings between instructions and the natural numbers. The instruction set
mapping is defined as a map M : N 7→ INS where
INS = {HALT, INC,DEC,LOAD,STO,OUTJGZ,CPY }.

4 RASP as a Busy Beaver

In a RASP machine, the command ‘OUT’ can be thought of as printing a symbol
to an attached screen, or writing to a write-only output tape. This idea invites
us to draw comparisons between the σ and s functions for RASP and TMs. With
a RASP machine R, we define σ(R) to be the number of times ‘OUT’ has been
executed and s(R) as the number of fetch-decode-execute cycles that have been
performed in total. In addition to this, the number of bits we specify for the
bounded RASP machine defines natural classes of machines for the competition.

We define an entry into the BBG RASP (BB-R(n)) competition, as a pair
(P, IS) where P is the program of size n and IS is the instruction set mapping.

Observations on RASP Machines. In using this model to play the BBG, we
can make some observances on the nature of the machines which provide some
insight into how easy searching for the champion machines in a class will be.

Theorem 1. The halting problem for the bounded RASP machine is decidable.

Proof. Consider a bounded n-bit RASP machine M . We define the state of M to
be the entire memory at a particular time, and each fetch-decode-execute cycle
as a transition from one state to another. Since there is only a finite range of
values for a finite number of memory locations, we can calculate the maximum
number of possible states for any given machine numStates(n) = NN .
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Because each fetch-decode-execute cycle performs a transition between states
S → S′ we can run the machine for numStates(n) cycles before concluding that
for some state X which is entered during execution of the machine, there exists
a transitive closure over a relation R such that XR+X. From which we can
conclude that M will never halt. ⊓⊔

In practice, we rarely need to run a machine for numStates(n) steps before
we can work out if it halts or not. It suffices to store each visited state as it is
encountered and check the store for the new state after every state transition,
if we encounter the same state twice, a loop has occurred. Different instruction
set mappings behave differently; because RASP programs are simultaneously
programs and data – the machine can attempt to execute any part of the memory
as if it were all instructions, and it can read/write to any part of the memory as
if it were all data.

This means that the magnitude of the value which represents certain instruc-
tions can affect the s or σ value of the machines. As an example, consider tables
2 and 3.

The program in table 2 is the best program that can be found for the specified
instruction set. It has scores of S(3) ≥ 33 and Σ(3) ≥ 16. Table 3 is the champion
machine for BB − R(3) which was found through brute force searching of the
entire space of program/instruction set combinations and it presents with scores
of S(3) = 82 and Σ(3) = 47.
Table 2. The best 3-bit machine with the instruction set {0 7→ HALT, 1 7→ INC, 2 7→
DEC, 3 7→ LOAD, 4 7→ STO, 5 7→ OUT, 6 7→ JGZ, 7 7→ CPY }

Memory Ad-
dress(es)

Integer Instruction Label

0 3 :PC
1 0 :IR
2 0 :ACC

3 1 INC :start
4 5 OUT
5 5 OUT
6 6 JGZ
7 3 LOAD

The number of individual machines arising from these program/instruction
set combinations grows very quickly. The number of unique instruction sets for
a given n-bit machine is

∏

N−8<i≤N

i (1)

To calculate the number of programs, we recognise that the IR and ACC are
initialised to 0 and that the PC points to the first command in the program in
memory address 3. Since these are constant in the initial state of every program,
we need to calculate the number of possible base N numbers of length N − 3.

If we consider each register to contain a digit of the base N number, the
number of possible machines with a starting state of (3 0 0) comes to (2n)2

n−3.
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Table 3. The best 3-bit machine with the instruction set {0 7→ OUT, 1 7→ LOAD, 2 7→
DEC, 3 7→ INC, 4 7→ CPY, 5 7→ STO, 6 7→ HALT, 7 7→ JGZ}

Memory Ad-
dress(es)

Integer Instruction Label

0 3 :PC
1 0 :IR
2 0 :ACC

3 3 INC :start
4 3 INC
5 0 OUT
6 0 OUT
7 3 INC

Like the number of possible instruction sets, this number grows quickly. In-
deed, the space of machines becomes rapidly intractable for all but the smallest
machines (n < 4). Combining these two values demonstrates the intractability
of brute forcing a result. As an example, for 4 bit machines

(24)2
4−3 ×

∏

8<i≤16

i = 4, 503, 599, 627, 370, 496× 518, 918, 400

= 2, 337, 000, 712, 875, 693, 991, 526, 400 (2)

5 Searching for the Best

A parallelised version of the brute force algorithm was implemented to find the
champion machine for 3-bit machines which is shown in table 3. The brute force
algorithm generates all the possible instruction sets and dispatches even chunks
of these to the workers. Once a worker has determined their best machine, it
is returned to the master which determines the very best and returns it. This
works for finding the best 3-bit machine however is hopelessly inadequate in
tackling the sheer volume of cases which arises from using more than 3 bits. A
genetic algorithm (GA) [5] approach was therefore employed so that we can use
an informed search to explore the space of machines.

There are a myriad of methods with which to explore the space, however
we have observed that the search space tends to be very volatile. A neighbour
solution which differs by a single instruction or a slight change to the instruction
set mappings can produce very different results. As such (meta)heuristic methods
of searching the space – for instance, local search – were though to be too sensitive
to these changes. A more global search method was decided upon as genetic
algorithms. Simulated annealing – as employed by the Ligockis – would also
have been an acceptable alternative and experimentation with that method .

Overview of the Algorithm. The algorithm initialises a random pool of n-bit
machines fitting the constraints for RASP machines set out above and proceeds

66



to determine their fitness. The fitness function is the number of OUT commands
executed, but if the machine is shown not to halt (by using the loop detection
strategy mentioned after the above decidability proof) then the fitness of the
machine is defined to be 0.

Once the machines have all been executed, roulette selection [5] is performed
to select a group of machines to populate the next generation. The machines
not selected are removed from the pool, and the selected ones are preserved and
randomly crossed in order to produce new machines to fill the pool.

Crossing involves first picking two parents, then a method of reproduction –
crossing program only, instruction set only, or both. In the case of not crossing
both, a ‘dominant’ parent is randomly selected which is used to fill in the non-
crossed attribute of the machine by directly copying it into the machine.

The crossing itself is done by picking a point on the program or instruction set
– which are our chromosomes represented as a vector in memory – and combining
the left side of the chromosome from parent A (which is arbitrarily chosen) with
the right side of the chromosome from parent B. In the case of the instruction
set, if there is a duplicate entry such that the map is no longer injective then
substitute integers are randomly generated for the duplicates until the map is
injective again.

There is also a random chance of mutation to the instruction set or program
which will pick two values in the program or instruction set of the child machine
and swap their positions.

Parallelisation of the algorithm was through means of an ‘isolated island’
[5] approach where each processor in the computation has their own pool and
returns their best found machine to the master processor which sorts them and
returns the overall best of the computation.

For the 4 and 5 bit machines, the generation of high scoring machines was
helped along by seeding the pool with a previously found high scoring machine
at the pool initialisation stage. It became a good strategy to seed the current
champion so that the algorithm can attempt to improve on it.

Current Results. The parallel brute force algorithm calculating the best 3-bit
machine was benchmarked on a lightly loaded dual Intel Xeon E5506 machine
running at 2.13GHz. This setup provides 8 cores which were apportioned as 7
worker processors and a master.

The times (seconds) taken across 3 runs were 1740, 1743, and 1678 for an
average runtime of 1719 seconds. Each of these machines were executed for an
average of 5 fetch-execute cycles each. This is due to the loop detection system.
It appears that most RASP machines either halt or enter an infinite loop early –
which is similar to the findings of [2] whereby most programs either halt quickly
or loop forever. From a random sampling of 8,402,100,000 4 bit-machines, our
average number of fetch execution cycles is 1.8 which translates into around
305,045 machines per second.

This is a very rough approximation as the sample size is tiny compared to
the space. Given our calculated number of 4 bit machines in (2), we can see that
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this would take a long time - assuming 256 workers, it will take approximately
948 million years - which underlines our need for informed search methods.

Table 4. Current records for numbers of shifts and outputs.

Bits Instruction Set Results Comments

3 {6,3,2,1,5,0,7,4} S(3) = 82, Σ(3) = 47 Exact values found through brute
force searching.

4 {2,6,7,5,1,3,4,0} S(4) ≥ 2668, Σ(4) ≥ 1483 Genetic, Pool: 100000, Generations:
1000, Islands: 32

5 {7,1,0,2,4,3,6,5} S(5) ≥ 7540865, Σ(5) ≥ 5242881 Genetic, Pool: 100000, Generations:
500, Islands: 32

5 {4,7,1,3,5,2,6,0} S(5) ≥ 235652, Σ(5) ≥ 163846 This machine was constructed by
hand using 3 nested loops.

The experiment confirms that the number of machines grows very rapidly
with the size of the machine word The experiment also confirms that the largest
BBG solution found grows very rapidly with the size of machine word.

The best 5 bit RASP found by the GA (5,242,881) is 50 times better than
a good seed machine with 3 nested loops constructed by hand (163,846). From
inspection, the evolved machine makes considerable use of self-modification, with
programming constructs which are very hard to characterise succinctly.

6 Conclusions, Reflections and Further Work

We have introduced our RASP model variant and ported the BBG over to it.
From the current champions, we can see that they heavily leverage the ability of
RASP machines to self-modify in order to produce high shift and output counts.

The halting problem for the bounded RASP machine has been shown to
be decidable, but since both the size of the machine and the range of natural
numbers expressible by the machine double with each successive class; the space
of possible champions explodes. This renders exhaustive searching of all the
candidates too time consuming to consider so we produced a genetic algorithm
to perform an informed search for the champions.

The resulting GA has found and improved on candidates for the champion
machines in the 4 and 5 bit classes. However the current GA tends to be weak
with respect to the diversity of the gene pool. Thus, the current best machine
tends to dominate the pool within a few generations which leads to the GA only
attempting variations of this machine and mostly finding highly local optima.

Adapting the reproduction and mutation mechanics can allow for more diver-
sity (i.e. reproduction eliminates breeding parents after replenishing the pool).
The isolated island approach also unduly constrained the search procedure. Us-
ing a ‘true’ island approach, diversity can be introduced through migration of a
few best scoring machines to a limited number of adjacent processes.
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Aside from improvements to the GA, finding optimal BBG solutions for
RASP machines can benefit from methods of classifying high scoring or non-
halting machines. There may be distinguishing patterns of machines which can
augment a brute force approach by allowing us to discount large numbers of ma-
chines as being suboptimal or non-halting. The observation that a large number
of non-halting machines are shown to quickly enter loops implies there is a pat-
tern which we can discern and use to our advantage.

We now have BBG expressed in TMs and RASP machines, and parallel GA
machinery to explore both spaces. We have also implemented a Universal TM
and a RASP interpreter as both TMs and RASP machines. We next plan to
construct compilers from TM to RASP and from RASP to TM in both TM
and RASP. This will enable us to explore the comparative elegance of TM and
RASP programs, and Chaitin’s LISP programs, taking into account all layers of
language realisation down to the formal semantics in a common notation.

We would also like to use GA techniques to look for paradigmatic program-
ming patterns in high scoring RASP machines.
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Abstract. For a fixed augmented partially ordered set A, it is shown in
this paper that there exists a dual equivalence between the category of
A-spatial augmented partially ordered sets and the category of A-sober
A-valued spaces. Then, as its application, for a fixed (Z1,Z2)-complete
partially ordered set L, we have established a dual equivalence between
the category of L-spatial (Z1,Z2)-complete partially ordered sets and
the category of L-sober L-valued Q-spaces. Furthermore, some concrete
applications of the results to many familiar categories are given.
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1 Introduction

The classification of partially ordered sets referring to certain specified joins and
meets has been a major issue in various fields of order theory [6, 8, 10, 11, 19],
algebra [3, 17], computer science [1, 16, 21] and topology [7–10, 12]. There are
two main approaches to this classification. The first one involves the notion of
subset selection [6, 8–10], that is, a rule Z assigning to each partially ordered set
(poset for short) P a subset Z(P ) of the power set P(P ) of P , and is unified
under the framework of (Z1,Z2)-complete posets in [5]. Here the subset selection
generalizes the subset system, originally introduced by Wright et. al. [21]. For
a quadruple Q = (Z1,Z2,Z3,Z4) of subset selections Z1, Z2 and subset sys-
tems Z3, Z4, (Z1,Z2)-complete posets form a category QP of (Z1,Z2)-complete
posets. The second one, which is less popular than the first one, is proposed
by Banaschewski and Bruns [4]. Augmented posets play a key role in their ap-
proach, and constitute a category P. The adjunction T a Ψ : Pop →S between
the opposite Pop of P and the category S of spaces is one of the significant con-
tributions in [4], while the dual equivalence between the full subcategory SpaP
of P of all spatial objects and the full subcategory SobS of S of all sober objects
is another one. As a topological counterpart of QP, Q-spaces and their category
QS have been introduced in [5]. Furthermore, by establishing two full embed-
dings GQ : QP→P and HQ : QS →S, it is demonstrated in [5] that the latter is
category-theoretically more general approach than the former, while the former
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yields feasible results in applications. Despite the fact that both approaches pro-
vide useful and powerful tools to unify various kinds of generalized topological
spaces under the same framework, they are inadequate to handle the problems
related with the poset-valued analogous of generalized topological spaces which
result from the essence of fuzzy logic [15]. Representations of posets by poset-
valued base spaces, of complete lattices by lattice-valued closure spaces and of
directed-complete posets by lattice-valued algebraic closure spaces are exam-
ples of such problems. To overcome this shortcoming, we introduce poset-valued
spaces and poset-valued Q-spaces, and extend all central results of [4, 5] to the
present approach. More specifically, referring to a fixed augmented poset A and
a fixed (Z1,Z2)-complete poset L, we extend S and QS to the category A-S
of A-valued spaces and the category L-QS of L-valued Q-spaces, respectively.
As a generalization of T a Ψ : Pop →S, the adjunction AT a AΨ : Pop → A-
S is proven in Theorem 1. The dual equivalence between the full subcategory
of P of all A-spatial augmented posets and the full subcategory of A-S of all
A-sober A-spaces, given in Corollary 1, extends the dual equivalence between
SpaP and SobS to the A-valued spaces. The main result of [5] ([5, Theorem
2]) is re-formulated for L-valued Q-spaces in Theorem 3 consisting of a dual ad-
junction between the full subcategory L-QPs of QP of all L-Q-spatial objects
and L-QS, (Z1,Z2,Z1,Z2)P and L-(Z1,Z2,Z1,Z2)S and a dual equivalence be-
tween L-QPs and the full subcategory of L-QS of all L-Q-sober objects under
some reasonable assumptions on Z1, Z2 and Q. In order to show the useful-
ness of the presented results, we give their direct applications to some familiar
order-theoretic categories in Corollary 3.

2 Classification of Posets

2.1 Augmented Posets

An augmented poset is a triple A = (|A| , JA,MA), consisting of a poset |A|,
a subset JA of P(|A|) in which each member has the join in |A| and a subset
MA of P(|A|) in which each member has the meet in |A|. Augmented posets
together with structure preserving maps constitute a category P [4]. A structure
preserving map h : A→ B between the augmented posets A and B here means a
monotone map h : |A| → |B| such that h (S) ∈ JB and h (

∨
S) =

∨
h (S) for all

S ∈ JA, and h (R) ∈MB and h (
∧
R) =

∧
h (R) for all R ∈MA [4]. For each set

X and an augmented poset A, the X-th power of A is the augmented poset AX

such that
∣∣AX

∣∣ = |A|X , JAX is the set of subsets S ⊆ |A|X with the property

that the image of S under the x-th projection map πx : |A|X → |A| belongs
to JA for all x ∈ X, and analogously for MAX [4]. Due to the terminology of

Goguen [14], the elements of |A|X are called |A|-sets, generalizing fuzzy sets [22].

2.2 (Z1,Z2)-complete Posets

A subset selection Z [6, 8–10] is, by definition, a class-theoretic function sending
each poset P to a set Z (P ) of subsets of P whose elements are the so-called
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Z-sets of P . A subset selection Z is called a subset system [17, 21] if for each
monotone map f : P → Q, M ∈ Z (P ) implies f (M) ∈ Z (Q). It is said that
a subset selection Z preserves surjectivity if for each surjective monotone map
f : P → Q and for each M ∈ Z (Q), there exists at least one N ∈ Z (P ) such
that M = f (N). Throughout this paper, Z and Zi (i = 1, ..., 4) always stand for
subset selections if further assumptions are not made explicitly. In this paper,
as examples for the subset selections that are subset systems at the same time,
we only consider Z = V, F , D, Cn, P, where Z-sets of each poset P are no
subset of P , finite subsets of P , directed subsets of P , countable subsets of P
and all subsets of P , respectively. Note that all of them except D are surjectivity-
preserving.

A poset P is called Z-
∨

(
∧

)-complete iff each M ∈ Z (P ) has a join (meet)
in P [3, 8, 9, 17, 21]. A (Z1,Z2)-complete poset is defined to be a Z1-

∨
-complete

and Z2-
∧

-complete poset [5]. If we associate two subset selections Zsup and Z inf

to Z such that M ∈ Zsup(inf)(P ) iff M ∈ Z(P ) with
∨
M (

∧
M) in P , then P

is (Z1,Z2)-complete iff Z1(P ) = Zsup
1 (P ) and Z2(P ) = Z inf

2 (P ).
A monotone function f : P → Q is Z-

∨
-continuous iff for each M ∈ Zsup (P ),∨

f (M) = f (
∨
M), and is Z-

∧
-continuous iff for eachM ∈ Z inf (P ),

∧
f (M) =

f (
∧
M). A function, which is Z1-

∨
-continuous and Z2-

∧
-continuous simulta-

neously, is called (Z1,Z2)-continuous. Whenever Z3 and Z4 are taken as subset
systems, (Z1,Z2)-complete posets and (Z3,Z4)-continuous maps constitute a
category QP, where Q = (Z1,Z2,Z3,Z4) [5]. For the sake of shortness, any
occurrence of Q = (Z1,Z2,Z1,Z2) will be replaced by the pair (Z1,Z2) in this
paper, e.g. (Z1,Z2,Z1,Z2)P will be shortly written as (Z1,Z2)P. It is shown in
[5] that most of the familiar order-theoretic constructs can be expressed in the
form of QP. Now we give a few examples of QP that will be used subsequently,
and refer reader to [5] for many other examples and details.

Example 1. For Q = (V,V,V,V) (Q = (F ,F ,F ,F), Q = (P,F ,P,F), Q =(V,
P, V, P), Q = (F ,P,F ,P), Q = (D,P,D,P), Q = (P,P,P,P), Q =(Cn,
F , Cn, F), Q = (D,F ,D,F)), QP is known as the category Pos of posets and
monotone maps [2] (the category Blatt of bounded lattices and maps preserving
finite joins and and finite meets [4], the category SUP∧ of complete lattices and
maps preserving arbitrary joins and finite meets [13], the category MCPos of
complete lattices and maps preserving arbitrary meets [2], the category INF∨

of complete lattices and maps preserving arbitrary meets and finite joins [5], the
category INF↑ of complete lattices and maps preserving arbitrary meets and
directed joins [13], the category CLat of complete lattices and maps preserving
arbitrary meets and arbitrary joins [2], the category σComLat of σ-complete
lattices and maps preserving countable joins and finite meets [5], the category
QF of quasiframes and Scott-continuous functions preserving finite meets [11],
resp.).

Since the functor GQ : QP→P, defined by GQ (P ) =
(
P,Zsup

3 (P ) ,Z inf
4 (P )

)

and GQ(f) = f , is a full embedding [5], P can be interpreted as a category larger
than QP. Thus, the notion of augmented poset forms a more general approach
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than the notion of (Z1,Z2)-complete poset for the classification of posets via
their existing joins and existing meets.

3 Duality Between Augmented Posets and Poset-Valued
Spaces

3.1 Category of Poset-Valued Spaces

In the formulation of the categories of spaces [4] and of poset-valued spaces, for
a given function f : X → Y between the sets X and Y , and for a subset U (V )
of X (Y ), we denote by f→ (U) (f←(V )) the image (preimage)) of U (V ) under
f .

Proposition 1. Let A be an augmented poset. Each function f : X → Y induces
a P-morphism f←A : AY → AX , defined by f←A (µ) = µ ◦ f for each µ ∈ |A|Y .

A space is a quadruple W = (|W | ,O(W ), Σ(W ), ∆(W )), where |W | is a set,
O(W ) is a subset of P (|W |), Σ(W ) is a subset of {U ⊆ O(W ) | ⋃U ∈ O(W )}
and ∆(W ) is a subset of {V ⊆ O(W ) | ⋂V ∈ O(W )}. Spaces form a category
S [4] whose morphisms f : W1 → W2 are functions f : |W1| → |W2| satisfying
the conditions that (f←)

→
(O(W2)) ⊆ O(W1), (f←)

→
(U) ∈ Σ(W1) for each

U ∈ Σ(W2), and (f←)
→

(V) ∈ ∆(W1) for each V ∈ ∆(W2).
In the following considerations, we fix an augmented poset A, and extend the

category of spaces to the category of A-valued spaces.

Definition 1. The category A-S consists of the following information: Objects
are A-valued spaces (A-spaces for short), i.e. quadruples Z =(|Z|, OA(Z), ΣA(Z),

∆A(Z)), where |Z| is a set, OA(Z) is a subset of |A||Z|, ΣA(Z) is a set of sub-
sets U ⊆ OA(Z) such that U ∈ JA|Z| and

∨
U ∈ OA(Z), and ∆A(Z) is a set

of subsets V ⊆ OA(Z) such that V ∈ MA|Z| and
∧
V ∈ OA(Z), while mor-

phisms f : Z1 → Z2 are functions f : |Z1| → |Z2| satisfying the properties that
(f←A )

→
(OA(Z2)) ⊆ OA(Z1), (f←A )

→
(U) ∈ ΣA(Z1) for each U ∈ ΣA(Z2), and

(f←A )
→

(V) ∈ ∆A(Z1) for each V ∈ ∆A(Z2).

Remark 1. The category A-S can also be equivalently defined by means of the
category P of augmented posets as follows.

(i) A quadruple Z = (|Z| ,OA(Z), ΣA(Z), ∆A(Z)), consisting of a set |Z|, a

subset OA(Z) of |A||Z|, subsets ΣA(Z) and ∆A(Z) of P( |A||Z|), is an A-space
iff AT (Z) = (OA(Z), ΣA(Z), ∆A(Z)) is an augmented poset and the inclusion
map iAT (Z) : AT (Z) ↪→ A|Z| is a P-morphism.

(ii) For two A-spaces Z1, Z2 and a map f : |Z1| → |Z2|, f : Z1 → Z2 is
an A-S-morphism iff the restriction of the P-morphism f←A : A|Z2| → A|Z1| to
AT (Z2) yields a P-morphism (f←A )|AT (Z2)

: AT (Z2)→ AT (Z1).

The following proposition shows that S is a special case of A-S.

Proposition 2. For 2P = (2,P (2) ,P (2)), 2P-S is isomorphic to S.
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Proof. Given a set X, U ⊆ P (X) and Φ ⊆ P(P (X)), let Uc denote the set of
characteristic functions χV : X → 2 of all V ∈ U, and Φ∗ = {Uc | U ∈Φ}. Then,
the functor F : S → 2P-S, defined by F (W ) = (|W | ,O(W )c, Σ(W )∗, ∆(W )∗)
for each W ∈ Ob (S), and F (f) = f for each f ∈ Mor(S), is an isomorphism,
proving the claim.

3.2 Relations Between A-S and Pop

In this subsection, our aim is to extend the adjunction T a Ψ : Pop →S to an
adjunction AT a AΨ : Pop → A-S, and then to refine the latter adjunction to
an equivalence, involving the notions of A-spatiality and A-sobriety.

Proposition 3. The map AT : A-S →Pop, sending each A-S-morphism f :
Z1 → Z1 to (f←A )

op
|AT (Z2)

: AT (Z1)→ AT (Z2), is a functor.

Proof. The assertion can be easily seen from Remark 1.

Lemma 1. Let B be an augmented poset. For each a ∈ |B|, let us define the
map Ψa : P(B,A) → |A|, h 7→ h(a). Then, AΨ(B), where |AΨ(B)| =P(B,A),
OA(AΨ(B)) = {Ψa | a ∈ |B|}, ΣA(AΨ(B)) and ∆A(AΨ(B)) are the sets of all
sets {Ψa | a ∈ S} such that S ∈ JB, respectively S ∈MB, is an A-space.

Proof. It is clear that OA(AΨ(B)) ⊆ |A|P(B,A)
. For each U ∈ ΣA(AΨ(B)),

there exists S ∈ JB such that U = {Ψa | a ∈ S}. By considering the defi-
nitions of JAP(B,A) and Ψa, one can easily observe that U ∈ JAP(B,A) and∨
U =

∨
a∈S

Ψa = Ψ∨
S ∈ OA(AΨ(B)); therefore ΣA(AΨ(B)) is a subset of

{
U ⊆ OA(AΨ(B)) | U ∈ JA|AΨ(B)| and

∨
U ∈ OA(AΨ(B))

}
, and analogously for

∆A(AΨ(B)). Thus, AΨ(B)) is an A-space.

Proposition 4. The map AΨ : Pop → A-S, defined by

AΨ
(
B1

u→ B2

)
= AΨ(B1)

AΨ(u)→ AΨ(B2),

where [AΨ(u)] (h) = h ◦ uop for all h ∈ |AΨ(B1)|, is a functor.

Proof. Lemma 1 shows that AΨ defines a function from Ob(Pop) to Ob(A-

S). Given each Pop-morphism B1
u→ B2, one can easily prove that AΨ(u) :

AΨ(B1) → AΨ(B2) is an A-S-morphism. AΨ obviously preserves composition
and the identities. Hence, AΨ is a functor.

Theorem 1. AT a AΨ : Pop → A-S.

Proof. For each A-space W , define the map ηW : |W | →P(AT (W ), A) by
[ηW (x)] (h) = h(x) for all x ∈ |W |, h ∈ |AT (W )|. Then, it is easy to see that
ηW : W → AΨ(AT (W )) is an A-S-morphism. Moreover, ηW is the W -th compo-
nent of a natural transformation η : idA-S → AΨAT . On the other hand, we may
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also consider another natural transformation ε : ATAΨ → idPop whose each B-
th component is the opposite of the P-morphism εopB : B → AT (AΨ(B)), defined
by εopB (a) = Ψa for each a ∈ |B|. It is not difficult to verify that the following
adjunction identities hold for each B ∈ Ob(P) and W ∈ Ob(A-S):

AΨ(εB) ◦ ηAΨ(B) = idAΨ(B) and εAT (W ) ◦AT (ηW ) = idAT (W ).

Thus, (η, ε) : AT a AΨ : Pop → A-S is an adjoint situation, and so the assertion
follows.

Definition 2. (i) An augmented poset B is A-spatial iff the P-morphism εopB :
B → AT (AΨ(B)), defined in Theorem 1, is an isomorphism in P.

(ii) An A-space W is A-sober iff the A-S-morphism ηW : W → AΨ(AT (W )),
defined in Theorem 1, is an isomorphism in A-S.

Corollary 1. Let A-SpaP be the full subcategory of P of all A-spatial aug-
mented posets, and A-SobS be the full subcategory of A-S of all A-sober A-
spaces. Then, the restrictions of AΨ and AT to A-SpaPop and A-SobS induce
equivalences AΨs : A-SpaPop → A-SobS and ATs : A-SobS → A-SpaPop.

Proof. The equivalences in question follow from Theorem 1 and [4, Lemma 1].

Without going into detail, it is worthwhile to mention here that 2P-SpaP is
the same as the full subcategory SpaP of P of all spatial augmented posets in
[4], whereas 2P-SobS coincides with the full subcategory SobS of S of all sober
spaces in [4]. Thus, the dual equivalences between SpaP and SobS proven in
[4, Proposition 2] are instances of Corollary 1. We conclude this section with the
final remark that the co-domain of AT lies in A-SpaPop, while the co-domain
of AΨ lies in A-SobS.

4 Poset-Valued Q-spaces

Definition 3. [5] The category QS consists of the following data: Objects are
Q-spaces (X, τ), that is, X is a set and τ is a subset of P (X) with the property
that τ is a (Z1,Z2)-complete poset ordered by set inclusion, and the inclusion
map iτ : τ ↪→ P (X) is (Z3,Z4)-continuous. Morphisms f : (X, τ) → (Y, ν) are
functions f : X → Y such that (f←)

→
(ν) ⊆ τ .

As a natural poset-valued extension of QS, we introduce, for an arbitrarily
fixed (Z1,Z2)-complete poset L, the category L-QS of L-valued Q-spaces, and
point out in this section that L-QS can be fully embedded into GQ(L)-S. For this
purpose, all components of Q are from now on assumed to be subset systems.
Another important fact is that each function f : X → Y gives rise to a QP-
morphism f←L : LY → LX , defined by f←L (µ) = µ ◦ f for each µ ∈ LY .

Definition 4. The category L-QS comprises the following items: Objects are L-
valued Q-spaces, or shortly L-Q-spaces (X, τ), i.e. X is a set and τ is a subset
of LX such that τ is a (Z1,Z2)-complete poset equipped with the order inherited
from LX , and the inclusion map iτ : τ ↪→ LX is (Z3,Z4)-continuous. Morphisms
f : (X, τ)→ (Y, ν) are functions f : X → Y such that (f←L )

→
(ν) ⊆ τ .
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In a similar way to Proposition 2, one can easily observe that 2-QS is iso-
morphic to QS. The category L-QS enables us to formulate the categories of
poset-valued extensions of various notions of spaces:

Example 2. (1) For a poset L and Q = (V,V,V,V), L-QS, denoted by L-BS, is
an extension of the category BS of base spaces, extensively studied in [10].

(2) For a bounded lattice L (i.e. L is a lattice with the top and bottom
elements) and Q = (F ,F ,F ,F), L-QS, denoted by L-BlatBS, is an extension
of the full subcategory BlatBS of BS in [5].

(3) For a complete lattice L and Q = (P,F ,P,F), L-QS, denoted by L-Top,
is an extension of the category Top of topological spaces [2], and is also known
as the category of L-topological spaces [20].

(4) For a complete lattice L and Q = (V,P,V,P), L-QS, denoted by L-CSp,
is an extension of the category CSp of closure spaces [12].

(5) For a complete lattice L and Q = (F ,P,F ,P), L-QS, denoted by L-
TCSp, is an extension of the category TCSp of topological closure spaces [12].

(6) For a complete lattice L and Q = (D,P,D,P), L-QS, denoted by L-
ACSp, is an extension of the category ACSp of algebraic closure spaces [12].

(7) For a complete lattice L and Q = (P,P,P,P), L-QS, denoted by L-
ATSp, is an extension of the category ATSp of Alexandroff-discrete spaces
[12].

(8) For a σ-complete lattice L (i.e. L is a poset with countable joins and finite
meets) and Q = (Cn,F , Cn,F), L-QS, denoted by L-Alex, is an extension of
the category Alex of Alexandroff spaces [4, 5].

(9) For a quasiframe L [11] (i.e. L is a poset with directed joins and finite
meets ) and Q = (D,F ,D,F), L-QS, denoted by L-PreTop, is an extension of
the category PreTop of pretopological spaces [11].

The functor HQ : QS →S, defined by

HQ (X, τ) =
(
X, τ,Zsup

3 (τ) ,Z inf
4 (τ)

)
and HQ(f) = f ,

is a full embedding [5]. We now extend this result to L-Q-spaces.

Lemma 2. Let X be a set, and let τ be a subset of LX such that τ is a (Z1,Z2)-
complete poset equipped with the order inherited from LX . Then, (X, τ) is an
L-Q-space iff LHQ (X, τ) =

(
X, τ,Zsup

3 (τ) ,Z inf
4 (τ)

)
is a GQ(L)-space.

Proof. Let (X, τ) be an L-Q-space. GQ(L)T (LHQ (X, τ)) is obviously an aug-
mented poset. On the other hand, since iτ : τ ↪→ LX is a QP-morphism,
GQ (iτ ) : GQ (τ) → GQ

(
LX
)

is a P-morphism. Furthermore, we easily see

that the identity map idLX on LX is a P-morphism GQ
(
LX
)
→ GQ (L)

X
. Thus

iτ = idLX ◦GQ (iτ ) : GQ(τ)→ GQ (L)
X

is a P-morphism. Then it follows from
Remark 1 (i) that LHQ (X, τ) is a GQ(L)-space. Conversely, suppose LHQ (X, τ)

is a GQ(L)-space. Then, iτ : GQ(τ) → GQ (L)
X

is a P-morphism by Remark
1 (i). To see that (X, τ) is an L-Q-space, it is enough to confirm that the in-
clusion map iτ : τ ↪→ LX is (Z3,Z4)-continuous. For each M ∈ Zsup

3 (τ), since
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iτ : GQ(τ) → GQ (L)
X

is a P-morphism, we have iτ (
∨
M) =

∨
iτ (M), i.e. iτ

is Z3-
∨

-continuous. Z4-
∧

-continuity of iτ is similar.

Theorem 2. The functor LHQ : L-QS → GQ(L)-S, defined by

LHQ
(

(X, τ)
f→ (Y, ν)

)
= LHQ (X, τ)

f→ LHQ (Y, ν) ,

is a full embedding.

Proof. We have from Lemma 2 that LHQ sends each L-QS-object to a GQ(L)-

S-object. Furthermore, each L-QS-morphism (X, τ)
f→ (Y, ν) yields a GQ(L)-

S-morphism LHQ (X, τ)
f→ LHQ (Y, ν). Because LHQ clearly preserves compo-

sition and the identities, LHQ : L-QS → GQ(L)-S will be, indeed, a functor.
The property of LHQ being a full embedding is easily seen from the definition
of LHQ.

5 Relations Between L-QS and QPop

In this section, with regard to the adjunction AT a AΨ : Pop → A-S, we will
establish an adjunction between L-QS and QPop, and then restrict it to an
equivalence by introducing suitable definitions of spatiality in QP and sobriety
in L-QS. We begin with some preliminaries.

Proposition 5. [5] For categories A, B, a full subcategory A′ of A and a full
subcategory B′ of B, if F a G : A → B is an adjoint pair of functors with the
property that for all X ∈ Ob (A′) and for all Y ∈ Ob (B′),

G(X) ∈ Ob (B′) and F (Y ) ∈ Ob (A′) (1)

then the restriction F ′ of F to B′and the restriction G′ of G to A′ form an
adjoint pair of functors F ′ a G′ : A′ → B′.

Corollary 2. [5] Under the considerations in Proposition 5, if G : A → B and
F :B→A are equivalences inverse to each other and satisfy (1), then G′ : A′ →
B′ and F ′ :B′ →A′ are equivalences inverse to each other.

Lemma 3. Let P(Q) and S(L,Q) stand for the image of QP under GQ and the
image of L-QS under LHQ, respectively. Then, the functor GQ(L)T : GQ(L)-S
→Pop assigns to each S(L,Q)-object a P(Q)-object.

Proof. Since each S(L,Q)-object W possesses the property that OGQ(L)(W ) is
a (Z1,Z2)-complete poset and GQ(L)T (W ) = GQ(OGQ(L)(W )), it is clear from
the definition of P(Q) that GQ(L)T (W ) is a P(Q)-object.

Lemma 4. Let Z1 and Z2 preserve surjectivity. Then, the functor G(Z1,Z2)(L)Ψ
maps each P(Z1,Z2)-object to an S(L,Z1,Z2)-object.
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Proof. The proof can be done by using analogous arguments to those in the
proof of [5, Lemma 6], so it is omitted here.

Lemma 5. Let P(L,Q)s denote the full subcategory of P(Q) of all GQ(L)-
spatial objects. Then GQ(L)Ψ maps each P(L,Q)s-object to an S(L,Q)-object.

Proof. The required result can be verified in a similar fashion to [5, Lemma 8].

Definition 5. Let P be a (Z1,Z2)-complete poset, and (X, τ) an L-Q-space.
(i) P is L-Q-spatial iff GQ(P ) is GQ(L)-spatial.
(ii) (X, τ) is L-Q-sober iff LHQ(X, τ) is GQ(L)-sober.

Theorem 3. Let L-QPs be the full subcategory of QP of all L-Q-spatial objects,
and L-QSs be the full subcategory of L-QS of all L-Q-sober objects. Then the
following statements are true:

(i) There is a pair of adjoint functors LTQ a LΨQ : L-QPop
s → L-QS.

(ii) L-QPs is dually equivalent to L-QSs.
(iii) If Z1 and Z2 are surjectivity-preserving, then there is a pair of adjoint

functors LT(Z1,Z2) a LΨ(Z1,Z2) : (Z1,Z2)Pop → L-(Z1,Z2)S.

Proof. (i) To prove the assertion, we apply Proposition 5, and choose F a G :
A → B therein as GQ(L)T a GQ(L)Ψ : Pop → GQ(L)-S. By considering the
fact that the co-domain of GQ(L)T lies in P(L,Q)ops , and using Lemma 3 and
Lemma 5, we observe that the condition (1) in Proposition 5 is satisfied for
A′ =P(L,Q)ops and B′ =S(L,Q). Thus the adjunction in question follows from
Proposition 5 and the fact that P(L,Q)s and S(L,Q) are, respectively, isomor-
phic to L-QPs and L-QS.

(ii) is an application of Corollary 2 to the equivalences GQ(L)Ψs : GQ(L)-
SpaPop → GQ(L)-SobS and GQ(L)Ts : GQ(L)-SobS→ GQ(L)-SpaPop. By
making use of the isomorphism between P(L,Q)s and L-QPs, the full subcate-
gory of S(L,Q) of all GQ(L)-sober spaces and L-QSs, the required equivalence
follows from Lemma 3 and Lemma 5.

(iii) Firstly, pick F a G : A → B as G(Z1,Z2)(L)T a G(Z1,Z2)(L)Ψ : Pop →
G(Z1,Z2)(L)-S, A′ =P(Z1,Z2)op and B′ =S(L,Z1,Z2) in Proposition 5. Then,
since (Z1,Z2)P and L-(Z1,Z2)S are, respectively, isomorphic to P(Z1,Z2) and
S(L,Z1,Z2), we obtain the questioned pair of adjoint functors from Proposition
5 by making use of Lemma 3 and Lemma 4.

Theorem 3 is an extension of the main result of [5] ([5, Theorem 2]) to the
poset-valued Q-spaces, and has direct applications to many familiar categories
of ordered-structures. We gather some (but not all) of them in the following final
result.

Corollary 3. Let L be an object of Pos (Blatt, SUP∧, MCPos, INF∨,
INF↑, CLat, σComLat and QF). Then, there are dual adjunctions between
Pos and L-BS, Blatt and L-BlatBS, SUP∧ and L-Top, MCPos and L-CSp,
INF∨ and L-TCSp, L-INF↑s and L-ACSp, CLat and L-ATSp, σComLat
and L-Alex, L-QFs and L-PreTop. Furthermore, there are dual equivalences
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between L-Poss and L-BSs, L-Blatts and L-BlatBSs, L-SUP∧s and L-Tops,
L-MCPoss and L-CSps, L-INF∨s and L-TCSps, L-INF↑s and L-ACSps, L-
CLats and L-ATSps, L-σComLats and L-Alexs, L-QFs and L-PreTops.
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Abstract. We present an extension of conjunctive grammars to allow stochastic parsing. By extending
the CYK parsing algorithm and applying labelled training data, we use these stochastic conjunctive
grammars to predict RNA secondary structures that include pseudoknots. We design specific grammars
to predict H-type pseudoknots and obtain 74 % sensitivity and 89 % specificity with a grammar with
133 non-terminals and 552 productions in binary normal form.

1 Introduction

The secondary structure of a single strand of RNA is formed when the nucleotides in the strand bind together
and form base pairs, which causes the RNA strand to fold on itself. This folded structure is referred to as
the secondary structure of the RNA strand. An example of RNA secondary structure is seen in Figure 1.
The secondary structure of RNA is important for several types of RNA strands, including ribosomal RNA
and RNA viruses [3, 20].

Fig. 1: This structure is known as a hairpin. The thick black line is the backbone of the RNA and the dotted
lines are the bonds in the secondary structure.

In this paper, we are interested in the prediction of secondary structure of RNA which includes pseu-
doknots. A pseudoknot is a non-nested secondary structure, where bonds form between bases in positions i
and k, as well as between positions j and `, where i < j < k < `. See Figure 2 for an example of a type of

? Research supported in part by a grant from NSERC.
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pseudoknot. Predicting RNA secondary structure, given only the linear sequence of nucleotides of the strand,
is a well-studied problem in bioinformatics. Prediction of RNA secondary structure including pseudoknots
has been shown to be NP-hard [1]. However, by restricting allowable solutions to secondary structures that
do not contain pseudoknots, the computational complexity of RNA secondary structure prediction can be
accomplished in cubic time [12, 24].

Fig. 2: This pseudoknotted structure is known as a kissing hairpin. This structure represents a pseudoknot
as the bonds between the two loops form a non-nested structure.

In this paper, we use grammars to predict the pseudoknotted secondary structure of RNA. Grammars
work by rewriting non-terminals symbols using a set of productions. By assigning probabilities to each pro-
duction, stochastic grammars can be trained to predict the most probable structure for an RNA sequence.
We develop and train stochastic grammars to solve the problem, which is a form of machine learning [2]
previously used for prediction of RNA secondary structure without pseudoknots and other problems in bioin-
formatics [7, 18, 4, 19, 9]. We also note that different grammatical models have been pursued for pseudoknot
RNA secondary structure prediction [22, 17, 5, 13, 11, 10, 16]. Some of these models are more complex than
what we propose here, while others lack a stochastic element which allows them to be employed as machine
learning tools.

The grammars we develop in this paper are stochastic versions of conjunctive grammars [14, 15]. We
obtain fast, accurate results for our grammars, including a 133 non-terminal, 552 production stochastic
conjunctive grammar able to predict H-type pseudoknots with 74 % sensitivity and 89 % specificity. The
H-type pseudoknot is the most common type of pseudoknot and is made up of a combination of two hairpins
as seen in Figure 3.

2 Stochastic Conjunctive Grammars

While stochastic context-free grammars have been successfully employed to predict pseudoknot-free sec-
ondary structure [18, 6], a more powerful grammar is needed to predict pseudoknotted secondary structure.
We introduce a class of grammars called Stochastic Conjunctive Grammars (SCGs). A SCG G is a five-tuple
G = (Σ,N,P, Φ, S) where

– Σ is the set of terminal symbols.
– N is the set of non-terminal symbols.
– P is the set of productions for the grammar. The productions are written as A→ α1 & . . . & αn where
n ≥ 1 and αi ∈ (Σ ∪N)

∗
,

– Φ : P → [0, 1]. Φ associates a probability to each production. For each A ∈ N , let PA ⊆ P be the set of
all productions with A on the left-hand side; then Φ must satisfy

∑
r∈PA

Φ(r) = 1 for all A ∈ N .
– S ∈ N is the start symbol.
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Fig. 3: An example of how a H-type pseudoknot is a combination of two hairpins.

SCGs are an extension of conjunctive grammars (CGs), introduced by Okhotin [14]. For a recent survey
of conjunctive grammars and the related class of Boolean grammars, see Okhotin [15]. Esik and Kuich [8]
previously considered fuzzy conjunctive and Boolean grammars, which are similar to the stochastic version
of conjunctive grammars. The work of Brown and Wilson [4], which considers intersections of stochastic
context-free grammars, is a particular case of our work. We note that the current formulation allows for
recursive definitions involving conjunction, which is not possible with a finite intersection of context-free
grammars.

The & symbol denotes conjunction or intersection which is a unique component of CGs and SCGs. In
SCGs, A→ α1&. . .&αn means A is rewritten by (α1&. . .&αn) and that all derivations by αi must lead to the
same terminal word or the entire derivation is unsuccessful. If at any point two conjuncts being intersected
are not the same sequence of terminal symbols then the whole derivation is invalid; see Okhotin [15] for more
details. In addition to the derivation process, in an SCG, the probability associated with a production must
be used to calculate the current probability of the entire derivation.

Consider the following SCG.

– Σ = {b, c}
– N = {S, A, B, C}
– S ∈ N is the start symbol.

The productions of the SCG, along with the probability associated with each, are

S → A&BC (p = 1)
A→ cA (p = .45)
A→ bA (p = .45)
A→ ε (p = .1)
B → bB (p = .75)
B → ε (p = .25)
C → cB (p = .75)
C → ε (p = .25)

(1)
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Consider a derivation with this grammar. The current probability of the sentential form is specified after
each step of the derivation.

S
⇒ A&BC (p = 1)
⇒ bA&BC (p = .45)
⇒ bbA&BC (p = .2025)
⇒ bbbA&BC (p = .091125)
⇒ bbbcA&BC (p = .04100625)
⇒ bbbccA&BC (p = .01845281)
⇒ bbbcc&BC (p = .00184528)
⇒ bbbcc&bBC (p = .00138396)
⇒ bbbcc&bbBC (p = .00103797)
⇒ bbbcc&bbbBC (p = .00077848)
⇒ bbbcc&bbbC (p = .00019462)
⇒ bbbcc&bbbcC (p = .00014596)
⇒ bbbcc&bbbccC (p = .00010947)
⇒ bbbcc&bbbcc (p = .00002737)
⇒ bbbcc (p = .00002737)

(2)

Whenever a non-terminal is rewritten, the probability of the derivation is multiplied by the probability
of the new production being used. Since a probability is assigned to the whole production, when simplifying
the & symbol the probability is not affected (i.e., when going from the second last to last step the probability
remains at .00002737). The final sequence is bbbcc and the probability of the generating this sequence with this
derivation is .00002737. Note that other derivations of this same sequence may also have nonzero probabilities.
To deal with the issue of multiplying probabilities, which can lead to underflow, log odds are used: the
logarithms of the probabilities are used and are summed instead of being multiplied. Log odds are negative
numbers, where a lower value corresponds to a smaller probability.

b bb c cS

A

A

A

A

A

ɛ

B

ɛ

B

B

C

C

ɛ

A

CB

Fig. 4: This parse tree is a representation of the derivation in Equation 2, with probabilities omitted. The
children of the diamond shaped node will each represent a different conjunct.

83



Parse trees can be used to represent CG or SCG derivations (an example of a CG parse tree is seen in
Figure 4). The only difference between a stochastic parse tree and a non-stochastic parse tree is that there
is a probability assigned to the tree once the parse is finished. For a CG parse tree there are some additional
rules that are added so that the parse trees can handle more than one conjunct. It is important when there
is more than one conjunct that the leaf nodes are used in the same order for each conjunct. If the leaf nodes
are not used in the same order it would be a representation of an invalid derivation.

2.1 Parsing Algorithm

We give a version of the standard CYK algorithm for SCGs. Previously, Okhotin [14] has given a version
of the CYK algorithm for conjunctive grammars. As usual, the version of the CYK algorithm for SCGs
will only work on grammars that are in binary normal form; a grammar is in binary normal form if all
productions have the form of A→ B1C1&B2C2& . . .&BmCm or A→ a. All CGs are able to be transformed
into binary normal form as shown by Okhotin [14]. Since the productions of SCGs are the same as CGs, the
transformation will work for SCGs.

We have adapted the CYK algorithm for conjunctive grammars [14] to SCGs. Let x1 · · ·xn be the input
sequence. Equation (3) gives the recurrence for γ(i, j, v), which is the most likely probability of any parse of
v ⇒∗ xi · · ·xj . Equation (4) gives the set required information to trace the most probable parse. For more
information on the CYK algorithm derived from these recurrences, see Zier-Vogel [23]. As we have designed
our grammars by hand, without probabilities, we are not required to convert SCGs to a binary normal form;
training will then assign probabilities to these productions.

γ(i, j, v) = max
v→α∈Pv

∑

v→BC∈α
max

1≤k≤j−1
{γ(i, k, B) + γ(k + 1, j, C) + Φ(v → BC)} (3)

τ(i, j, v) =

{ ⋃

v→BC∈α
(B,C, k)|γ(i, j, v) =

∑

v→BC∈α
max

1≤k≤j−1
{γ(i, k, B) + γ(k + 1, j, C) + Φ(v → BC)}

}
(4)

3 Training Method

We tested our grammars using all the RNA pseudoknotted sequences in the pseudoBase++ database [21].
The database has 304 pseudoknotted RNA sequences with known secondary structures. However, we focused
on predicting H-type pseudoknots, the most common type of pseudoknot, with 236 out of 304 RNA sequences
in pseudoBase++ having only this type of pseudoknot. These grammars were designed based on statistics
about 235 of the 236 H-type pseudoknots (one sequence was excluded because it did not fit the standard
pattern for a H-type pseudoknot). The statistics that were gathered were parts of a hairpin structure. We
called these parts prefix, stem, loop and suffix (an example can be seen in Figure 3). These grammars yielded
much better results than a general grammar to predict RNA pseudoknotted secondary structure.

All pseudoknot-prediction SCGs were trained to assign probabilities to the individual productions. For all
productions with a nonterminal A on the left-hand side, the probability assigned to a particular production
A→ α1& · · ·&αn is the count of the number of times that this production is used in any training data divided
by the total number of times that productions with A on the left-hand side are used in any training data. To
calculate when a production is used, labelled training data was required, which gives a sequence-structure
pair. An example of labelled training data can be seen in Figure 5.

The algorithms for training will take a sequence and its structure and split it into two parts (an example
is seen in Figure 6). The importance of splitting the sequence and structure into both the round and square
brackets representing the non-nested pseudoknot structure is due to the grammars predicting the square and
round brackets independently through separate conjuncts in the SCG. For more information on training of
probabilities in the SCG, please see Zier-Vogel [23].
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UAGGGGGGUCAGGGUCAGGAGCCCCCCCCUGAACCCAGGAUAACCCUCACUGUCGGGGGGCA

:::::::::::((((((((:[[[[[[[)))):))))::::::::::::::::::]]]]]]]:

Fig. 5: Sample of labelled training data, from the pseudoBase++ database [21], sequence id PKB78. The
top sequence is the RNA strand and the sequence at the bottom represents its structure. A pair of brackets
represents a base pair in the structure. Different types of brackets are needed to denote non-nested structures.
The colons represent unpaired nucleotides.

UAGGGGGGUCAGGGUCAGGAGCCCCCCCCUGAACCCAGGAUAACCCUCACUGUCGGGGGGCA

:::::::::::((((((((::::::::)))):))))::::::::::::::::::::::::::

UAGGGGGGUCAGGGUCAGGAGCCCCCCCCUGAACCCAGGAUAACCCUCACUGUCGGGGGGCA

::::::::::::::::::::[[[[[[[:::::::::::::::::::::::::::]]]]]]]:

Fig. 6: The RNA sequence in Figure 5, split into two. The top two lines are the sequence and structure only
for the round brackets and the other uses the square brackets.

4 Grammars

We considered three distinct grammars for RNA secondary structure prediction with pseudoknots. Each
of these grammars was designed based on our desired structures: the productions were given to reflect the
idealized secondary structure, and then converted to binary normal form. Training then assigned probabilities
to the productions.

4.1 Secondary Structure Prediction with Grammars

An example of a CG parse tree for RNA secondary structure can be seen in Figure 7. We associate the
secondary structure of a parsed RNA strand as follows: for any production of the form X → a1Y a2, where
a1, a2 are nucleotides, we consider a1 and a2 bonded in the secondary structure. Note how the top tree in
Figure 7 only generates stems on the round brackets and the bottom tree generates the square brackets.
When both of these structures are combined it will generate an H-type pseudoknot. Since the structure is
pseudoknotted it will have non-nested brackets; these non-nested brackets will be represented by different
bracket types, either a round bracket or a square bracket. Note how the two trees in Figure 7 generate stems
in distinct spots.

In order to predict the secondary structure of a sequence, it is provided as input to the CYK algorithm
for SCGs. The most likely parse structure is then interpreted as a secondary structure, as above.

4.2 General pseudoknot grammar

The first grammar that we developed was designed to predict any type of pseudoknots in a strand. The
grammar was designed with productions for separately predicting two distinct nested structures, which were
then interleaved (through conjunction) to give a non-nested pseudoknot structure.

The sensitivity of this grammar was on average 0.248 and specificity was 0.8. The structures often
predicted by this grammar would have the round and square brackets in the same position, which is counted
as a misprediction, leading to the low sensitivity. The specificity was high because the positions with the
double bracket prediction did align with either a square or round bracket, which means the grammar rarely
predicted a bracket where there was not one. As seen in Figure 8 both set of brackets are aligned with the
square brackets in the actual structure.
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Fig. 7: This parse tree will start at S. The tree above and below the sequence will generate distinct nested
structures. Internal nodes have labels, corresponding to nonterminals, which have been removed for clarity.

Sequence GGGGUGCGACUCCCCCGUCUAUCCUGAACGUCAUCAGGACCA

Actual ...............(((...[[[[[[)))...]]]]]]...

Predicted round :::::::::::::::::::::((((((::::::)))))):::

Predicted square :::::::::::::::::::::[[[[[[::::::]]]]]]:::

Misses xxx xxxxxxxxx xxxxxx

Fig. 8: Sample of output of a prediction by the first grammar, sequence id PKB13 on pseudoBase++. The
top sequence is the RNA strand, the next sequence is to the actual structure of the pseudoknot. The third
sequence is how the algorithm predicted the round brackets and the last sequence is the algorithm’s prediction
of the square brackets.
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4.3 H-type grammar

To solve the problem of double bracket prediction, we developed a grammar that, unlike the first grammar,
would be built to only predict one type of pseudoknot, called an H-type pseudoknot (see Figure 3 for an
example of an H-type pseudoknot). As the H-type is the most common type (77% of pseudoknots in pseu-
doBase++ are H-type), we chose to construct a grammar which can predict H-type pseudoknots exclusively.
Out of the 236 H-type pseudoknots we excluded one (sequence and structure given in Figure 9); all other
H-type pseudoknots will follow a pattern of open round brackets, then open square brackets, then close round
brackets and finally close square brackets.

CCUCCCGGGAGA~ACUGCCUGAUAGGGUGCUUGCGAGUGCCCCGGGAGGUCUCGUAG

(((((((((((.~.))(((......)))((.[[[[[[.))))))))))).]]]]]].

Fig. 9: Excluded H-type pseudoknot. Its structure differs significantly from other H-types (ID PKB181).

The next grammar was made to model the structure of the H-type pseudoknot. Counts were gathered
about the structure of H-type pseudoknots. Since an H-type is constructed from two interconnected hairpins
the structural elements that were counted are prefix, suffix and stem from each hairpin. An example of how
two hairpins make a H-type and what is meant by prefix, suffix and stem are seen in Figure 3.

All 235 RNA sequences were used to give information on prefix, suffix, stem and loop length. The statistics
that were collected were minimums, maximums, averages and in general the counts of how many sequences
are of a certain length. These statistics were collected for the four structures prefix, stem, loop and suffix,
as well as for the sequences themselves.

We incorporated this information into a new grammar with 117 non-terminals and 436 productions in
binary normal form. In particular, the minimum length of prefixes, suffixes and stems were incorporated into
chains of productions to enforce these minimum lengths. For details on the grammar, see Zier-Vogel [23].

A sample of 117 sequences were chosen at random and the training algorithm was run on those sequences.
Then the trained grammar was tested on the remaining 118 sequences. These steps were done 100 times and
then the average sensitivity and specificity across all 100 iterations was calculated. The average sensitivity
was 0.743 and the average specificity of 0.895.

4.4 Improved H-type grammar

The previous grammar omitted information on the loop structure, i.e., the sequence of unpaired nucleotides
that is formed when base pairs form a stem. When the information about loop length is added, the grammar
will increase the number of non-terminals to 133 and the number of productions to 552; see Zier-Vogel [23]
for the complete grammar. A sample of 117 sequences were chosen at random and the training algorithm was
run for those sequences. Then the trained grammar was tested on the remaining 118 sequences. These step
were done 100 times and then the average sensitivity and specificity across all 100 iterations was calculated.
The average sensitivity was 0.754 and the average specificity of 0.891.

This last grammar also has on average 25 sequences out of 117 that are predicted 100% correctly. The
H-type prediction grammar without loop information will get an average of 18 sequences 100% correct and
the first grammar will get an average of 3 sequences 100% correct.

The last grammar for predicting H-type pseudoknots also has a much higher sensitivity when it is pre-
dicting sequences that have length less than 60, after which point the sensitivity drops off. This is not seen
for specificity which is consistently high independently of the length of sequences. These statistics can be
seen in Figure 10. Since the average length of a H-type sequence is about 40, the lowered sensitivity after
length 60 does not affect too many of the sequences.
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(a) Sensitivity (b) Specificity

Fig. 10: (a) A break down of average sensitivity for 100 tests based on various length sequences. (b) A break
down of an average specificity for 100 tests based on various length sequences.

5 Discussion

Our prediction algorithm relies on the CYK algorithm, which has a time complexity of O(n3m) and space
complexity of O(n2m) where n is the length of a sequence and m is the number of non-terminals in the
grammar. Previous grammar based predictors, for example, the pair stochastic tree adjoining grammar
designed by [13], had more intensive run-times. For instance, the pair stochastic tree adjoining algorithm
has a running time of O(n5).

Even though the model of Matsui et al. [13] has a higher sensitivity, our algorithm performs our predictions
faster. Also, the model of Matsui et al. [13] does not have the versatility of being able to predict all H-types
sequences but can only make predictions based on phylogenetic family.

6 Conclusions and Future Work

In this paper we extended the class of CGs to SCGs. This extension allows SCGs to be used for machine
learning in bioinformatics. We also provided a generalized CYK algorithm for SCGs.

We also designed grammars that were able to predict RNA pseudoknotted secondary structure. We were
unable to build a grammar that was able to predict all types of pseudoknots successfully. However, when
we focused the predictions to only H-type pseudoknots, the grammars were very successful with an average
sensitivity of over 75% and an average specificity of over 89%. It may be difficult to extend our grammar
to other pseudoknot types as there are few training examples. Currently, pseudoBase++ lists just over 70
non-H-type pseudoknotted sequences.

As well, it would be interesting to find other kinds of problems that this class of grammars can be applied
to in bioinformatics, including possibly RNA-RNA interaction prediction, which was previously considered
by Kato et al. [10].
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Abstract. A new point of view of Symmetric Monoidal Comprehen-
sions is introduced to give an analogous interpretation about how some
subrecursive function classes can be categorically constructed. It is given,
in particular, a general setting to perform subrecursive hierarchies like
the known as Grzegorzcyk Hierarchy. That is done by constructing a
category intended to emulate safe recursion and composition.

Keywords: Symmetric monoidal Comprehension, Grzegorzcyk Hierar-
chy, Safe recursion, Applicative structure, Kripke model.

1 Introduction

J. Otto in [10] suggests a close relation between Kripke structures and com-
position of functions in the sense of S. J. Bellantoni and J. Cook [1]. He gives
a characterization of the first three levels of Grzegorzcyk Hierarchy by using
symmetric monoidal 2- and 3-Comprehensions.

Based on results of M. Wirz [11] and S. J. Bellantoni and S.J. Niggl [2]
and generalizing concepts of J. Otto, we give in [4] a categorical counterpart of
generalized safe composition and safe recursion. A new categorical setting was
defined in order to characterize the subrecursive classes belonging to (the whole)
Grzegorzcyk Hierarchy. This was achieved by means of coercion functors over
a symmetric monoidal category endowed with certain recursion schemes that
imitate the known as bounded recursion scheme.

We summarize those concepts in Section 2 and remite the reader to [4] for de-
tails. In that section a diferent point of view of subrecursion, and of Grzegorzcyk
Hierarchy in particular, is given. By considering Kripke applicative structures we
introduce in Section 3 a general setting for subrecursion which is specialized (as
a Kripke model) to the Grzegorzcyk Hierarchy in Section 4. It can be of interest
because of the fact that Kripke models are more readable for non experts in
Category Theory and because they have been developed more extensively than
categorical comprehensions. In section 5 we show how a cartesian category that
contains a general instance of safe recursion and safe composition in categorical
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terms can be defined. It is called in that section a safe semantic category. Sec-
tion 6 exposes briefly a summary of the results presented and future research
directions starting from it.

2 Categorical characterization of Grzegorzcyk hierarchy

Definition 1. We denote by n the (symmetric monoidal) category whose set of
objects is n = {0, 1, . . . , n− 1} and whose arrows, denoted by mi,j with 0 ≤ i ≤
j < n, are those unique mi,j : i −→ j.

Definition 2. Let be for 0 ≤ k < n− 1 functors id : n −→ n, Tk : n −→ n and
Gk : n −→ n such that for all j ∈ n:

id(j) = j Tk(j) =

{
j + 1 if j = k
j if j 6= k

Gk(j) =

{
j − 1 if j = k + 1
j if j 6= k + 1

We will refer to Tk and Gk as coercion functors.

Definition 3. Let εk : Gk =⇒ id and ηk : id =⇒ Tk (0 ≤ k ≤ n − 2) be such
that

εk(i) =

{
mi,i if i 6= k + 1
mi−1,i if i = k + 1

ηk(i) =

{
mi,i if i 6= k
mi,i+1 if i = k

for i = 0, ..., n− 1.

We say that, given a symmetric monoidal category (SM category in the
sequel3) C = (C,⊗,>, a, l, σ), a tuple (C,

〈
T Ck
〉
,
〈
GCk
〉
,
〈
ηCk
〉
,
〈
εCk
〉
) is a model of

(n, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉) if T Ck , GCk , ηCk and εCk satisfy the same commutative
diagrams than Tk, Gk, ηk and εk (0 ≤ k < n− 1).

Definition 4. A SM n-Comprehension is a tuple (C,
〈
T Ck
〉
,
〈
GCk
〉
,
〈
ηCk
〉
,
〈
εCk
〉
)

(0 ≤ k < n− 1) where

1. C is a SM category;

2. for every k such that 0 ≤ k < n − 1 the functors T Ck , G
C
k : C −→ C are SM

functors;

3. for every k such that 0 ≤ k < n−1 the natural transformations ηCk : id =⇒ T Ck
and εCk : GCk =⇒ id are SM transformations;

4. (C,
〈
T Ck
〉
,
〈
GCk
〉
,
〈
ηCk
〉
,
〈
εCk
〉
) is a model of (n, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉).

Definition 5. We define doctrines An as those whose objects are SM n-Compre-
hensions (C, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉) with 0 ≤ k ≤ n− 2

3 Concepts are taken from [6] and [10].
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– endowed with a diagram (named initial diagram) > 0−→ N0
s−→ N0 in C

such that
T0(> 0−→ N0

s−→ N0) = > 1>−→ > 1>−→ >
where, if we define recursively for each i = 1, 2, ..., n− 2 the objects Ni by

N1 = G0N0 Ni+1 = GiNi

we have for each i = 0, 1, ..., n− 2 and j = 0, 1, ..., n− 1

TiNj =





> if i = j = 0

Ni−1 if i = j 6= 0

Nj other

GiNj =

{
Ni+1 if i = j

Nj other

– closed under
• flat recursion: for all g : X −→ Y and h : N0⊗X −→ Y where T0X and
T0Y are isomorphic to > there exists a unique morphism f : N0⊗X −→
Y in C such that the following diagram commutes

>⊗X 0⊗X //

g◦l
((RRRRRRRRRRRRRRR N0 ⊗X
f

��

N0 ⊗X

h
uulllllllllllllll

s⊗Xoo

Y

• safe ramified recursion on each level k: for all k = 0, 1, ..., n − 2 and
for all morphisms g : X −→ Y and h : Y −→ Y where Tk+1...T0Y is
isomorphic to > there exists a unique f : Nk+1 ⊗ X −→ Y in C such
that the following diagram commutes

>⊗X 0⊗X //

l

��

Nk+1 ⊗X s⊗X //

f

��

Nk+1 ⊗X
f

��
X g

// Y
h

// Y

– for all cartesian object4 in n-Comprehensions (C,
〈
T Ck
〉
,
〈
GCk
〉
,
〈
ηCk
〉
,
〈
εCk
〉
)

it is also closed under safe dependent recursion in each level k: for all k =
0, 1, ..., n− 2 and all morphisms g : X −→ Y and h : (Nk+1⊗X)⊗Y −→ Y
where Tk...T0Y is isomorphic to > and X and Y are cartesian objects there
exists a unique f : Nk+1 ⊗ X −→ Y in C such that the following diagram
commutes

>⊗X
0k+1⊗X //

(0k+1⊗X),g◦l ))TTTTTTTTTTTTTTT Nk+1 ⊗X
sk+1⊗X //

id,f

��

Nk+1 ⊗X
f

��
(Nk+1 ⊗X)⊗ Y

h
// Y

4 We call cartesian objects in An the objects in the form
n−1⊗
i=0

Nαi
i .
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Example 1. We consider Set as a SM category (actually a cartesian SM with
the tensor product given by (×, 1)).

– let be the sets Nk = {(k, n)/n ∈ N} with k = 0, 1, ..., n− 1;
– we denote every pair (k, n) by nk;
– let be sk(nk) = (n + 1)k for k = 0, ..., n − 2 and nk ∈ Nk the successor

function in Nk;
– let Tk be the endofunctor in Set defined by

TkX =





∅ if k = 0 and X = (0, n) with n ∈ N
1 if k = 0 and X = N0

(k − 1, n) if k 6= 0 and X = (k, n) with n ∈ N
Nk−1 if k 6= 0 and X = Nk
TkY ⊗ TkZ if X = Y ⊗ Z
X other

– analogously we can define an endofunctor Gk by

GkX =





(k + 1, n) if X = (k, n) with n ∈ N
Nk+1 if X = Nk
GkY ⊗GkZ if X = Y ⊗ Z
X other

– let ηk : Gk ⇒ id and εk : id⇒ Tk be natural transformations;

– an initial diagram in Set given by 1
0−→ N0

s−→ N0;

According to the Definition 5 we have all the equations making

(Set, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉)

a SM n-Comprehension.

Proposition 1. The An doctrine is endowed with an initial SM n-Comprehen-
sion

(J n, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉).
We abbreviate it as J n.

Definition 6. Let Γ : J n −→ Set be defined by ΓX = J n(>, X) and Γf =
f ◦ −.5

Proposition 2. The image of the objects Nk by the functor Γ are sets whose
elements have the form ΓNk = {stdkn/n ∈ N} where stdk : N −→ ΓNk is
defined by the scheme

{
stdk0 = 0k

stdk(sn) = sk(stdkn)
with k = 0, 1, ..., n− 1

5 This is a special case of the know as global sections functor.
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Corollary 1. ΓNk = Nk for all k = 0, 1, ..., n− 1.

Definition 7. The binary functions sequence Fj for j ∈ N is recursively defined
as:

F0(x, y) = y + 1
F1(x, y) = x+ y

F2(x, y) = (x+ 1)(y + 1)

and the scheme
{

Fn+1(0, y) = Fn(y + 1, y + 1)
Fn+1(x+ 1, y) = Fn+1(x, Fn+ 1(x, y))

for n > 1. ([5, p. 28])

Definition 8. We will say that a function class X is closed respect to the oper-
ation of bounded recursion if, given three functions g, h, j ∈ X, every function
f satisfying the three following conditions




f(u, 0) = g(u)
f(u, x+ 1) = h(u, x, f(u, x))
f(u, x) ≤ j(u, x)

belongs to X. ([5, p. 14])

Definition 9. The Grzegorzcyk Hierarchy is the sequence of classes En of nu-
meric functions, where En is the smallest class such that:

1. it includes successor, first and second projections and Fn(x, y) as initial func-
tions and

2. is closed under the operations of substitution and bounded recursion. ([5, p.
29])

We denote by Kn the initial doctrine J n with the difference that we don’t allow
any action of a functor Tk over a morphism of it. We also denote by Gn the
functions set {Γf : Nαn−1 −→ Nn−1/α ∈ N, f ∈ Kn}.

The following Theorem is the main result of [4, p. 97].

Theorem 1. [Categorical Characterization of Grzegorzcyk Hierarchy]

En = Gn for all n ≥ 3

3 Kripke structures for Grzegorzcyk Hierarchy

The Kripke applicative structures defined by J. Mitchell and E. Moggi [9] gen-
eralize the structures defined by S. Kripke in [7] for the intuitionistic logic.

Definition 10. A Kripke applicative structure A is a tuple
〈
(W,≤), {Aσw}, {Appσ,τw }, {iσw,w′}

〉

where
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– (W,≤) is a partially ordered set of possible worlds;6

– {Aσw} is a family of sets indexed by types and worlds w ∈W ;
– {Appσ,τw } is a family of application functions Appσ,τw : Aσ→τw × Aσw −→ Aτw

indexed by pairs of types σ and τ and worlds w ∈W ;
– {iσw,w′} is a family of transition functions iσw,w′ : Aσw −→ Aσw′ indexed by

types σ and worlds w ≤ w′.
Under the following conditions:

1. the transition function iσw,w : Aσw −→ Aσw is the identity;
2. transition functions compose in the following way iσw′,w′′ ◦ iσw,w′ = iσw,w′′ for

each worlds w ≤ w′ ≤ w′′;7
3. application and transition functions commute in the following sense

iτw,w′(App
σ,τ
w (f, a)) = Appσ,τw′ ((iσ→τw,w′f), (iσw,w′a))

for each f ∈ Aσ→τw and for each a ∈ Aσw what can be expressed by the
following commutative diagram

Aσ→τw′ ×Aσw′
Appσ,τ

w′ // Aτw′

Aσ→τw ×Aσw
Appσ,τw

//

iσ→τ
w,w′×i

σ

OO

Aτw

iτ
w,w′

OO

An analogous definition of a Kripke applicative structure could be given by
taking directly a cartesian category where sets Aσw are the (indexed) objects
over a partial ordered set seen itself as a category with a unique arrow between
every pair of objects expressing the partial order. In that case, which we don’t
develope here, App would be (indexed) arrows of the former category. Related
to the indexing point of view we have the following concepts.

From a Kripke applicative structure A we can define for all type σ a functor

φσ : W −→ Set

given by φσ(w) = Aσw and φσ(lw,w′) = iσw,w′ for each lw,w′ : w −→ w′ such that
w ≤ w′. The conditions making a functor out of φσ for each type σ are satisfied
by conditions 1. and 2. in the definition of Kripke applicative structure.

Definition 11. A global element a of type σ in a Kripke applicative structure
A is an assignation w 7→ aw from worlds to elements such that aw ∈ Aσw and
when w ≤ w′ then iσw,w′aw = aw′ .

6 It can be seen as a category whose objects are the elements of W and its morphisms
lw,w′ for all w,w′ ∈W such that w ≤ w′.

7 From this we know that there is exactly one transition function from Aσw to Aσw′ for
all w ≤ w′.
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Proposition 3. Every global element a of type σ → τ induces a natural trans-
formation from φσ to φτ given by Appσ,τw (aw, ·).
Definition 12. We will say that a Kripke applicative structure is extensional
if for every f, g ∈ Aσ→τw such that (iσ→τw,w′f)(a) = (iσ→τw,w′g)(a) with w′ ≥ w and
a ∈ Aσw we have f = g.

Definition 13. A Kripke applicative structure is a Kripke model if it is exten-
sional and there are no empty types.

4 The Grzegorzcyk Hierarchy by a Kripke model

From the doctrine structure An given in Definition 5 it can be observed that
what we are actually constructing is a Kripke (model) structure. It is developed
in the following.

The type system we will make use of, and that we will denote as ST because
of its similarity with known as Simple Type Theory, is specified as follows:

Definition 14. Let be a type system consisting of:

1. natural numbers α as 1-types where
(a) if α = 0 we have N0

k = >;
(b) if α = 1 we have sets N1

k = Nk;

(c) if α = j + 1 we have sets N j+1
k = Nk ⊗N j

k , para 0 < j.
2. function types are those in the form α→ β where α and β are 1-types giving

rise to an object Nα→β
k subset of (Nβ

k )N
α
k .

We are now going to give our main exemple of the functions a Kripke ap-
plicative structure like ours can give rise to. If we take W = n as defined above,
we can construct a Kripke applicative structure.

〈
n, {Nα

k }, {Appα,βk }, {iαk,j}
〉

which we will denote by RECn.
We now give a description of some elements belonging to the (set-theoretic

point of view of) Kn have an interpretation in our Kripke applicative structure
RECn:

objects: objects are Nαk with 1-type α and world k where worlds correspond to
the different levels;8

functional objects: objects in the form Nα→βk where α and β are 1-types giving

rise to a subset of (Nβk)N
α
k , el conjunto of the morfisms f : Nαk −→ Nβk in Kn;

transition functions: transition functions i1m,j : Nm −→ Nj are the composite
functors Gj−1...Gm in the SM n-Comprehension (J n, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉)
for worlds m ≤ j ≤ n − 1. We then also have for α a 1-type, iαm,j as the

functor i1m,j applied to Nα
m, remember that functors Gk preserve ⊗;

8 Those defined in [4] as levels of some object N , relating to the work of D. Leivant
in [8], to an arbitrary tensor power α; they correspond to the Definition 5.
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1-type global elements: a 1-type global element α in RECn is an assignation
φα from n to RECn such that φα(0) is a vector with α components belonging
to Nα0 and for 0 < k < n− 1 we have9

φα(k + 1) = iαk,k+1(φα(k));

functional global elements: a function type global element α → β in RECn
is an assignation φα→β from n to RECn such that φα→β(0) is a function in

the set (Nβ0 )N
α
0 and for 0 < k < n− 1 we have10

φα→β(k + 1) = iα→βk,k+1(φα→β(k));

general transitions: functors iα→βk,j with k ≤ j in (J n, 〈Tk〉 , 〈Gk〉 , 〈ηk〉 , 〈εk〉)
send functions in the form fk : Nαk −→ Nβk to functions in the form11

fj : Nαj −→ Nβj ;

extensionality: RECn is extensional since for all f, g ∈ Nα→βk such that

(iα→βk,j f)(n) = (iα→βk,j g)(n)

with n − 1 ≥ j ≥ k and n ∈ Nα
k we have necessarily f = g. This is be-

cause what we get in Nαj are copies of the functions in Nαk making grow the
argument levels as it is explained in [4];

recursive operator: every Nα→βk+1 with α and β 1-types contains, for every X =

Nαk+1, Y = Nβk+1, g ∈ Nα→β
k and h ∈ N(α+β+1)→β

k , a unique f ∈ N1+α→β
k+1

such that the following diagram commutes

>⊗X
0k+1⊗X //

(0k+1⊗X),g′◦l ))TTTTTTTTTTTTTTT Nk+1 ⊗X
sk+1⊗X //

id,f

��

Nk+1 ⊗X
f

��
(Nk+1 ⊗X)⊗ Y

h′
// Y

where g′ = iα→βk,k+1(g) and h′ = i
(α+β+1)→β
k,k+1 (h).

It is important to note here that the chosen of the type theory from which
we build up the applicative structure is crucial for the kind of functions we get.
For exemple, consider that the above recursive diagram for RECn could not be
defined from the types available in ST .

We see that RECn contains all functions belonging to E0, . . . , En−1 in the
Grzegorzcyk Hierarchy and moreover

⋃
n∈NRECn will then contain all primitive

recursive functions.
9 In our case, and considering the initial SM n-Comprehension, each vector in Nα

0

gives rise to a global element.
10 Functions belonging to the first Grzegorzcyk Hierarchy class E0 are function type

global elements and they also live in all successive En for n > 0.
11 fj is obtained by appliying the functor i1k,j to the function fk.
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Proposition 4. RECn is a Kripke model for every n ∈ N.

Definition 15. Let φα : n −→ Set be the functor given by φα(k) = Nαk and
φα(mk,j) = iαk,j for every mk,j : k −→ j such that k, j ∈ n with k ≤ j.

5 Safe semantic categories

Instead of J. Mitchell and E. Moggi [9] given two types α and β such that α 6= β

we can ensure that the sets in RECn in the form Nα
k and Nβ

k with k ∈ n belong-
ing to the initial SM n-Comprehension J n are different (although isomorphic).
In this way the cartesian closed category generated by the Kripke applicative
structure RECn, that we will denote by CRECn in the following definition, can
be constructed from its presheaves and not uniquely from its types (see [9, page
15]).

Definition 16. Let CRECn be the category whose objects are functors φα in Setn

from Definition 15 for each α ∈ N and whose morphisms are natural transfor-
mations between those functors.

In this way we are considering a subcategory of Setn where the objects in
CRECn generate all sets in RECn. Natural transformations in the form φα −→ φβ
are generated from every arrow mk,j : k −→ j in n by commutative squares

φα(k) //

φα(mk,j)

��

φβ(k)

φβ(mk,j)

��
φα(j) // φβ(j)

(1)

As pointed out in [9], CRECn is cartesian if RECn has products and a terminal
object and for every natural number α there exists a unique functor ϕα in CRECn .

Particularly, and looking beyond J n, in CRECn it is formalized a way to
perform safe recursion and safe composition: its objects are copies of powers of
N, it can be endowed with a certain safe recursive operator as the one given in
Section 4 and it is endowed with coercion functors ϕα(mk,j).

From Proposition 3 we observe that every global element f of type α → β
induces a natural transformation in the form

Appα,β(f, ·) : φα −→ φβ

giving Appα,βk (f,Nα
k ) for a set Nα

k in RECn where we supose k to be the domain
and codomain world of f . That is, by fixing the first variable in App we are
producing assignations in the form Nα

k −→ Nβ
k for every world k in n and f

having functional type α→ β in the world k. Natural components of Appα,β(f, ·)
are then arrows in Set in the form

Appα,βk (f,Nα
k ) : φα(k) −→ φβ(k)
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and therefore arrows Nαk −→ Nβk .

The naturality condition for Appα,βk (f, ·) expresses safe composition. That is

due to the fact that in it an expression of every morphism f ∈ Nα→β
j in RECn

is obtained in terms of other morphisms where the variables belong to the world
j. An output belonging to a world j, in general, does not depend on inputs
belonging to worlds lower than j.

That is, elements and concepts in CRECn gather the semantics of safety and
therefore it can be viewed as a safe semantic category for a certain Kripke
applicative structures.

6 Conclusion and future work

The content of this talk is the initial point of a further study to get a full
description of subrecursive function classes from Kripke models. For that purpose
one could get rid of comprehension structures as defined here to work just with
a Kripke applicative structure endowed with certain recursion schemes. It would
make extensive use of the categorical concept of presheaf. This line is currently
being developed.
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Abstract. We discuss a technique to reduce search space in proposi-
tional Intuitionistic logic. Our technique is a syntactical criterion based
on the sign property and can be used by any kind of calculus.

1 Introduction

In this paper we continue our investigations to speed-up proof search in propo-
sitional Intuitionistic logic (Int). In [3] we have introduced a calculus that ad-
vances the well-known calculus of [8], in [5] we have identified conditions allowing
one to replace propositional variables with logical constants and an implementa-
tion of these achievements is the prover fCube [4]. In the cited papers the focus
is on the rules or on the logical apparatus as a whole and the strategy using the
calculus is not considered. In this note we introduce a criterion applicable to any
strategy to reduce the non-determinism in Int proof search. To sake of concrete-
ness, we present our results applied to a specific tableau calculus. However, it
will be clear that our results can be applied to any tableau or sequent calculus.

Every step of a deduction has multiple choices and if the proof search fails,
then every step is a point where to backtrack because the order of application of
the rules is relevant, that is, not permutable. However, there is a special kind of
rules that does not require to backtrack, because if a rule of this kind is used and
a proof is not found, then no proof exists. This kind of rules is called invertible:
the lack of a proof for the conclusion of an invertible rule implies the lack of a
proof for the premise. The order of application of invertible rules is irrelevant:
different permutations of their application always brings to the same result. On
the other hand, the non-invertible rules require to backtrack: the lack of a proof
for the conclusion of a non-invertible rule does not imply the lack of a proof for
the premise. The application of non-invertible rules is not permutable, because
different permutations of their applications produce different results. Thus, if in
a step of a deduction a non-invertible rule R is applied and subsequenty to this
step no proof is not found, then a different application of R or the application of
a different rule could bring to find a proof. Note that such application is useless
if we already know that it does not bring to find a proof.

Thus, it is useful to find strategies to reduce as much as possible the appli-
cation of non-invertible rules, because this shrinks the search space for a proof.
The aim of this paper is to present a criterion to get this goal. This work can be
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∆,T(A ∧ B)

∆,TA,TB
T∧

∆,T(A ∨ B)

∆,TA | ∆,TB
T∨

∆,TA,T(A → B)

∆,TA,TB
MP

∆,T((A ∧ B) → C)

∆,T(A → (B → C))
T→∧

∆,T((A ∨ B) → C)

∆,T(A → C),T(B → C)
T→∨

∆,F(A1 ∨ A2)

∆,FAi

F∨i, i ∈ {1, 2}

∆,F(A ∧ B)

∆,FA | ∆,FB
F∧

∆,F(A → B)

∆,TA,FB
F→

∆,T((A → B) → C)

∆T,TA,FB,T(B → C) |∆,TC
T→→ where ∆T = {TA | TA ∈ ∆}

Fig. 1. The calculus

seen as an extension of [2] where the syntax of sequent calculus LJQ gives rise to
a strategy allowing to avoid some backtracking steps. The criterion we present
is strictly related to our previous investigations in [5]. For this reason, after the
preliminaries, we first describe a logical rule that generalizes the permanence
rules of [5]. The application of our rule is subjected to a syntactical condition
which subsumes the syntactical condition for the permanence rules of [5]. We
use this syntactical condition to design a decision procedure that under some
syntactical conditions avoids the application of non-invertible rules. The main
work is to prove that the decision procedure is complete, a result that we show
by exploiting the model theoretic characterization of Int by means of Kripke
models.

2 Preliminaries

We consider the propositional language L based on a denumerable set of propo-
sitional variables PV, the logical connectives ∧, ∨,→ and the logical constants >
and ⊥. We refer to [1,6,7] for details about Int and tableau systems. For sake of
concreteness we consider the terminating calculus in Figure 1 whose rules handle
signed formulas, namely formulas of L prefixed with one of the well-known signs
T or F. The satisfiability of a signed formula H in a world α of a Kripke model
K is defined as follows: α realizes H in K (K,α�H) iff: (i) H ≡ TA and α  A;
(ii) H ≡ FA and α 1 A. A model K realizes H (K �H) iff K,α�H for some
α ∈ P ; a formula H is realizable iff K �H for some Kripke model K .
When possible, in the following sections we will omit notation and we write:
α �H and α �∆ in place of K ,α �H and K ,α �∆ when it is clear from the
context to which model the realizability relation refers to.

The tableau calculus of Figure 1 is adapted from the calculus presented in [9].
Our aim is to consider a simple tableau calculus to decide Int, whose deductions
are always finite. Thus, differently from [9], calculus in Figure 1 does not handle
negation and only employs the signs T and F. Calculus of Figure 1 has also
similarities with Fitting’s tableau calculus [6]. In the rules of the calculus we
distinguish the premise, the set of formulas above the line and the consequence,
the set(s) of formulas below the line that we call conclusion(s), separated by a
vertical line when the consequence of the rule contains two conclusions. In the
premise, the main formula of the premise is the formula whose connectives are in
evidence, the other formulas are the minor formulas of the premise. The formulas
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in evidence in a conclusion are the main formulas of the conclusion. We say that
a rule applies to a set of formulas Γ , if the premise of the rule can be instantiated
with Γ . We implicitly always consider duplication-free instantiations, that is after
the instantiation of the premise of a rule, the main formula premise does not
occur in ∆ (that is, it does not occur as minor formula premise). Given a non-
atomic signed formula H, we denote with Rule(H) the name of the rule whose
main formula premise can be instantiated with H. A set Γ of signed formulas is
inconsistent if {TA,FA} ∈ Γ or T⊥ ∈ Γ and Γ is consistent in the other cases.
A tableau for a formula A is a tree obtained from the root {FA} by subsequently
instantiating the premise of a rule with consistent leaves. If all the leaves of a
tableau are inconsistent, then we say that the tableau is closed, the tableau is a
proof for A and A is provable.
The rules in Figure 1 are sound: the realizability of the premise implies that
there exists a conclusion which is realizable. It is easy to prove that calculus
in Figure 1 is also complete for Int: for every formula A, A is provable iff FA
is not realizable. To decide the provability of A it is sufficient to search for a
closed tableau. An obvious algorithm tries to build a proof for A by applying the
rules in all possible ways. This simple method can be improved by noticing that
some rules are invertible: the realizability of one of the sets in the conclusion
implies the realizability of the premise. Thus backtracking is not required when
an invertible rule is applied. This is a well-known strategy, also employed in [6,9].
We remark that such a strategy based on the calculi in Figure 1 and in [9] is
terminating. In the following sections we aim to show that further restrictions
to the search space of proofs are possible. Thus it should be possible to reduce
the backtrack and preserve the completeness.
Our first result is a generalization of the permanence rules introduced in [5]
to reduce the search space. When a propositional variable p fulfills a syntactic
constraint, the permanence rules allow to deduce a set where all the occurrences
of p are replaced with a logical constant. The syntactic constraint is defined
in terms of positive and negative occurrence of a propositional variable p in a
signed formula H by the relations p�+H (p positively occurs in H) and p�−H
(p negatively occurs in H). Hereafter we use S to denote either T or F. The
definition of p�lH, with l ∈ {+,−}, is by induction on the structure of H:
(i) p�−Fp and p�+ Tp; (ii) p�l S> and p�l S⊥; (iii) p�l Sq, where q is any
propositional variable such that q 6= p; (iv) p�l S(A�B) iff p�l SA and p�l SB,
where � ∈ {∧,∨}; (v) p�l F(A→ B) iff p�lTA and p�l FB; (v) p�lT(A→ B)
iff p�l FA and p�lTB. Given a set ∆ of signed formulas, p�l∆ iff for every
H ∈ ∆, p�lH. In paper [5] it is proved that permanence rules given in the
following are invertible:

∆

∆[>/p]
T-perm, provided p�+∆

∆

∆[⊥/p]
T→ ⊥-perm, provided p�−∆,

where ∆[A/B] is the result of replacing in ∆ every occurrence of B with A.
Intuitively, these rules state that, given a set ∆, if the syntactical constraint
p�+∆ (resp. p�−∆) is fulfilled, then it is correct to replace every occurrence
of p in ∆ with the logical constant > (resp. ⊥).
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3 An extension of the permanence rules

Now we aim to study a weaker condition for the correct application of rules
T-perm and T→ ⊥-perm. By exploiting such a weaker condition, in next sec-
tion we introduce a decision procedure allowing to reduce the search space in
proof search for Int. The procedure we describe does not need to employ the
permanence rules as further rules of the logical apparatus. This means that the
results we show are not tied neither to the calculus given in Figure 1 nor to the
proof system: a decision procedure based on new tableau calculus or a sequent
calculus can use our results to reduce the search space for a proof.

As first step, let us go back over the side conditions on the applicability of
the permanence rules. To this aim we introduce a new notion of replacement. Let
H be a signed formula and let p a propositional variable. We define replacement
in a formula H of all positive occurrences of a propositional variable p with >,
the formula denoted with HJ>/pK, obtained from H as follows:

– if H = Tp, then HJ>/pK = T>;
– if H = Tq, with q ∈ PV \ {p}, then HJ>/pK = H;
– if H = Fq, then HJ>/pK = H, q ∈ PV;
– if H = S(A1 �A2), then HJ>/pK = S(A′1 �A′2), with SA′i = SAiJ>/pK, for
i = 1, 2, S ∈ {T,F} and � ∈ {∧,∨};

– if H = F(A → B), then HJ>/pK = F(A′ → B′), where TA′ = TAJ>/pK
and FB′ = FBJ>/pK;

– if H = T(A → B), then HJ>/pK = T(A′ → B′), where FA′ = FAJ>/pK
and TB′ = TBJ>/pK.

The following are examples of replacement of q and p respectively:
F(p→ (q ∨ q → ⊥))J>/qK = F(p→ (q ∨ > → ⊥));
F((p ∨ p→ ⊥)→ q)J>/pK = F((> ∨ p→ ⊥)→ q).

Analogously, we define replacement in a formula H of all negative occurrences
of a propositional variable p with ⊥, the formula denoted with HJ⊥/pK obtained
from H as follows:

– if H = Tq, then HJ⊥/pK = H, if q ∈ PV;
– if H = Fp, then HJ⊥/pK = F⊥;
– if H = Fq, with q ∈ PV \ {p}, then HJ⊥/pK = H;
– if H = S(A1 � A2), then HJ⊥/pK = S(A′1 � A′2), with SA′i = SAiJ⊥/pK,
i ∈ {1, 2}, S ∈ {T,F} and � ∈ {∧,∨};

– if H = F(A → B), then HJ⊥/pK = F(A′ → B′), where TA′ = TAJ⊥/pK
and FB′ = FBJ⊥/pK;

– if H = T(A → B), then HJ⊥/pK = T(A′ → B′), where FA′ = FAJ⊥/pK
and TB′ = TBJ⊥/pK.

The result of HJ>/pK (resp. HJ⊥/pK) is a formula having the same sign of H
and containing zero or more occurrences of the logical constant >(resp. ⊥).
Hereafter we use JK-replacement to refer to both kind of replacements defined
above. We extend JK-replacement to sets of signed formulas in the obvious way. If
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p�+∆ (resp. p�−∆), then ∆J>/pK (resp. ∆J⊥/pK) coincides with ∆[>/p] (resp.
∆[⊥/p]). Given a signed formula H and a set of signed formulas ∆, we write
HJK (resp. ∆JK) to refer both formula HJ>/pK and HJ⊥/pK (resp. set ∆J>/pK
and ∆J⊥/pK). Let A be a formula, eval (A) denotes the formula obtained by
applying to A the usual boolean reductions based on the meaning of the logical
constants. Given a signed formula SA, where S ∈ {T,F}, the evaluation of a
signed formula SA, denoted as eval(SA), is the signed formula Seval(A). The
following is the evaluation of the formulas obtained from the previous example:
eval(F(p→ (q ∨ q → ⊥))J>/qK) = eval(F(p→ (q ∨ > → ⊥))) = F(p→ q);
eval(F((p ∨ p→ ⊥)→ q)J>/pK) = eval(F((> ∨ p→ ⊥)→ q)) = Fq.
The invertibility of the boolean simplification rules implies that HJ∇/pK is re-
alizable iff eval(HJ∇/pK) is realizable, with ∇ ∈ {>,⊥}. The following Propo-
sitions 1 and 2 aim to give the whole picture of the relationship between the
realizability of H and eval(HJ∇/pK). We start with a technical lemma:

Lemma 1. Let H be a formula such that eval(H) = H, H 6= > and H 6= ⊥ and
let p be a propositional variable. The following holds: 1. eval(THJ∇/pK) 6= T⊥,
with ∇ ∈ {>,⊥}; 2. eval(FHJ∇/pK) 6= F>, with ∇ ∈ {>,⊥}.
The following proposition introduces the condition under which JK-replacement
preserves the realizability. Thus the proposition is a result about the correctness
of JK-replacement:

Proposition 1. Let K = 〈P,≤,ρ,〉 be a Kripke model, let α ∈ P , let H be a
signed formula and let p be a propositional variable: 1. if α�H and p does not
occur in eval(HJ>/pK), then α�eval(HJ>/pK); 2. if α�H and p does not occur
in eval(HJ⊥/pK), then α� eval(HJ⊥/pK).
Let K = 〈P,≤, ρ,〉 be a Kripke model and p a propositional variable. Follow-
ing [5], we define the models K+

p and K−p as follows: K+
p = 〈P,≤, ρ,′〉, where

′ =  ∪{(α, p) | α ∈ P}; K−p = 〈P,≤, ρ,′〉, where ′ =  \{(α, p) | α ∈ P}.
Note that, for every α ∈ P , K+

p , α � Tp and K−p , α � T(p → ⊥). In following
we prove that JK-replacement preserves the completeness:

Proposition 2. Let K = 〈P,≤,ρ,〉 be a Kripke model, α ∈ P , H a signed
formula and p be a propositional variable. 1. Let us assume that p does not occur
in eval(HJ>/pK). If K,α � eval(HJ>/pK), then K+

p , α � H; 2. Let us assume

that p does not occur in eval(HJ⊥/pK). If K,α�eval(HJ⊥/pK), then K−p , α�H.

Now, let us consider the following independence rules:
∆

∆[>/p]
+-indep, provided p 6∈ PV(eval(∆J>/pK))

∆

∆[⊥/p]
−-indep, provided p 6∈ PV(eval(∆J⊥/pK))

By Propositions 1 and 2 we get:

Theorem 1. The rules +-indep and −-indep are invertible.

The notion of JK-replacement can be extended to the replacement of two or more
propositional variables. Let p = {p1, . . . , pn} and q = {q1, . . . , qm} be two sets
of propositional variables. We define
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HJ>/p1, . . . ,>/pn,⊥/q1, . . . ,⊥/qmK = HJ>/p,⊥/qK, where p ∩ q = ∅,
as follows:

– if H = Tv, then HJ>/p,⊥/qK =

{
T> if v ∈ p
H otherwise

– if H = Fv, then HJ>/p,⊥/qK =

{
F⊥ if v ∈ q
H otherwise

– if H = S(A1 �A2), then HJ>/p,⊥/qK = S(A′1 �A′2),
with SA′i = SAiJ>/p,⊥/qK, for i = 1, 2, S ∈ {T,F} and � ∈ {∧,∨};

– if H = F(A → B), then HJ>/p,⊥/qK = F(A′ → B′), where TA′ =
TAJ>/p,⊥/qK and FB′ = FBJ>/p,⊥/qK;

– if H = T(A → B), then HJ>/p,⊥/qK = T(A′ → B′), where FA′ =
FAJ>/p,⊥/qK and TB′ = TBJ>/p,⊥/qK.

In a similar way we can define the meaning of H[>/p,⊥/q]. The extension of
these notions to sets of formulas is obvious. The rule

∆

∆[>/p,⊥/q]
±-indep, provided (p ∪ q) ∩ PV(eval(∆J>/p,⊥/qK)) = ∅ and p ∩ q = ∅

generalizes +-indep and −-indep and is invertible. When (p∪q)∩PV(eval(∆J>/p,
⊥/qK)) = ∅ holds we say that the set of variables p ∪ q is independent in ∆. We
remark that the intuitively obvious request p ∩ q = ∅ is necessary to prove the
invertibility of ±-indep, the analogous of Proposition 2. As a matter of fact, if
v ∈ p ∩ q we should build a Kripke model behaving as K+

v and K−v , which is
obviously impossible.

Rule ±-indep is a consequence of the definition of JK-replacement and it
represents a generalization of the permanence rules: under the syntactical condi-
tions stated for rule ±-indep, it is possible to replace in a set ∆ the occurrences
of a propositional variable p with a logical constant and such a replacement is
correct also if neither p�+∆ nor p�−∆ holds. Since variables are replaced by
constants, rule ±-indep is a mechanism to reduce the search space. Rule ±-indep
can be inserted in a procedure for deciding Int and since permanence rules are
subsumed by ±-indep, they can be removed from the deductive system without
any loss. To apply ±-indep one has to find an independent set of propositional
variables fulfilling the side condition for ±-indep. This could be a computation-
ally expansive task. We are not interested to use the rule in this way. To bound
the backtracking in Int proof search, the decision procedure we provide checks if
a given set of propositional variables is independent in a set. When the condition
is fulfilled, then rule ±-indep is applicable, but the important point is that in
this case some backtracking steps are avoidable. Summarizing, the independence
of a set of propositional variables in a set of formulas is the key point we use to
avoid the backtracking.

4 Reducing backtracking in Int

Now we want to exploit JK-replacement and Propositions 1 and 2 to avoid useless
applications of non-invertible rules. Since we are going to avoid some rule appli-
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cations, the question is to prove the decision procedure we provide is complete.
To this aim we need to prove the following theorem:

Theorem 2. Let ∆ be a set of T-signed formulas and let K = 〈P,≤,ρ,〉 be a
model such that ρ�∆ and ρ  p iff Tp ∈ ∆. Let

Γ = ∆ ∪ {Tp1, . . . ,Tpn,Fq1, . . . ,Fqm,T(h1 → H1), . . . ,T(hl → Hl)}
be a consistent set with p ∩ h = ∅, where p = {p1, . . . , pn} and h = {h1, . . . , hl}.
If (p ∪ h) ∩ PV(eval(∆J>/p,⊥/hK)) = ∅ holds, then: 1. Γ is realizable by the
Kripke model M = 〈P,≤, ρ,

M
〉 such that 

M
= ( ∪(P × p)) \ (P × h); 2.

if K, ρ � F(A → B) and (p ∪ h) ∩ PV(eval(F(A → B)J>/p,⊥/hK)) = ∅, then
M,ρ� F(A→ B).

Roughly speaking, the idea to avoid backtracking as applied in following
Function Bb, can be explained as follows: let S and S′ be two sets of formulas
and M = 〈P,≤,ρ,〉 a Kripke model such that M,ρ � S. We are investigating
under which syntactical conditions of S and S′ we can change the forcing in M to
get a model M ′ = 〈P,≤, ρ,′〉 such that M ′, ρ�S′. More precisely, we are asking
under which syntactical conditions the realizability of S implies the realizability
of S′. This is of interest because, if an attempt to find a proof starting from S
fails, then another attempt starting from another set has possibly to be done. The
failed attempts witnesses that some sets are realizable by a Kripke model. Thus
we wonder if the failed attempt implies that some other attempts we are going
to try, for example starting from S′, will fail. If we found a general criterion,
computationally not expensive, to check if this case, then we can reduce the
search space and speed-up the procedure: such a criterion is the side condition
stated for rule ±-indep. Function Bb works by locking sets of T-signed formulas.
Locked formulas are not at disposal of the backtracking steps in the sense that
Function Bb does not use locked formulas as main formulas. The idea behind
the locking is to mark a set a formulas having a model. This avoids the useless
backtracking generated by taking the marked formulas as main formula premise
of the non-invertible rule T →→. To decide a formula A, the call Bb({FA}, )
is performed, where emphasizes that the second parameter is irrelevant. Rules
are applied according to a priority which is standard: T→→ and F∨i are rules
of the lowest priority because if a proof is not found, they require to backtrack.
Function Bb returns a proof or a structure that in completeness theorem is
proved to be a Kripke model K = 〈P,≤,ρ,〉 such that ρ�∆. In the following,
we call α-rules T∧, T→ ∧, T→ ∨, F→ and β-rules T∨, F∧.

Function Bb(∆,M)
1. If ∆ is an inconsistent set, then return the proof ∆;
2. If the premise of MP can be instantiated with ∆, where TA and T(A→ B) can be
locked or unlocked, then let ∆1 be the conclusion and let π = Bb(∆1,M), where TB

is unlocked in ∆1. If π is a proof, then return the proof
∆
π

MP, otherwise return π.

3. If the premise of an α-rule can be instantiated with ∆, then let H be the main
formula premise, ∆1 the conclusion and π = Bb(∆1,M). If π is a proof, then return
∆
π

Rule(H), otherwise return π.

4. If the premise of a β-rule can be instantiated with ∆, then let H be the main premise,
∆1 and ∆2 the conclusions and, for i = 1, 2 let πi = Bb(∆i,M). If πi is a structure,
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with i ∈ {1, 2}, then return πi, otherwise return the proof
∆

π1|π2

Rule(H).

5. (i) (only backtracking on F∨-formula is required). If ∆T is not empty and all the
formulas in ∆T are locked and F(A1 ∨ A2) ∈ ∆, then let ∆i = ∆T ∪ {FAi} and
πi = Bb(∆i,M), for i = 1, 2. If πi is a proof, with i ∈ {1, 2}, then return the proof
∆
πi

F∨i; otherwise, let M = 〈PM ,≤M ,ρM ,M 〉 and πi = 〈Pi,≤i, ρi,i〉, for i = 1, 2.

Return the structure K = 〈P,≤,ρ,〉 defined as follows:
P = PM ∪ P1 ∪ P2; ≤ = ≤M ∪ ≤1 ∪ ≤2 ∪{(ρ, α)|α ∈ P1 ∪ P2};
ρ = ρM ;  = M ∪ 1 ∪ 2.

(ii) (Full standard backtracking is required) If ∆T contains an unlocked formula of the
kind T((A → B) → C) or, all formulas in ∆T are unlocked and F(A ∨ B) ∈ ∆, then
return BackT(∆,M).

(iii) If ∆T contains both locked and unlocked formulas (note that the unlocked formulas
are atomic or of the kind T(p→ B)), then let Φ = {F(A→ B)|T((A→ B)→ C) ∈ ∆},
let ∆U = {TA ∈ ∆|TA is unlocked }, p = {p|Tp ∈ ∆U}, q = {q|T(q → H) ∈ ∆U}
and let K = 〈P,≤,ρ,〉 be the structure defined as follows:

P = PM ; ρ = ρM ; ≤ = ≤M ;  = (M \(P × q)) ∪ (P × p).
(A) If F(A1 ∨A2) 6∈ ∆ and (p ∪ q) 6∈ PV(eval(∆J>/p,⊥/qK)), then return K .

(B) If F(A1 ∨ A2) ∈ ∆ and (p ∪ q) 6∈ PV(eval((∆ ∪ Φ)J>/p,⊥/qK)), then for i = 1, 2,
let πi = Bb(∆T∪{FAi},K ), where in the recursive call all formulas in ∆T are locked.

If there exists i ∈ {1, 2} such that πi is a proof, then return the proof
∆
πi

F∨i, else let

πi = 〈Pi,≤i, ρi,i〉; return the structure 〈P ′,≤′, ρ,′〉 defined as follows:
P ′ = P ∪ P1 ∪ P2; ≤′ = ≤ ∪ ≤1 ∪ ≤2 ∪{(ρ, α)|α ∈ Pi}; ′ =  ∪ 1 ∪ 2.

(C) Unlock the formulas in ∆ and return Bb(∆, ).

6. (if we are here F(A ∨B) 6∈ ∆). If all the formulas in ∆T are locked, then (i) return
M , else (ii) return 〈 { ρ }, { (ρ, ρ) }, ρ, { (ρ, p) |Tp ∈ ∆ } 〉.
End Function Bb.

Function BackT (∆,M)
Let {T((Ai → Bi)→ Ci)}1≤i≤n = {T((A→ B)→ C) ∈ ∆};
for i = 1, . . . , n

- let φi = Bb((∆ \ {T((Ai → Bi)→ Ci)}) ∪ {TCi},M), where in the recursive call
TCi is not locked and the locking of the other formulas is left unchanged;

- if φi is a structure, then return φi.

Unlock all the formulas in ∆;
for i = 1, . . . , n

- let πi = Bb((∆T \ {T((Ai → Bi)→ Ci)}) ∪ {TAi,FBi,T(Bi → Ci)}, );

- if πi is a proof, then return the proof
∆

πi|φi

T→→.

Given the structures πi = 〈Pi,≤i, ρi,i〉, with i = 1, . . . , n, define K = 〈P,≤,ρ,〉 as
follows:
P = ρ ∪n

i=1 Pi; ≤ = ∪n
i=1 ≤i ∪{(ρ, α)|α ∈ P};  = ∪n

i=1 i ∪{(ρ, p)|Tp ∈ ∆}.
If F(A1 ∨A2) 6∈ ∆, then return K .

For i = 1, 2
- let πn+i = Bb(∆T ∪ {FAi},K ), where in the recursive call all the formulas in ∆T

are locked; if πn+i is a proof, then return the proof
∆
πn+i

F∨i.
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Return the structure 〈P,≤,ρ,〉 defined as follows:

P = ρ ∪n+2
i=1 Pi; ≤ = ∪n

i=1 ≤i ∪{(ρ, α)|α ∈ P};  = ∪n+2
i=1 i ∪{(ρ, p)|Tp ∈ ∆}.

End Function BackT.

Function Bb locks the T-formulas after the application of rule F∨i. When this
stage is reached, the realizability of ∆T has been proved by backtracking steps
involving the non-invertible conclusion of the rule T →→ and M is the model
realizing ∆T. The formulas in ∆T will be unlocked when a new T→→-formula
is introduced. If a set Γ only containing locked formulas, signed atomic formulas
and T(p → H)-formulas, with Tp 6∈ Γ , is gotten, then, by Theorem 2, we
can decide if the realizability of ∆T implies the realizability of Γ . This check is
performed in Step 5(iii)(A). By construction ∆T ⊆ Γ and ∆T coincides with the
formulas of Γ that are locked. Function Bb contains a call to Function BackT.
Function BackT implements the backtracking mechanism necessary to handle
formulas of the kind T((A → B) → C) and F(A ∨ B). This is a standard
phase, necessary to guarantee the completeness of the decision procedure. If after
all possible instantiations of the premise of T →→ with ∆ no proof is found,
then the structure K is a Kripke model whose root realizes ∆T ∪ {F(A →
B)|T((A → B) → C) ∈ ∆}. At this point, Bb instantiates, if possible, the
premise of F∨1 and F∨2 with ∆. In the subsequent applications the formulas
in ∆T are locked, thus T →→-formulas are not used as main formulas. This
is also the strategy employed by sequent calculus LJQ [2]. The strategy of Bb
diverges from LJQ by the fact that after an application of F →, LJQ unlocks
the formulas, whereas Bb keeps them locked until the only applicable rules are
T →→ or F∨. This corresponds to reach Step 5(ii) or 5(iii). If a new T →→
formula appears, then Step 5(ii) is performed and BackT is called. In BackT,
when the invertible conclusion of rule T→→ is handled, the locking of the minor
premises is left unchanged. When the non-invertible conclusion of T→→ is used
the locked formulas of ∆ become unlocked, thus Bb behaves as LJQ. If Step 5(iii)
is reached, then it means that subsequently to the locking of the formulas, new
T-formulas have been added, but they are atomic or of the kind T(p→ A) only.
In Steps 5(iii)(A) and 5(iii)(B) function Bb attempts to avoid backtracking steps.
Bb performs a purely syntactic check involving JK-replacement. In practice, Bb
checks if the side condition on the applicability of rule ±-indep is fulfilled. It
has to be noted that the check in Step 5(iii)(A) is different from the check in
Step 5(iii)(B). To prove the completeness for the case of Step 5(iii)(B) we needed
to know that the model K obtained from M fulfills the property that for every
T((A → B) → C) ∈ ∆, the root of K realizes F(A → B). Since by hypothesis
the given model M fulfills such a property, the check in Step 5(iii)(B) aims to
prove that for every T((A → B) → C) ∈ ∆, the realizability F(A → B) is
independent of the forcing of the propositional variables {p1, . . . , pn, q1, . . . , qm}.
Finally we notice that the check in Step 5(iii)(A) and Step 5(iii)(B) is only based
on the locking and the formulas in the set ∆ at hand.

Let ∆ be a set of formulas. In the next theorem we show that (1) if ∆ does
not contain locked formulas and Bb(∆, ) returns a structure K , then K is a
Kripke model such K � ∆ and Bb does not require any further information;
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(2) if ∆ contains some locked formula, M is a Kripke model that realizes ∆T

and Bb(∆,M) returns a structure K , then K � ∆ and K is possibly built on
the Kripke model M :

Theorem 3 (Completeness). Let ∆ be a set of formulas. 1. If ∆T does not
contain locked formulas and Bb(∆,M) returns a structure K , then K�∆ and K
is defined independently of M ; 2. if ∆T contains a subset Γ of locked formulas
and M = 〈PM ,≤M ,ρM ,M 〉 is a Kripke model such that M � Γ , for every
T((A→ B)→ C) ∈ Γ , there exists α ∈ PM such that ρM 6= α and α�TA,FB
and ρM  p iff Tp ∈ Γ , then Bb(∆,M) returns a structure K such that K �∆.

5 Conclusions and Future Works

We have presented a new optimization rule called ±-indep that generalizes the
permanence rules given in [5]. By using a general result on the correctness for
±-indep, we have introduced a criterion to bound the non-determinism in Int
proof search. Our results do not depend on a particular tableau calculus or proof
system and do not modify the logical apparatus a decision procedure is based
on. As an example, our results can also be used by decision procedures based on
proof systems obeying the subformula property.

We are working on more advanced decision procedures based on the results
presented here, where the backtracking is bounded in more cases, also using
information external to the set at hand and returned by the recursive calls.
Moreover, apart the extension to other propositional intermediate logics, we are
interested to investigate the application of these ideas to logics that require
backtracking to be decided, such as some modal and temporal logics.
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Abstract. We investigate dependence of recursively enumerable graphs
on the equality relation which is fixed to a specific r.e. equivalence rela-
tion on ω. In particular we compare r.e. equivalence relations in terms
of graphs they permit to represent. This defines a partial order that
depends on classes of graphs under consideration. We show that for var-
ious classes of graphs, there are minimal and maximal elements in the
corresponding ordering of r.e. equivalence relations.

1 Introduction

Recursively enumerable (r.e.) structures are given by a domain, recursive func-
tions representing basic operators in the structure, and some recursively enumer-
able predicates, among which there is a predicate E representing the equality
relation in the structure. When E is fixed, various algebraic properties of r.e.
structures with the equality relation E depend heavily on the equivalence relation
E. Furthermore, various computability-theoretic properties of E depend on al-
gebraic properties of structures in which the equality relation is E. For example,
Novikov constructed a finitely generated group with undecidable word-problem;
in other words, there is a group which can be represented using an r.e. nonrecur-
sive equivalence relation E (as equality of the group) but not using a recursive
equivalence relation E. On the other hand, for Noetherian rings [18], Baur [2]
showed that every r.e. Noetherian ring is a recursive ring, implying that the
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underlying equality E is always a recursive relation. So only recursive equality
relations E can be used to represent Noetherian rings.

Our aim is to investigate recursively enumerable graphs emphasising the role
of the equivalence relation E representing the equality. In the paper [14] we ini-
tiated this program and studied general properties of r.e. structures, particularly
various classes of algebras and linear orders. In this paper, we study recursively
enumerable graphs, their properties, and their dependence on the equality rela-
tion. Later we will define various classes of graphs, but for the meantime for the
reader by graph we mean a set of vertices together with a set of edges between
the vertices where self-loops are allowed.

In this paper, we always assume that our equivalence relations E are r.e.
equivalence relations on the set of natural numbers ω. We note that Ershov [7],
and following him Odifreddi [19], call r.e. equivalence relations positive equiva-
lence relations.

Let E be an r.e. equivalence relation on ω. We say that an n-ary relation R on
ω respects E if for all x1, y1, x2, y2, . . . , xn, yn ∈ ω such that (x1, y1), . . . , (xn, yn) ∈
E we have R(x1, . . . , xn) if and only if R(y1, . . . , yn). Note that if n = 1, then R
is simply a unary relation of ω, and R respects E if and only if R is a union of
E-equivalence classes.

Since we consider graphs, our relations R will be binary and we denote
them by Edge. Thus, an r.e. binary relation Edge ⊆ ω2 respects E if for all
x1, y1, x2, y2 ∈ ω such that (x1, y1) ∈ E and (x2, y2) ∈ E we have Edge(x1, x2)
if and only if Edge(y1, y2). If Edge ⊆ ω2 respects E then Edge induces a binary
relation on the quotient ω/E. We abuse notation in this paper and denote the
induced binary relation on ω/E by Edge itself.

Definition 1. Let E be an r.e. equivalence relation.

1. An E-graph is a structure of the form (ω/E;Edge), where Edge is a sym-
metric, irreflexive and r.e. binary relation respecting E.

2. An E-pseudograph is a structure of the form (ω/E;Edge), where Edge is a
symmetric and r.e. binary relation respecting E.

We say that a graph (pseudograph) is recursively enumerable if it is an E-graph
(pseudograph) for some r.e. equivalence relation E.

For graphs and pseudographs, we sometimes use {u, v} to represent the edge
(u, v) in the graph (since there is no sense of direction on the edges). For an
equivalence relation E, we write [x]E or E(x) to denote the equivalence class of x.
Sometimes we omit the index E. Similarly, if Edge is the edge relation in a graph
G = (V,Edge), then by Edge(v) we denote the set {v′ ∈ V | Edge(v, v′)}. For
E-graphs (ω/E;Edge), when there is no confusion, we interchange our notation
and might write Edge(x, y) instead of Edge([x]E , [y]E) or vice versa.

Let C be a class of graphs (pseudographs), where we identify graphs up to
isomorphism. Given an r.e. equivalence relation E we would like to single out
those graphs in the class C that are isomorphic to E-graphs, as given in the
following definition.
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Definition 2. Given an r.e. equivalence relation E and a graph (pseudograph)
G, we say that E realises G iff there is an r.e. relation Edge such that Edge
respects E and G is isomorphic to (ω/E;Edge). If E does not realise G, then
we say that E omits G. We let KC(E) denote all those graphs from C which are
realised by E.

1.1 Examples

Example 3. If ω/E is finite, then a graph G = (V ;Edge) belongs to KGraph(E)
if and only if the cardinality of V equals the cardinality of ω/E.

From now on, all our graphs will be infinite graphs, that is, graphs whose set of
vertices is an infinite set. Thus, we often assume (without explicitly stating it)
that all E considered in this paper are infinite (that is, ω/E is infinite).

Example 4. Let E be the identity relation idω on ω. Then the class KGraph(E)
consists of all graphs (ω;Edge) where Edge is an r.e. set of unordered pairs. In
particular, this class contains all recursive graphs.

Example 5. Let X ⊆ ω be a r.e. set. Consider the following relation E(X):

E(X) = {(x, y) | x = y} ∪ {(x, y) | x, y ∈ X}.

Each equivalence class of E(X) is either a singleton {i} where i 6∈ X or is the
set X itself.

Example 6. A complete graph is a graph that has edges between all pairs x, y
of its vertices, where x 6= y. We call a pseudograph G an n-complete pseudograph
if G has exactly n vertices with self-loops and has edges between all pairs x, y of
its vertices, where x 6= y. Call G a fully complete pseudograph if there exists an
edge between any pair of elements of G. We observe the following:

1. Every r.e. equivalence relation realises a fully complete pseudograph;
2. For each n ∈ ω there exists an equivalence relation E such that E realises a
k-complete pseudograph if and only if n 6 k.

Example 7. If an infinite graph G has finitely many edges then every r.e. equiv-
alence relation E realises G.

The example above shows that for every E the class KGraph(E) is not empty.

Definition 8. The transversal of a recursively enumerable equivalence relation
E, denoted by tr(E), is the set {n | ∀x [x < n→ (x, n) 6∈ E]}.

Thus, the transversal tr(E) is the set of all minimal elements taken from the
equivalence classes of E. It is easy to see that E is Turing equivalent to tr(E).

Recall that a set X of natural numbers is hyperimmune if there does not
exist a recursive function g such that g(i) > xi for all i, where x0 < x1 <
x2 < . . . and X = {x0, x1, . . .}. We also say that a set X is hypersimple if X is
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recursively enumerable and its complement is hyperimmune [20]. We call a graph
G = (V,Edge) locally finite if the set Edge(v) is finite for all v ∈ V . A locally
finite E-graph G = (ω/E,Edge) is strongly locally finite if there exists a recursive
function, which we call a witness function, that given an n ∈ ω produces a tuple
m1, . . . ,mk such that the following properties hold:

1. Edge([n], [mi]) is true for i = 1, . . . , k,
2. For every y such that Edge([n], [y]) there exists an mi for which (y,mi) ∈ E.

A graph G = (V,Edge) is called absolutely locally finite iff every connected set
of vertices is finite.

1.2 Reducibilities

The definition of the class KC(E) depends on two parameters: the class C of
graphs (pseudographs) and the equivalence relation E. When we fix an r.e. equiv-
alence relation E, the class KC(E) calls for a description of those graphs from C
that can be realised over E. From this point of view the class KC(E) represents
a graph-theoretic content of the universe ω/E. When we fix a class C of graphs,
one considers those equivalence relations E that realise graphs from C. The col-
lection of these equivalence relations can be viewed as computability-theoretic
content of the class C. These observations call for the investigation of the rela-
tionship between r.e. equivalence relations in terms of graphs (from the class C)
they realise. Formally, this is explained through the following definitions (also,
see [14]).

Definition 9. Let C be a class of graphs (pseudographs) and let E1 and E2 be
r.e. equivalence relations. We say E1 is C-reducible to E2, written E1 6C E2, iff
every graph in C realised by E1 is also realised by E2. In particular, we have the
following reductions when C is the classes of pseudographs and graphs.

1. E1 6Pgraph E2 iff all pseudographs realised by E1 are realised by E2;
2. E1 6Graph E2 iff all graphs realised by E1 are realised by E2.

Sometimes we use a terminology borrowed from recursion theory. For instance,
similar to m-degrees or Turing degrees, we say that E1 and E2 have the same
C-degree, written E1 ≡C E2, iff E1 6C E2 ∧ E2 6C E1. The reducibility 6C
naturally induces the partial order on the set of all C-degrees. Without much
confusion we use the same symbol 6C to denote this partial order on C-degrees.
Thus, there are two lines of investigation. One is to study basic properties of
the partial order 6C on the set of all C-degrees. The other is to investigate the
graphs from KC(E) by selecting various classes C of graphs. In this paper we
initiate the study in both directions.

Most reducibilities (if not all) on equivalence relations and sets that have
been studied aim to capture recursion-theoretic and set-theoretic complexities
between equivalence relations. Typically a reduction from E to E′ tells us that
E′ is a harder problem to solve than E. For instance, Turing reducibility from
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E to E′ implies that by having an oracle with access to E′ we can design an
algorithm that decides E. In contrast, our reducibilities given in Definition 9 aim
to compare equivalence relations E and E′ in terms of their algebraic content,
– namely the classes KC(E) and KC(E′) that they represent.

1.3 Connections to related work

The paper [14] initiated the study of E-structures in general setting. In partic-
ular, it investigated an important class L of pseudographs, namely the class of
linearly ordered sets (where (x, y) ∈ Edge ⇔ x 6 y). It obtained some basic
results about the partial order 6L and built certain equivalence relations E for
which the classes KL(E) can easily be described. For instance, it constructed
equivalence relations E that realise only n many linear orders, where n is fixed
[14]. It also characterised some classes of linear orders that can be realised by
equivalence relations of type E(X). The paper [14] also studied the C-reducibility
in the case when C consists of universal algebras or some of its sub-classes. Other
examples of work on r.e. equivalence relations are the recent papers of Fokina,
Friedman and Törnquist [12]. We also mention Bernardi and Sorbi [3,4] as well
as Ershov [7,8] who studied various reducibilities between equivalence relations.
Some of the reducibilities have been revisited due to the work of Fokina and
Friedman [9,10,11,12] and, later, one such reducibility became known as FF -
reducibility. This reducibility is roughly a many-one reducibility between r.e.
equivalence relations. Below we mention the definition of FF -reducibility in or-
der to relate it to this paper. Friedman and Fokina defined their reducibility in
a more general context; however, in the context of this paper we need a special
case when the two equivalence relations compared have the domain ω.

Now we recall FF -reducibility. For recursively enumerable equivalence rela-
tions E1, E2 on ω, we say that E1 is FF -reducible to E2, written E1 6FF E2, iff
there exists a recursive function f such that for all x, y ∈ ω we have [xE1 y ⇔
f(x)E2 f(y)]. This naturally induces the equivalence relation ≡FF between E1

and E2 given as E1 6FF E2 ∧E2 6FF E1. In this case it is said that E1 and E2

have the same FF -degree. It is not hard to see that 6FF has the largest element
among all the FF -degrees [1,12,13].

One can also consider the following equivalence relation ∼FF between equiv-
alence classes. We say that E1 and E2 are ∼FF -equivalent, written E1 ∼FF E2,
iff there exists a recursive function f witnessing E1 6FF E2 such that all equiv-
alence classes of E2 appear in the range of f . Note that ∼FF is an equivalence
relation that implies 6FF . When comparing ∼FF with ≡FF , it turns out that
∼FF is a more restrictive condition than ≡FF , namely ≡FF does not always
imply ∼FF . This stands in contrast to one-one reducibility between r.e. subsets
of ω [20]. We also note that if X1, X2 are two infinite r.e. sets then for the equiv-
alence relations E(X1) and E(X2) (defined in Example 5) we have the following:
E(X1) 6FF E(X2) iff X1 61 X2 [6,8,17]. Hence, FF -reducibility is nearer to
one-one reducibility than to many-one reducibility between r.e. subsets of ω.
Coskey, Hamkins and Miller [5,6] and Gao and Gerdes [13] also contributed to
the study of r.e. equivalence relations and FF -reducibility. Finally, we mention
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a recent paper by Andrews, Lempp, Miller, Ng, San Mauro and Sorbi [1] that
presents a comprehensive study of FF -reducibility between r.e. equivalence re-
lations, in particular, answering several questions posed in the work of Gao and
Gerdes [13].

2 Isles

Let C be a class of pseudographs (graphs). Intuitively, there is not much con-
nection between 6C-reducibility and FF -reducibility on r.e. equivalence rela-
tions. In fact, we observe that the definitions of 6FF and 6C imply that FF -
reducibility is an arithmetic definition while 6C-reducibility is a Σ1

1 -definition.
However, in this section we show that for some natural classes of pseudographs,
one might find connections between these two reducibilities. In this section we
introduce such a class. We call pseudographs from this class isles. Here is the
definition of isles.

Definition 10. An isle or an island graph is a pseudograph which has infinitely
many isolated vertices. Formally, an isle is a pseudograph (V,Edge) with a count-
able vertex set V such that there are infinitely many vertices x ∈ V satisfying
(x, y) /∈ Edge for all y ∈ V . Denote the class of all isles by Isle.

Now we can recast Definition 9 for the class Isle of all isles. Namely, we say that
E 6Isle E′ iff every isle realised by E is also realised by E′. As we mentioned
above, the importance of this class of pseudographs stems from the fact that Isle-
reducibility can, in some ways, be related to the FF -reducibility. Furthermore,
we give a characterisation of all the isles that can be realised by all infinite r.e.
equivalence relations; the characterisation involves a graph-theoretic concept of
clique graphs. In addition, we construct natural examples of r.e. equivalence
relations which only realise these isles. We will also prove that there are the
least and the greatest Isle-degrees.

In recursion theory, often for the partially ordered set (P ;6) given by some
reducibility 6, the greatest element is called universal. Intuitively, universal de-
grees represent the hardest problems to which other problems can be reduced.
For instance, the FF -reducibility has a universal degree.

Theorem 11. If E 6FF E′ then E 6Isle E′. Moreover, E′ is Isle-universal if
and only if E′ is FF -universal.

We now show that Isle-reducibility has the least element. We also construct an
example of an infinite chain in the set of Isle-degrees. We start with the following
definition that singles out those isles for which the set of edges is finite.

Definition 12. We call an isle finitary iff there are only finitely many vertices
which are connected to other vertices or themselves. That is, a graph (V,Edge)
is a finitary isle iff the set {x ∈ V | ∃y ∈ V [(x, y) ∈ Edge]} is finite and the set
V is infinite. If an isle is not finitary then we call it an infinitary isle.
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Note that every recursively enumerable equivalence relation E realises all fini-
tary isles. The next result shows that the least element with respect to Isle-
reducibility is determined by the class of all finitary isles. To prove this, we
recall cohesive sets. Namely, an infinite set Z is cohesive if no r.e. set X exists
that splits Z into two infinite subsets, that is, no r.e. X exists such that both
Z∩X and Z∩ (ω−X) are infinite. Maximal sets are recursively enumerable sets
whose complements are cohesive. Maximal sets are a well-known topic studied
in recursion theory [19,20].

Theorem 13. If the transversal tr(E) of an equivalence relation E is a cohesive
set then the equivalence relation E realises only finitary isles. In particular, for
every maximal set X, the equivalence relation E(X) is the least element with
respect to Isle-reducibility.

Note that the Isle-least element contains infinitely many FF -degrees. The reason
is that if X and Y are maximal sets of different Turing degrees then E(X) and
E(Y ) are FF -incomparable yet E(X) and E(Y ) are Isle-equivalent. Hence,
recursion-theoretically, two equivalence relations realising the same isles might
be quite different.

Proposition 14. The set of all Isle-degrees contains an infinite chain.

We now characterise equivalence relations that realise infinitary isles in terms
of clique which is adapted to the concept of isles.

Definition 15. A clique-isle is an isle for which there is a set C such that (x, y)
is an edge of the isle iff x, y ∈ C and x 6= y. A full-clique-isle is an isle for which
there is a set C such that (x, y) is an edge of the isle iff x, y ∈ C.

Note that both clique-isles and full-clique-isles (over a graph with countably
many vertices) are uniquely determined by the cardinality of C and their first
order theories are ℵ0-categorical. It turns out, as we prove in the theorem below,
those equivalence relations that realise infinitary clique isles can be characterised
in terms of FF -reducibility.

Theorem 16. An equivalence relation E realises an infinitary clique-isle iff
idω 6FF E.

Proposition 17. There exists an r.e. equivalence relation E that realises an
infinitary full-clique isle but omits an infinitary clique isle.

Theorem 18. For every r.e. equivalence relation E, the following statements
are equivalent:

(a) E realises an infinitary isle;
(b) E realises the infinitary full-clique-isle;
(c) There is an r.e. set X respecting E such that X contains infinitely many

E-equivalence classes and leaves out infinitely many E-equivalence classes.
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In Theorem 13 we proved that the partial order of the Isle-degrees has the least
element. Our next theorem shows that there is an atom in this partial order.
Recall that an atom in a partially ordered set (X,6) with the least element z is
a member a of X such that a 6= z and no x exists strictly between z and a. Note
that the theorem proves even more. Namely, not only the Isle-degrees have an
atom, but also this atom is a lower bound of all non-zero Isle-degrees, which
implies that the atom is unique. This in particular shows that the Isle-degrees
are not dense.

Theorem 19. There exists an r.e. equivalence relation E such that E realises
an infinitary isle and for every r.e. equivalence relation E′, if E′ realises an
infinitary isle then E 6isle E′.

3 Partition graphs

In this section we consider another class of graphs that we call partition graphs.
We denote this class by Part. As for isles we provide several characterisa-
tion results and examples. An importance of this class of graphs is that the
Part-reducibility induced by Part behaves somewhat orthogonally to the Isle-
reducibility induced by isles.

Definition 20. A graph G = (V,Edge) is called a partition graph if and only if
there is a (finite or infinite) partition A0, A1, . . . of the set of vertices such that
{x, y} ∈ Edge iff there is no k for which x, y ∈ Ak.

In the definition above, for the partition graph G, the sets A0, A1, . . . stated are
called the anti-clique components of G. We denote the class of partition graphs
with Part; this induces the Part-reducibility on r.e. equivalence relations.

The graph (V,Edge) in which all nodes are completely isolated, that is
Edge = ∅, is clearly a partition graph. The anti-clique component of this graph
is V itself. An infinite complete graph is also an example of a partition graph.
The anti-clique components of the complete graph are singletons. These are two
examples of trivial partition graphs. However, these two trivial partition graphs
are complete opposites of each other in terms of equivalence relations that realise
them.

Theorem 21. The following statements are true:

1. Every equivalence relation E realises the trivial partition graph in which all
vertices are completely isolated;

2. An equivalence relation E realises an infinite complete graph if and only if
E is recursive.

In the study of r.e. equivalence relations, Maltsev [16] introduced the concept of
precomplete equivalence relation and studied their properties. An r.e. equivalence
relation E is precomplete iff for every partial-recursive function ψ : ω → ω there
is a total-recursive function f such that for all n ∈ dom(ψ), we have ψ(n)E f(n).
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Lachlan [15] showed that all precomplete universal equivalence relations form one
∼FF degree. The result below relates precomplete equivalence relations with
partition graphs. We use the fact that no two distinct equivalence classes of
precomplete equivalence relations are recursively separable [16]. Also, recall that
we follow the convention that our equivalence relations have infinitely many
equivalence classes.

Theorem 22. Every precomplete equivalence relation realises only the trivial
partition graph and is Part-reducible to all other r.e. equivalence relations.

We would like to observe the way precomplete equivalence relations behave with
respect to various reducibilities. From a recursion-theoretic point of view the
precomplete relations are the most complex. From an algebraic point of view,
however, precomplete equivalence relations behave quite unexpectedly. For in-
stance, as we have already proven, for the class Isle of isles all FF -universal
equivalence relations (including the precomplete ones) form the largest Isle-
degree. In contrast, for the class of partition graphs the precomplete relations
belong to the least Part-degree. This also stands in contrast to the situation
when we consider linear orders [14]; namely, no linear order can be realised over
FF -universal equivalence relations.

Here we investigate equivalence relations that realise partition graphs with
infinite components. For instance, we show that some FF -universal equivalence
relations are more powerful than precomplete ones in terms of partition graphs
they realise. We also show some connections between FF -reducibility and Part-
reducibility.

Theorem 23. A partition graph G = (V,Edge) is realised by some FF -univer-
sal equivalence relation iff one of the anti-clique components of G is infinite.

Theorem 24. The identity equivalence relation idω constitutes the universal
Part-degree.

4 Graphs in general

In this section we want to state the main results which holds for the Graph-
reducibility based on the class of all graphs and its degrees. Given two r.e.
equivalence relations E,E′, the definition of Graph-reducibility is that E 6Graph
E′ iff every graph realised by E is also realised by E′.

Theorem 25. (a) There are infinitely many maximal Graph-degrees.
(b) There is a least Graph-degree.
(c) There are atoms in the Graph-degrees and exactly two of the atoms realise

graphs which are not locally finite.
(d) There is an ascending chain of type ω which is an initial segment of the

graph degrees.

It is currently open whether in item (c) there are further atoms besides the two
which realise graphs which are not locally finite.
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Abstract. In this paper we present a unifying approach for deciding
various bisimulation and simulation equivalences between two timed au-
tomata states. We propose a zone based method for deciding these rela-
tions in which we eliminate an explicit product construction of the region
graphs or the zone graphs as in the classical methods. Our method is also
generic and can be used to decide several timed relations. We also present
a game characterization for these timed relations and show that the game
hierarchy reflects the hierarchy of the timed relations. One can obtain
an infinite game hierarchy and thus the game characterization further
indicates the possibility of defining new timed relations which have not
been studied yet.

1 Introduction

Bisimulation [11] is a widely used relation to assert equivalence of two processes.
The relation has been extended for timed systems as well. It is known that
timed language equivalence is undecidable for timed automata [2]. Hence for
timed automata, bisimulation equivalences are of significant importance since
they are known to be decidable [3][1][10][15]. Decidability for timed bisimula-
tion was proved in [3] where a product construction technique on region graph
has been used. In [15], the product construction has been applied on zones. We
will see that the decidability of time abstracted bisimulation is inherent in the
construction of the zone graph we use. We define corner point bisimulation and
show how checking corner point bisimulation can be used to decide timed bisim-
ulation. In [13], equivalences even weaker than time abstracted bisimulation have
been defined. Our zone graph approach can be used to decide these relations as
well. Corresponding to every bisimulation relation, a simulation equivalence can
be considered. In this paper, we present a unifying approach to decide several of
these relations. We also present a game semantics corresponding to these timed
relations which is similar to Stirling’s bisimulation game for discrete time re-
lations [12]. The game theoretic formulations of these relations seem to free us
from the more tedious operational reasoning that is sometimes required to define
the relationships between various relations. This generalized game semantics has
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certain parameters which on being assigned different values produces a hierarchy
of timed games that also reflects the hierarchy of the timed relations. Since it
is possible to construct an infinite game hierarchy, it also throws light on the
possibility of defining several new timed relations.

Thus the main contribution of this work includes presenting a unifying ap-
proach to decide various timed relations and defining the game characterization
similar to Stirling’s bisimulation games for the timed relations.

In section 2, we give a brief introduction to timed automata, introduce several
definitions required in the paper and describe the way we construct the zone
graph, which is termed a zone valuation graph [8]. Section 3 describes the various
timed and time abstracted relations considered in this work. In section 4, we
present the methods for deciding various timed relations. The game semantics is
given in section 5. Finally, we conclude in section 6 with the emphasis that zone
valuation graph can be used as a common framework to decide several kinds of
timed relations.

2 Timed Automata

Timed automata [2] is an approach to modelling time critical systems where
the system is modeled with clocks that track elapsed time. It is a finite-state
structure that can manipulate real-valued clock variables. Corresponding to ev-
ery transition, a subset of the clocks can be specified that can be reset to zero.
Clock constraints also specify the condition for actions being enabled. If the
constraints are not satisfied, the actions will be disabled. The clock constraints
B(C) over a set of clocks C is given by the grammar g ::= x ^ c | g ∧ g, where
c ∈ N and x ∈ C and ^ ∈ {≤, <,=, >,≥}. A timed automaton over a finite
set of clocks C and a finite set of actions Act is a quadruple (L, l0, E, C) where
L is a finite set of locations, ranged over by l, l0 ∈ L is the initial location,
E ⊆ L × B(C) × Act × 2C × L is a finite set of edges.

2.1 Semantics

The semantics of a timed automaton can be described with a timed labeled
transition system(TLTS)[1]. Let A = (L, l0, E, C) be a timed automaton over
a set of clocks C and a set of visible actions Act. The timed transition system
T (A) generated by A can be defined as T (A) = (Proc, Lab, { α−→ |α ∈ Lab}),
where Proc = {(l, v) | (l, v) ∈ L × (C → R≥0), i.e. states are of the form (l, v),
where l is a location of the timed automaton and v is a valuation assigned to
the clocks of A. Lab = Act∪R≥0 is the set of labels; and the transition relation

is defined by (l, v)
a−→ (l′, v′) if for an edge (l

g,a,r−→ l′) ∈ E, v |= g, v′ = v[r←0],

where the edge (l
g,a,r−→ l′) denotes that l is the source location, g is the guard,

a is the action, r is the set of clocks to be reset and l′ is the target location.

(l, v)
d−→ (l, v + d) for d ∈ R≥0 and v + d is the valuation in which every clock

value is incremented by d. Let v0 denote the valuation such that v0(x) = 0 for
all x ∈ C. (l0, v0) is the initial state of T (A).
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We now define various concepts that will be used in the paper.

Definition 1. sort: For a timed automata state p, sort(p) denotes the set of
visible actions that can be performed by p. So sort(p) ⊆ Act.

Definition 2. Timed trace: If p′ is a timed state that is reachable from the
initial state p, then p′ can be reached from p by a sequence of delays and actions

as follows: p
d1−→ p1

a1−→ p′1
d1−→ p2

a1−→ p′2 · · ·
dn−→ pn

an−−→ p′, where this sequence
of delays and actions to reach p′ is termed as a timed trace.

Definition 3. zone: A zone z is a set of valuations defined by a conjunction
of two kinds of clock constraints: for x, y ∈ C, the set of clocks of a timed
automaton, x ^ c or x− y ^ c, where c ∈ Z.

In a zone graph, a node is a tuple of location and a zone and the edges are the
transition relations between these nodes defined as follows. (l, z)

a→ (l′, z′), where

a ∈ Act, if for every v satisfying z, ∃v′ satisfying z′ such that (l, v)
a→ (l′, v′). If

the zones corresponding to (l, v) and (l, v′) be z and z′ respectively and there is a

transition in T (A) such that (l, v)
d−→ (l, v′), then we have an edge (l, z)

ε−→ (l, z′)
in the zone graph. Every node has an ε transition to itself and the ε transitions
are also transitive in nature. For both a and ε transitions, if z is a zone then z′

is also a zone. We denote a node of the zone graph with s. A zone graph can be
formally defined using the quadruple (S, s0, Lep,→), where S is the set of nodes
of the zone graph, s0 is the initial node, Lep = Act∪ {ε} and → denotes the set
of transitions.

Definition 4. Pre-stability: A zone z1 is forward stable or pre-stable with respect

to another zone z2 if z1 ⊆ preds(z2) or z1 ∩ preds(z2) = ∅ where preds(z)
def
=

{v ∈ V |∃v′ |= z such that v
α−→ v′ where α ∈ Act ∪ R≥0}, V being the possible

set of clock valuations.

A zone valuation graph Z(A,p) corresponds to a particular state p of the timed
automaton A. The clock valuation of p is same as the initial clock valuation
corresponding to which the zone valuation graph is created. For a state q ∈ T (A),
N (q) represents the node of the zone valuation graph with the same location as
that of q and whose clock valuation range includes the valuation of q. For two
zone valuation graphs, Z(A1,p) = (S1, sp, Lep,→1), Z(A2,q) = (S2, sq, Lep,→2)
and a relation R ⊆ S1×S2, Z(A1,p)RZ(A2,q) iff (sp, sq) ∈ R. While checking R,
ε is considered visible similar to an action in Act. An ε action represents a delay
d ∈ R≥0, where d ≥ 0. The detailed algorithm for creating zone valuation graph
has been described in algorithm 1 and consists of forward analysis of the timed
automaton. The set of valuations for every location is initially split into zones
based on the canonical decomposition of its outgoing transition as discussed
in [13]. The forward analysis may cause a zone graph to become infinite [6].
Several kinds of abstractions have been proposed in the literature [5][6][7]. We
use location dependent maximal constants abstraction [6] to be used for creating
the finite zone valuation graph. The algorithm has a splitting phase (phase 1)
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Algorithm 1 Construction of Zone Valuation Graph
Input: Timed automaton A
Output: Zone valuation graph corresponding to A

1: Calculate maxlx for each location l ∈ L and each clock x ∈ C. This is required for
abstraction to ensure finite number of zones in the zone graph.

2: Initialize Q to an empty queue.
3: Enqueue(Q,< l0, ∅ >). /* Every element is a tuple of a location and its parent */
4: successors added = false.
5: while Q not empty do
6: < l, lp >= dequeue(Q)
7: if lp 6= ∅ then,

8: For the edge lp
g,a,X′−−−−→ l in A, for each existing zone zlp of lp, create the

zone z = (zlp ↑ ∩g[X′←0]) ↑ of l, when z 6= ∅.
9: Abstract each of the newly created zones if necessary and for any newly

created zone z, for location l, if ∃z1 of same location such that z ∩ z1 6= ∅, then
merge z and z1.

10: Update edges from zones of lp to zones of l appropriately.
11: If a new zone of l is added or an existing zone of l is modified, then for all

successors lj of l, enqueue < lj , l > to Q.
12: successors added = true.
13: end if
14: Find the canonical decomposition of constraint based on the guards of the

outgoing transitions of l.
15: Split the existing zones of l further based on this canonical decomposition men-

tioned above. Note that the zones created from this split are convex.
16: Abstract each of the newly created zones if necessary.
17: Update edges appropriately.
18: if any new zones of l are created or any existing zones of l are modified due

to the canonical decomposition of the outgoing edges of l and successors added =
false then

19: for all the successor locations lj of l to Q, enqueue < lj , l > to Q.
20: end if
21: end while
22:
23: /* Phase 2 : In this phase, pre stability is enforced */
24: new zone = 1
25: while new zone = 1 do
26: new zone = 0

27: for all edges li
g,a,X′−−−−→ lj do

28: for all pairs of zones zlik, zljm such that zlik
a−→ zljm is an edge in the zone

graph do
29: if !(zlik 6⊆ [zljm↓

[X′←0]−1 ∩ g] ↓) then

30: Split zlik into [zljm↓
[X′←0]−1 ∩ g] ↓ and zlik − [zljm↓

[X′←0]−1 ∩ g] ↓ /*

Note that this split still maintains convexity of zlik since the zone is split entirely
along an axis that is parallel to the diagonal in the n-dimensional space. */

31: new zone = 1
32: Update the edges
33: end if
34: end for
35: end for
36: end while
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followed by a phase 2 in which pre-stability is ensured for every transition. Pre-
stability implies that for some state (l, v) in a node (l, z) such that for a v |= z,

for a timed trace tr, if (l, v)
tr−→ (l′′, v′′), where (l′′, v′′) is a state of node (l′′, z′′),

then ∀v′ |= z, ∃tr′.(l, v′) tr′−−→ (l′′, ṽ), such that t̂r
′

= t̂r and ṽ |= z′′ and hence
(l′′, ṽ) belongs to the zone (l′′, z′′). Here t̂r represents the sequence of visible
actions in tr. According to the construction given in algorithm 1 , for a given
location of the timed automaton, the zones corresponding to any two nodes are
disjoint.

3 Equivalences for Timed Systems

In this section, we define the timed and the time abstracted relations considered
in this work. We only consider the strong form of these relations here. We enu-
merate a few clauses first using which we define p1R p2 where p1 and p2 are two
timed automata states and R is a timed or a time abstracted relation.

1. ∀a ∈ Act ∧ ∀p′1, p1
a→ p′1 ⇒ [ ∃p′2 : p2

a→ p′2 ∧ p′1Rp′2 ]

2. ∀a ∈ Act ∧ ∀p′1, p1
a→ p′1 ⇒ [ ∃p′2 ∃d′ ∈ R≥0 : p2

d′→ a→ p′2 ∧ p′1Rp′2 ]

3. ∀a ∈ Act ∧ ∀p′1, p1
a→ p′1 ⇒ [ ∃p′2 ∃d1, d2 ∈ R≥0 : p2

d1→ a→d2→ p′2 ∧ p′1Rp′2 ]

4. ∀d ∈ R≥0 ∧ ∀p′1, p1
d→ p′1 ⇒ [ ∃p′2 : p2

d→ p′2 ∧ p′1Rp′2 ]

5. ∀d ∈ R≥0 ∧ ∀p′1, p1
d→ p′1 ⇒ [ ∃p′2 ∃d′ ∈ R≥0 : p2

d′→ p′2 ∧ p′1Rp′2 ]

p2 time simulates p1 if the clauses 1 and 4 hold. R is a timed simulation equiv-
alence if p1 time simulates p2 and p2 time simulates p1. A symmetric timed
simulation is a timed bisimulation relation. A symmetric relation that satisfies
clauses 1 and 5 is a time abstracted bisimulation. A relation that is symmetric
and satisfies clauses 2 and 5 is a time abstracted delay bisimulation relation. A
symmetric relation satisfying clauses 3 and 5 is a time abstracted observational
bisimulation.

The corresponding largest bisimulation relations are called bisimilarity re-
lations and they are timed bisimilarity (∼t), time abstracted bisimilarity (∼u),
time abstracted delay bisimilarity (∼y), time abstracted observational bisimilar-
ity (∼o). It is easy to see from the definitions that strong timed bisimulation
implies strong time-abstracted bisimulation whereas the converse is not true.
Besides, the definitions imply ∼u⊆∼y⊆∼o. Also the existence of a bisimulation
relation between two states implies the existence of the corresponding simulation
equivalence. Hence we have ∼t⊆∼u⊆∼y⊆∼o and similar containment relations
also exist among the corresponding simulation equivalences.

4 Deciding relations for Timed Automata

In this section, we present a unifying approach to decide several relations for
timed automata using zone valuation graph.

124



4.1 Deciding Timed Bisimulation

In timed bisimulation, the delay made by one state has to be matched exactly by
the other state. Timed bisimulation has been proved to be decidable for timed
automata in [3] where a product construction technique on the region graphs
has been used. In [15], product construction is applied on zone graph instead of
region graph for deciding timed bisimulation. In order to decide this relation,
we define corner point bisimulation relation and argue that corner point bisim-
ulation relation is decidable for timed automata. Then we prove that the corner
point bisimulation actually coincides with timed bisimulation. Our method elimi-
nates the product construction required on zone graphs. Timed bisimulation has
infinitely many equivalent classes. However, we show that instead of checking
all possible delays, timed bisimulation for timed automata can be decided by
checking delays of the form n, n + δ or n − δ, where n ∈ {0, 1, . . . , C}, where
C = max(CA, CB), CA and CB being the maximum constants with which any
of the clocks has been compared in timed automata A and B respectively. We
define corner point bisimulation formally below.

Definition 5. Corner point simulation (cp-simulation): A relation R is a cor-
ner point simulation relation, if for two timed automata states p and q, (p, q) ∈
R, i.e. q simulates p and the following conditions hold.
For every visible action a ∈ Act, if p

a−→ p′, then ∃q′ such that q
a−→ q′ and p′Rq′

If p is in node Np, consider the maximum possible delay d from p such that

p
d−→ p′ and p′ is in node Np, ∃q′ such that q

d−→ q′ and p′Rq′
For every node Np′ 6= Np such that Np ε−→ Np′ , consider the minimum delay d

from p such that p
d−→ p′ and p′ is in node Np′ , ∃q′ such that q

d−→ q′ and p′Rq′

A symmetric corner point simulation relation is a corner point bisimulation (cp-
bisimulation).

Definition 6. Corner point trace: Consider a pair of states (p′, q′) appearing in
a corner point bisimulation relation. A timed trace from the state p to the corner
point p′ following the delays and actions specified in definition 5 is termed a
corner point trace.

Lemma 1. For the timed automata states p and q, there are only finitely many
pairs of states in R where R is a corner point simulation or bisimulation relation.

Theorem 1. Corner point simulation and corner point bisimulation relations
are decidable.

Lemma 2. For two timed automata initial states p and q, p ∼t q ⇒ pRq.

We will now prove that corner point bisimulation between two timed au-
tomata states implies that they are timed bisimilar.

Fact 1 If p and q are not timed bisimilar, then one of the following conditions
hold true.
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– There exists a timed trace tr such that p
tr−→ p′ and ∀q′ such that q

tr−→ q′

and sort(p′) 6= sort(q′).

– There exists a timed trace tr such that q
tr−→ q′ and ∀p′ such that p

tr−→ p′

and sort(q′) 6= sort(p′).

Taking contrapositive of the above fact, if for every timed trace tr from p, such

that p
tr−→ p′, ∃q′ such that q

tr−→ q′ and sort(p′) = sort(q′) and similarly for every

timed trace tr from q, such that q
tr−→ q′, there exists a p′ such that p

tr−→ p′ and
sort(q′) = sort(p′), then p and q are timed bisimilar.

We prove that if p and q are cp-bisimilar, then the above condition holds. We
state this formally below. In the statement of the lemma, we abuse the notation
p1 + d1 to denote a state where all clock valuations of p1 have been increased by
d1.

Lemma 3. If p1 and q1 are cp-bisimilar, then the following conditions hold true
for all n ∈ N.

– For all delays d1, d2, . . . , dn ∈ R≥0 and ∀a1 ∈ sort(p1 + d1), ∀a2 ∈ sort(p2 +

d2), . . . , ∀an ∈ sort(pn + dn) such that p1
d1−→ a1−→ p2

d2−→ a2−→ · · · pn dn−→ an−−→
pn+1, ∃a1 ∈ sort(q1+d1), ∃a2 ∈ sort(q2+d2), . . . , ∃an ∈ sort(qn+dn), such

that q1
d1−→ a1−→ q2

d2−→ a2−→ · · · qn dn−→ an−−→ qn+1 and pn+1 and qn+1 can perform
the same set of actions after same delay dn+1 ∈ R≥0, i.e. sort(pn+1+dn+1) =
sort(qn+1 + dn+1).

– For all delays d1, d2, . . . , dn ∈ R≥0 and ∀a1 ∈ sort(q1 + d1), ∀a2 ∈ sort(q2 +

d2), . . . , ∀an ∈ sort(qn + dn) such that q1
d1−→ a1−→ q2

d2−→ a2−→ · · · qn dn−→ an−−→
qn+1, ∃a1 ∈ sort(p1+d1), ∃a2 ∈ sort(p2+d2), . . . , ∃an ∈ sort(pn+dn), such

that p1
d1−→ a1−→ p2

d2−→ a2−→ · · · pn dn−→ an−−→ pn+1 and pn+1 and qn+1 can perform
the same set of actions after same delay dn+1 ∈ R≥0, i.e. sort(pn+1+dn+1) =
sort(qn+1 + dn+1).

– If p
tr−→ p′ and q

tr−→ q′ where Np′ and N q′ are the nodes containing timed
states p′ and q′ respectively, then there exists at least one corner point trace

tri such that t̂r = ˆtri and p
tri−−→ p̃ and q

tri−−→ q̃ such that p̃ is a state in the
node Np′ and q̃ is a state in the node Nq′ .

Lemma 4. For two timed automata initial states p and q, pRq ⇒ p ∼t q, where
R is a corner point bisimulation relation.

We state here the main theorem of the paper for deciding timed bisimulation
by deciding cp-bisimulation by combining the lemma 2 and 4.

Theorem 2. For two timed automata states p and q, p and q are timed bisimilar
if and only if p and q are cp-bisimilar.
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4.2 Deciding Time Abstracted Bisimulation

Time abstracted bisimulation has been shown to be decidable [1][10] using region
graph [2]. For the two given timed states, their region graphs are constructed. If
the region graphs are strongly bisimilar, then the two states are time abstracted
bisimilar. We use zone valuation graph instead of region graph. The size of zone
valuation graph, is independent of the constants with which the clocks are com-
pared in the timed automaton guards. Let Z(A1,p) be the zone graph for timed
state p of timed automaton A1. If there are two valuations (l, v) and (l, v′) such
that they belong to the same node, then by construction of Z(A1,p), (l, v) and
(l, v′) are time abstracted bisimilar. Thus in the zone graph, it is the case that a
state (l, v) in the TLTS of A is time abstracted bisimilar to the zone z in the zone
graph Z(A1,p). The same holds for a timed state (l2, v2) of the TLTS correspond-
ing to another timed automaton A2. Thus checking whether two states (l1, v1)
and (l2, v2) of two timed automata A1 and A2 are time abstracted bisimilar in-
volves checking whether their corresponding nodes in the two timed automata
are strongly bisimilar. The following theorems show how time abstracted de-
lay bisimulation and time abstracted observational bisimulation [13] too can be
decided along with strong time abstracted bisimulation using zone valuation
graph.

Theorem 3. Let R ⊆ S1×S2 be a symmetric relation. Two nodes (s1, s2) ∈ R
if and only if ∀a ∈ Act,∀s′1[s1

a→ s′1 ⇒ ∃s′2 . s2
β→ s′2 and (s′1, s

′
2) ∈ R] and

∀s′1, [s1
ε→ s′1 ⇒ ∃s′2 . s2

ε→ s′2 and (s′1, s
′
2) ∈ R]

Two states p and q are strong timed bisimilar iff ZA1,p R ZA2,q and β is the
transition a, they are time abstracted delay bisimilar if β is the sequence of
transitions

ε→ a→ whereas p and q are time abstracted observational bisimilar if β
is

ε→ a→ ε→.

4.3 Complexity of Deciding Bisimulation Relations

In our work, we decide the timed and the time abstracted relations using a zone
graph approach. For a given location, the zones in the zone graph are disjoint.
Thus the size of the zone graph is limited by the size of the region graph and it
is thus exponential in the number of clocks of the timed automaton. However,
in most cases, the size of the zone graph is smaller than the size of the region
graph. Besides, for checking timed bisimulation, a product construction on the
region graphs characterizes the common behaviour of the two timed automata
and one still needs to store the original region graphs as well in order to check
for timed simulation relation or timed bisimulation. The same argument holds
for the product construction on the zone graphs as well used in [3]. Thus since
we do not use a product construction on the zones and use the individual zone
valuation graphs of the two timed automata directly for deciding the relations,
our algorithm uses less space. Deciding timed bisimulation and timed simulation
is known to be EXPTIME-complete [9]. Thus our algorithm is not asymptotically
better than existing approaches, however it has better running time and uses
lesser space than existing approaches.
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5 Game Characterization

Bisimulation games were defined in [12] for discrete processes. In [4], bisimulation
game has been extended for the Van Glabbeek’s spectrum [14]. We present here
game characterizations for timed relations that is similar to bisimulation games
and define the game semantics using zone valuation graph. As in the bisimula-
tion game, the game is played in rounds on two graphs. The game may be played
between the nodes of the zone valuation graph (game for time abstracted rela-
tions) or between the timed states appearing in some node of the zone valuation
graph (game for timed relations). In each round, the challenger chooses a graph
and the defender tries to make a corresponding move on the other graph where
the correspondence of the moves is defined in the following subsection in terms
of the ordered tuple α. If the defender can always make a move in response to the
challenger’s move, then it has a winning strategy implying that the two states
are related through the relation that corresponds to the game. Otherwise it loses
which implies that the two states are not related in which case the challenger is
said to have a winning strategy. If the challenger changes the graph between two
consecutive rounds, it is known as an alternation. Alternations are not allowed
in simulation preorder and simulation equivalence games. A game always termi-
nates due to the finiteness of the zone valuation graph. In the games described
in this section, the moves denote a visible action or a delay action or a sequence
of actions belonging to the set Act ∪ {ε}.

5.1 Game Template

A timed game proposed in this work can be described as n− Γαk . Each game is
characterized by the following parameters:

– n : number of alternations. If not mentioned, then there is no restriction on
the number of alternations.

– k ∈ {N ∪∞} : number of rounds; n ≤ k − 1 when k 6=∞.
– α : an ordered tuple 〈α1, α2〉. α1 denotes the move chosen by the challenger.

Depending on the game for the timed relation, either α1 ∈ Lep or α1 ∈
Act ∪ R≥0 whereas α2 denotes the move chosen by the defender and may
be the same as α1 or may be a sequence of the form ε.α1 or ε.α1.ε, e.g. for
the pair 〈a/ε, ε.a/ε〉 where a ∈ Act, the challenger makes a move a whereas
the defender’s move consists of ε followed by an a. Particularly, in the timed
bisimulation game, α is assigned 〈a/d, a/d〉, which denotes that a visible
action by the challenger has to be matched by the defender and a delay
action d by the challenger has to be matched with an exact delay d move by
the defender.

5.2 Hierarchy of Games

A hierarchy among the timed relations discussed in this paper is captured in
figure 1(a). We show here several lemmata which capture this hierarchy through
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∞
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∞
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∞
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∞
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0−Γ 〈a/ε,ε.a.ε/ε〉
∞

(b)

Fig. 1. (a) presents the spectrum of timed relations and (b) shows timed games corresponding to
these relations

the game semantics. These lemmata also help us build an infinite game hierarchy
which also suggests defining several new timed relations that do not exist in the
literature. The arrow from a game Γ1 to a game Γ2 denotes that if the defender
has a winning strategy for Γ1, then it also has a winning strategy for Γ2. Besides
in each of the following lemmas, for each pair of games, if Γ1 −→ Γ2, then
Γ2 6−→ Γ1. Figure 1(b) shows the games corresponding to the relations shown in
figure 1(a). The game hierarchy reflects the hierarchy of the timed relations.

Lemma 5. Γα∞ −→ n−Γα∞ −→ (n−1)−Γα∞, for all n > 0
Γαk −→ n−Γαk −→ (n−1)−Γαk , for all k > 0, n < k

Other parameters remaining the same, if the defender has a winning strategy
when the challenger is allowed more alternations, then the defender will also win
the game where the challenger is allowed lesser number of alternations.

Lemma 6. Γα∞ −→ Γαk −→ Γαk−1, for all k > 0
n−Γα∞ −→ n−Γαk −→ n−Γαk−1, for all k > 0, n < k

Other parameters remaining the same, if the defender wins the game with more
number of rounds, then it also wins the game which has lesser number of rounds
in the game.

Lemma 7. n − Γ
〈a/d,a/d〉
k −→ n − Γ

〈a/ε,a/ε〉
k −→ n − Γ

〈a/ε,ε.a/ε〉
k −→ n −

Γ
〈a/ε,ε.a.ε/ε〉
k

If the defender can match a delay action exactly as in the corner point bisimu-
lation, then it can match an epsilon move of the challenger. Also if the defender
can reply to a visible action of the challenger, then it can reply with an ε.a or
an ε.a.ε move since ε may represent a zero delay.
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6 Conclusion

In this paper, we present a unified zone based approach to decide various timed
relations between two timed automata states. In our method, we do not need
explicit product construction of regions or zones for deciding these relations as
used in [3] or [15]. We also provide a game semantics for deciding these timed
relations and show that the hierarchy among the games reflects the hierarchy
among the timed relations. The advantage of a game-theoretic formulation is that
it allows fairly general relationships between the parameters on Γ to define the
hierarchy. The fine-tuning and variations of these parameters allow formulations
of many more equivalences and preorders than the ones present in the literature
related to behavioural equivalences involving real time which otherwise may not
be easily captured through operational definitions and reasoning.
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Abstract. We introduce Vector Addition Systems with Split/Join tran-
sitions (VASS-SJ), a symmetric extension of Branching VASS. We intro-
duce a suitable notion of covering tree (Karp and Miller Tree) for the
model, and prove its finiteness and effective constructibility. We use this
covering tree to obtain a coverability result, a key step-stone towards a
reachability algorithm.

Introduction

Petri Nets (PNs), and equivalent models of computation such as Vector Addition
Systems (VAS) and Vector Addition Systems with States (VASS) are a natu-
ral resource sensitive model of computation, for which reachability (for PNs) or,
equivalently, positive reachability (for VASs and VASSs), among other key prop-
erties, has been proven decidable [Kos82,May84,May81,Lam92,Reu88]. Several
natural extensions of this model have been studied (e.g colored, hierarchical, pri-
oritized, recursive PNs ) for which reachability has been proven either decidable
or undecidable.
Another natural extension of PNs are Vector Addition Tree Automata (VATA),
introduced by de Groote, Guillaume and Salvati [dGGS04], who prove the equiv-
alence between reachability in the VATA model and provability in Multiplicative
Exponential Linear Logic (MELL), a problem whose decidability status is still
unknown today. VATA behave like Petri nets enriched with a ”join” transition,
where two distinct markings are merged together in a new one. The reachability
problem for VATA is then whether a given set of initial markings can yield a
given final marking by a finite sequence of transition firings.
Independently to the former authors, Verma and Goubault-Larrecq [VGL05] in-
troduced a branching extension of VASS, called BVASS, for which they proposed
a notion of Karp and Miller Tree that allows one to establish the decidability
of properties such as finiteness, boundedness and emptiness of their model. Yet,
they do not obtain the decidability or undecidability of the reachability problem.
It turns out that the BVASS model is actually equivalent to the VATA model
of de Groote, Guillaume and Salvati, and the positive reachability of the former
is equivalent to the reachability of the latter. Further work on the complexity of
decision problems for the BVASS model has been done by Demri et al. [DJLL09]
and by Lazic [Laz10].
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A careful reading of the reachability algorithm of Kosaraju and Mayr [Kos82],
[May84,May81] for PNs or for VASS positive reachability reveals a feature of the
model that is central in the construction of the algorithm: PNs, as well as its
equivalent models, VAS and VASS, are symmetric, in the sense that the model is
stable by an inversion of the arrows. This feature is not present in the VATA or
in the BVASS model, hence it seems unlikely that one can adapt the algorithm
of Kobayashi and Mayr to the setting of VATA or BVASS.
Our contribution to this line of research consists in the symmetrization of the
BVASS model, that we call Vector Addition Systems with States and Split/Join
transitions (VASS-SJ). VASS-SJs are not functional rewriting systems, and, as
such, are not subject to the study of Finkel and Goubault-Larrecq [FG12]. As a
first step towards a reachability result for VASS-SJ, we also introduce a suitable
extension of the classical notion of Karp and Miller Tree for VASS to this new
model of VASS-SJ. This extension is a pair of two elements: a directed, acyclic
graph, and a partition of its set of vertices that quotients it to a tree. We prove its
finiteness and effective constructibility, and prove its use for coverability results:
we prove that the generalized configurations of the Karp and Miller tree capture
in a synthetic way all unbounded configurations that are positively reachable.
This result, Theorem 3, can be seen as a key step-stone towards a generalization
of the classical reachability algorithm for PNs to PN-SJ.
The first section is devoted to the definition of the model, and a first reacha-
bility result, the decidability of its Z-reachability. The Karp and Miller tree is
introduced in Section 2, where its finiteness and constructibility is stated. This
Karp and Miller tree is used in Section 3 for a first N-coverability result. The
proofs, too long for a short presentation, are postponed to a later publication.

1 VASS-SJ

1.1 Definitions

Definition 1. VASS-SJ.
A Vector Addition Systems with States and Split/Join transitions (VASS-SJ) is
a 4-tuple S = (G,T,m, v), where:

– G = (Q,A) is a finite directed graph, whose vertices are called states,
– T ⊆ A ∪A2 is a set of transitions,
– m ≥ 1 is a natural number,
– v : T → Zm ∪ {s} ∪ {j} is a value function, such that

regular transition: v(t) ∈ Zm if and only if t ∈ A,
split transition: v(t) = s if and only if t = (a1, a2) and a1 and a2 share

the same origin,
join transition: v(t) = j if and only if t = (a1, a2) and a1 and a2 share

the same destination.

Definition 2. Configuration of a VASS-SJ.
Let S = (G,T,m, v) be a VASS-SJ. A single configuration of G is a 2-tuple

132



c = (q, x), where q ∈ Q is a state and x ∈ Zm is a value. A single configuration
c is positive if and only if no coordinate of its value is negative. A configuration
of S is a multiset C of single configurations of S. A configuration is positive if
and only if all its single configurations are positive.

1.2 Execution Semantics of a VASS-SJ

Definition 3. Firing of a Transition.
Let S = (G,T,m, v) be a VASS-SJ, and C be a configuration of S. Let t be a
transition of S. The firing of t in (S, C) is the relation (S, C)→t (S, C′), where

if t is regular: t = (q0, q1), there exists c = (q0, x0) ∈ C, and C′ = C \ {c} ]
{(q1, x0 + v(t))}.

if t is split: t = ((q0, q1), (q0, q
′
1)), there exists c0 = (q0, x0) ∈ C, and C′ =

C \ {c0} ] {(q1, x1)} ] {(q′1, x′1)}, with x0 = x1 + x′1.
if t is join: t = ((q0, q1), (q′0, q1)), there exist c0 = (q0, x0) ∈ C and c′0 =

(q′0, x
′
0) ∈ C, and C′ = C \ {c0} \ {c′0} ] {(q1, x0 + x′0)}.

Definition 4. Z and N-Reachability Problem.
Let S be a VASS-SJ, C0, C1 be two configurations on S. The Z-reachability prob-
lem (respectively N-reachability problem) for S, C0, C1 is the following:
Does there exist a finite sequence of transitions t0, · · · , tk of S such that (S, C0)→t0

· · · →tk (S, C1)? (resp. such that (S, C0) →t0 · · · →tk (S, C1), with only positive
configurations?)

Theorem 1. The Z-reachability problem for VASS-SJ is decidable.

1.3 Generalized Configurations and Transition Trees

We extend the three types of transitions of a VASS-SJ with a new idle (id)
transition type. We use this new transition type as a tool to sequentialize the
execution semantics of VASS-SJ in a graph theoretic way.

Definition 5. Generalized configurations.
For m ≥ 1, we consider the usual product order ≤ on (N∪∞)m. Given a VASS-
SJ S = (G,T,m, v), with G = (Q,A), a generalized single configuration of S is
a 2-tuple g = (q, x), where q ∈ Q is a state and x ∈ (N ∪ ∞)m is a general-
ized value. For two generalized single configurations g and g′, we write g ≤ g′

if and only if g = (q, x), g′ = (q, x′) and x ≤ x′. A generalized configuration is
a 2-tuple (G,MG), where G is a finite set of generalized single configurations of
S, and MG : G → N ∪ ∞ is a multiplicity function. In other words, a general-
ized configuration is a finite multiset whose elements may have finite or infinite
multiplicity. Abusing notations, , we will often write a generalized configuration
with a set notation G = {ck11 , · · · , cknn }, where the ki are the multiplicities. The
firing of a transition t of S is naturally extended over generalized configurations:
Let G and G′ be two generalized configurations of S. The firing of t in (S,G) is
the relation (S,G)→t (S,G′), where
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if t is regular: t = (q0, q1), there exists c = (q0, x0) ∈ G, and G′ = G \ {c} ]
{(q1, x0 + v(t))}.

if t is split: t = ((q0, q1), (q0, q
′
1)), there exists c0 = (q0, x0) ∈ G, and G′ =

G\{c}]{(q1, x1)}]{(q′1, x′1)}, with x0 = x1+x′1 if x0 ∈ N, x0 = x1 = x2 =∞
otherwise.

if t is join: t = ((q0, q1), (q′0, q1)), there exist c0 = (q0, x0) ∈ G and c′0 =
(q′0, x

′
0) ∈ G, and G′ = G \ {c0} \ {c′0} ] {(q1, x0 + x′0)}.

if t is (id): G = G′.

Definition 6. Base of a generalized configuration
Let S = (G,T,m, v) be a VASS-SJ, and G be a generalized configuration of S.
A Base of G is a finite set BG of vertices, each vertex being labelled with some
gk, where g ∈ G and k ∈ {1,∞}, such that:

– for every generalized single configuration g ∈ G, MG(g) is the sum of the
multiplicities of labels of vertices in BG labelled with gk, for any k,

– for every vertex v in BG labelled with gk, the corresponding g is in G, and
– for every generalized single configuration g ∈ G with ∞ multiplicity, exactly

one vertex v in BG is labelled with g∞.

BG is in normal form if, for any g ∈ G with ∞ multiplicity, no vertex is labelled
with g1. The firing of a transition t of S over generalized configurations is ex-
tended over their bases: if (S,G)→t (S,G′), and B and B′ are bases of G and G′
respectively, we define (S,B)→t (S,B′) as a bipartite graph (B ]B′, E), where,

– all edges but one (if t is regular) or two (if t is join or split) are (id) edges,
from v ∈ B labelled with gk to w ∈ B′ labelled with the same gk,

– all vertices of B labelled with g1 are source of exactly one edge, all vertices
of B′ labelled with g1 are target of exactly one edge,

– all vertices of B labelled with g∞ are source of an (id) edge, all vertices of
B′ labelled with g∞ are target of an (id) edge,

– if t is regular, there exists one edge (v, w), where v ∈ G is labelled with gk,
w ∈ G′ is labelled with hl, and (S, {g1})→t (S, {h1}),

– if t is join, there exist two edges (v1, w) and (v2, w), where v1 ∈ G is la-
belled with g1

k1 , v2 ∈ G is labelled with g2
k2 , w ∈ G′ is labelled with hl and

(S, {g11} ] {g21})→t (S, {h1}), and,
– if t is split, there exist two edges (v, w1) and (v, w2), where v ∈ G is labelled

with gk, w ∈ G′ is labelled with h1
l1 , w′ ∈ G′ is labelled with h2

l2 and
(S, {g1})→t (S, {h11} ] {h21}).

Definition 7. � order relation, welding graphs.
Let S = (G,T,m, v) be a VASS-SJ, G and G′ be two generalized configurations of
S with bases BG and BG′ . Then, BG � BG′ if and only if there exists a directed
graph GBG�BG′ = (V,E), called welding graph, such that:

– V = BG ]BG′ ,
– E ⊆ BG ×BG′ ,
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– (v, v′) ∈ E only if v ∈ BG is labelled with gk, v′ ∈ BG′ is labelled with g′k
′
,

and g ≤ g′,
– for all v ∈ BG labelled with g∞, there exists at least one v′ ∈ BG′ with

(v, v′) ∈ E labelled with g′∞, and
– for all v ∈ BG labelled with g1, there exists exactly one v′ ∈ BG′ with (v, v′) ∈
E, and v′ is labelled with g′1.

Note that a given relation BG � BG′ may have different welding graphs. If,
moreover, for any edge (v1, v0) ∈ GBG�BG′ , with v1 labelled with gk11 and v0

labelled with gk00 , each coordinate in (g0−g1) is either 0 or∞, we write g1 ≤∞ g0
and BG �∞ BG′ respectively.

Definition 8. Quotient graph, quotient tree.
Let G = (V,E) be a finite directed graph. A partitioning of G is a division of its
vertices into disjoint subsets B = {B1, · · · , Bk}. The quotient graph induced by
the partitioning, written, G/B, is the graph G′ = (B,E′) where (Bi, Bj) ∈ E′ if
and only if there exists vi ∈ Bi and vj ∈ Bj such that (vi, vj) ∈ E. If G/B is a
tree we call it the quotient tree of G induced by B.

Definition 9. pairing relation.
Let G = (V,E) be a directed graph. A pairing relation on E is an symmetric
relation on E such that:

– only one edge can be paired with any given edge, and
– (v1, w1) and (v2, w2) are paired only if either v1 = v2, or w1 = w2.

Definition 10. Generalized Transition Tree (GTT)
Let S = (G,T,m, v), with G = (Q,A) be a VASS-SJ. A Generalized transition
tree (GTT) (G,B) on S is a labelled acyclic directed finite graph G = (V,E),
together with a pairing relation on E, and a partitioning B = {B1, · · · , Bk) of V
such that:

– each vertex of V is labelled with a generalized single configuration g on S,
together with a multiplicity 1 or ∞,

– each edge of E is labelled with a transition t of S, or with (id),
– G/B is a quotient tree, and
– for any edge (Bi, Bj) of G/B,

1. all edges from Bi to Bj but at most one (labelled with a regular t) or two
(labelled with a join or split t) are labelled with (id), and

2. there exists a base B′j such that Bi →t B
′
j, and Bj can be obtained from

B′j by replacing finite coordinates or finite multiplicities with ∞ ones.

Moreover, (G,B) is in normal form if all bases in B are in normal form. The
normal form of (G,B) is the GTT obtained from (G,B) by merging together all
vertices of the same base Bi in B labelled with g∞ or g1 for the same g, as
long as there exists one vertex labelled with g∞. When G/B is a sequence, G is
refereed as a Generalized transition sequence (GTS). When moreover all bases
of B are bases of (positive) configurations, G is refereed as a (positive) transition
sequence.
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Remark 1. Without loss of generality, the Z (respectively N) Reachability Prob-
lem can be formulated as follows: Let S be a VASS-SJ, C0, C1 be two configu-
rations on S of base B0 and B1. Does there exists a transition sequence (resp.
positive transition sequence) (G,B) from B0 to B1 in S?

2 Karp and Miller Tree

2.1 Definitions

We present in this section some natural extensions of classical notions used for
PNs and VASS to our setting of VASS-SJ. We do not only introduce ∞ values
in single configurations, as in the classical case, but also ∞ multiplicities of
single configurations, to denote the fact that, from some point, a value or a
multiplicity can be raised to an arbitrary high level. We present now the lifting
operation, which allows us to replace a finite value or multiplicity by an ∞ one
when applicable.

Definition 11. Single Liftings.
Let S be a VASS-SJ. Let (G,B) be a GTT on S. Let Bi, Bn ∈ B, where Bn
is a leaf of the quotient tree G/B. We write Bi � Bn if and only if Bi � Bn
and there exists a path from Bi to Bn in G/B. Similarly we write Bi �∞ Bn if
and only if Bi �∞ Bn and there exists a path from Bi to Bn in G/B. Assume
Bi � Bn and let GBi�Bn

= (Bi]Bn, E) be the corresponding welding graph. The
single lifting of (Bn, Bi) in (G,B), denoted as #(Bn, Bi)

GBi�Bn is the following
operation.

– ∀(v, v′) ∈ E, v labelled with (q, x)k, v′ labelled with (q, x′)k, ∀1 ≤ j ≤ m, if
xj < x′j, replace x′j with ∞,

– for any point v ∈ Bn isolated in GBi�Bn , labelled with g1, make v′ a copy of
v, and label v′ with g∞.

Note that different choices choices for the welding graph GBi�Bn
yield actually

different results: a point isolated in one welding graph may not be isolated in
another one. In such a case, making a copy of the isolated point, and modifying
the label of the copy only ensures that two such single liftings commute. Note
also that the number of possible choices is clearly exponentially bounded in the
size of the bases.

Definition 12. Liftings.
Let S be a VASS-SJ. Let (G,B) be a GTT on S. Let Bn ∈ B be a leaf of the
quotient tree G/B. Let B′1, · · · , B′k be the finite (possibly empty) sequence of bases
in B, in order increasing from the root of (G/B) to Bn, such that, for any B′i in
the sequence, B′i � Bn in (G,B). If the sequence B′1, · · · , B′k is not empty, the
lifting transition sequence of Bn is the GTS = (G′, E), with E = {E0, · · · , Ei},
inductively defined as follows

1. Bn = E0 is the (finite) set of vertices of G′ of in-degree 0, with the same
labels as in (G,B).

136



2. For i = 1, · · · , k, let Ei−1 ∈ E be the leaf of G′/E, of depth i − 1. Extend
(G′, E′) with a GTS from Ei−1 to a copy Ei of Ei−1, (with only (id) edges).
Then, For all welding graphs GB′i�Ei

corresponding to B′i � Ei, perform the

single lifting #(E′i, B
′
j)
GB′

i
�Ei .

If the sequence B′1, · · · , B′k is empty, the lifting transition sequence of Bn is
restricted to Bn. Now, the lifting of Bn in (G,B), denoted as #(Bn), is the result
of extending (G,B) with the lifting transition sequence of Bn, and normalizing.

Now, we introduce our construction of a Karp and Miller Tree.

Definition 13. Karp and Miller Tree.
Let S be a VASS-SJ and B be a base of a configuration C of S. The Karp
and Miller tree T = (V,E,B) on (S,B) is a GTT (G,B), where G = (V,E),
constructed inductively as follows.

1. B1 ∈ B is B.

2. Let Bj ∈ B base of Gj in G. If there exists Bi ∈ B base of the same Gj in G,
and a path from Bi to Bj in G/B, the vertices of Bj have out-degree 0 in G
(hence Bj has out-degree 0 in G/B). Otherwise,

3. assume there exists a transition t and a generalized configuration Gk with
base Bk in normal form, such that Bj →t Bk. Then, extend T with the GTS
(Bj →t Bk, Bj ]Bk), and perform the lifting #(Bk) in T.

This inductive construction halts when no new base can be added with these rules.

The definition above induces the following property: Bi � Bn ⇒ Bi �∞ Bn.

2.2 Constructibility of the Karp and Miller Tree

Lemma 1. The following statements are true:

1. Let un ∈ (N ] ∞)m, n ∈ N, be an infinite sequence of m-tuples for some
m ∈ N. Then, there exists an infinite sub-sequence u′n, n ∈ N of un that is
increasing for the order relation ≤.

2. Let S be a VASS-SJ. Let (G,B) be an infinite GTS on S, with B = (Bn),
n ∈ N. Then, there exists an infinite sub-sequence (B′n), n ∈ N of (Bn) that
is increasing for the order relation � in (G,B).

Proof. The proof is based on well quasi-orders and Higman’s Lemma [Hig52].

Theorem 2. Let S be a VASS-SJ and B be a base of a configuration C of S.
The Karp and Miller tree T on (S,B) is finite, and can be effectively constructed.

Proof. The proof is based on Lemma 1 and Koenig’s Lemma.
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3 Towards N-reachability

3.1 Relating Transition Sequences and GTS

Definition 14. Expansion and Composition of GTSs
Let S be a VASS-SJ. Let (G2,B2) with B2 = B1

2 , · · · , Bg2 be a GTS with initial

base B1
2 and final base Bg2 . Let Bf1 be a base of a generalized configuration of S,

such that B1
2 � Bf1 with welding graph GB1

2�B
f
1

. An expansion of (G2,B2) with

respect to the welding graph GB1
2�∞B

f
1

, is a GTS (H,D), with D = D1, · · · , Df ,

where, for all i = 1, · · · , f , Bi2 � Di with welding graph GBi
2�Di

, such that, for
all i = 1, · · · , f − 1:

– for any vertex wi ∈ Di isolated in the welding graph GBi
2�Di

, there exists
a vertex wi+1 ∈ Di+1 isolated in the welding graph GBi+1

2 �Di+1
and an (id)

edge (wi, wi+1) in H.
– for any vertices vi ∈ Bi2, vi+1 ∈ Bi+1

2 , such that there exists an edge (vi, vi+1)
labelled with a transition t (respectively labelled with (id), j, s) in G, there
exist two vertices wi ∈ Di and wi+1 ∈ Di+1, two edges (vi, wi) ∈ GBi

2�Di

and (vi+1, wi+1) ∈ GBi+1
2 �Di+1

, and an edge (wi, wi+1) labelled with the same

transition t (respectively labelled with (id), j, s) in H.

When, B1
2 �∞ Bf1 , this expansion is unique and, for all i = 1, · · · , f , Bi2 �∞

Di. Let now (G1,B1), with B1 = B1
1 , · · · , Bf1 be a GTS. The composition of

(G1,B1) and (G2,B2) with respect to the welding graph GB1
2�B

f
1

, denoted as

(G1,B1).G
B1

2�B
f
1

(G2,B2), or simply as (G1,B1).(G2,B2) when the welding graph

GB1
2�B

f
1

is clear from context, is obtained by extending (G1,B1) with the normal

form of an expansion of (G2,B2) with respect to the welding graph GB1
2�B

f
1

.

When B1
2 �∞ Bf1 , this composition is uniquely defined.

Definition 15. Path in the Karp and Miller Tree
Let S be a VASS-SJ and C be a configuration of S with base B. Let T =
(V,E,B) be the Karp and Miller tree on (S,B). A path P in T is a sequence
(B1, G1), · · · , (Bk, Gk) of bases and graphs, such that for all i = 1, · · · , k − 1,
one of the following holds:

1. (Bi, Bi+1) is an edge in T/B, and Gi is the empty graph, or
2. there exists B′i �∞ Bi in T, such that (B′i, Bi+1) is an edge in T/B, and Gi

is a welding graph GB′i�∞Bi
. If moreover B′i 6= Bi, we also require that Bi

is below Bi+1 in T/B (i.e. in the same branch of the tree).

When only (1) holds, for all i = 1, · · · , k − 1, P is said to be simple. From the
path P , we also define inductively the following GTSs:

– (H,D)1 is the restriction of T to B1 ]B2, and
– for i = 1, · · · , k−1, (H,D)i+1 is the composition of (H,D)i with the restric-

tion of T to Bi]Bi+1 when (Bi, Bi+1) is an edge in T/B, or the composition
of (H,D)i with the restriction of T to B′i ]Bi+1 with respect to the welding
graph Gi when (B′i, Bi+1) is an edge in T/B and B′i � Bi in T.
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Then, (H,D)k is uniquely defined, and is the GTS associated to P in T.

Definition 16. Transition sequence compatible with a GTS.
Let S be a VASS-SJ. Let (G,B), with B = B1, · · · , Bf , be a GTS on S, with
initial base B1 and final base Bf . Let C1 and Cf be two configurations of S
with bases D1 and Df , and (P,D) be a transition sequence on S, with initial
base D1 and final base Df , where D = D1, · · · , Df . D1, · · · , Df are compatible
with B1, · · · , Bf if and only if there exist functions fDi→Bi

: Di → Bi, for
i = 1, · · · , f , called compatibility functions, such that, for all i = 1, · · · , f

1. ∀v ∈ Vi labelled with (q, x1, · · · , xm), fDi→Bi(v) is labelled with hl with h =
(q, y1, · · · , ym) and, for j = 1, · · · ,m:
– yj =∞⇒ xj ≥ 1, and
– yj 6=∞⇒ xj = yj, and

2. for all w ∈ Bi labelled with h1, |f−1Di→Bi
(w)| = 1,

3. for all w ∈ Bi labelled with h∞, |f−1Di→Bi
(w)| ≥ 1,

(P,D) is compatible with (G,B) if and only if D1, · · · , Df are compatible with
B1, · · · , Bf , and the normal form of (G,B) can be obtained from (P,D) by re-
placing some finite coordinates or multiplicities in P with infinite ones, and
normalizing.

3.2 Positive Transition Sequences and the Karp and Miller Tree

The two results below show how the Karp and Miller tree captures effectively in a
synthetic way all N-reachable positive configurations, bounded or not-bounded.
Unbounded configurations appear in the construction if (Proposition 1) and
only if (Theorem 3) a path to this configuration in the Karp and Miller tree,
and positive transition sequence compatible with this path, exist.

Proposition 1. Let S be a VASS-SJ and C1 be a configuration of S with base
B1. Let T = (V,E,B) be the Karp and Miller tree on (S,B1). Let (H,D) be a
positive transition sequence of S, where D = D1, · · · , Dk with D1 = B1. Then,
there exists a path P in T of length k, such that (H,D) is compatible with the
GTS associated to P .

Proof. The proof is by induction on k, and by construction of T.

Theorem 3. Let S be a VASS-SJ and C be a configuration of S, of base B1.
Let T = (V,E,B) be the Karp and Miller tree on (S,B1). Let Bi ∈ B. Then,
for any N ∈ N, there exist a path PN from B1 to Bi in T, a positive transition
sequence (PNi ,DNi ) of S with initial base D1 = B1 and final base Dl, compatible
with the GTS associated to PN , and a compatibility function fDl→Bi

: Dl → Bi
such that:

1. ∀v ∈ Dl labelled with (q, x1, · · · , xm), fDl→Bi(v) is labelled with ht with
h = (q, y1, · · · , ym) and, for i = 1, · · · ,m:
– yi =∞⇒ xi ≥ N , and
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– yi 6=∞⇒ xi = yi, and
2. for all w ∈ Bi labelled with h1, |f−1Dl→Bi

(w)| = 1,

3. for all w ∈ Bi labelled with h∞, |f−1Dl→Bi
(w)| ≥ N .

Proof. The proof is by induction on the depth of Bi in T/B.

Now, in order to obtain a N-reachability algorithm for a VASS-SJ S from a base
Bi to a base Bf , the idea would be, following [Reu88], to obtain two positive
transition sequences, from Bi to a base Dl in S, and symmetrically from Bf to a
base D′m in S−1, with values and multiplicities large enough so that one may be
able to transform a transition sequence from Bf to Dl in S into a positive one.
The composition of three such sequences would then provide a positive transition
sequence from Bi to Bf in S.
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Abstract. We propose studying uniform Kurtz randomness, which is
the uniform relativization of Kurtz randomness. One advantage of this
notion is that lowness for uniform Kurtz randomness has many character-
izations, such as those via complexity, martingales, Kurtz tt-traceability,
and Kurtz dimensional measure.
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1 Introduction

One of the major topics in algorithmic randomness is “lowness”. For a given
randomness notion R, A is said to be low for R if every R-random set is R-
random relative to A, that is, A does not have enough computational power
to derandomize a random set. For instance, lowness for ML-randomness has
many characterization such as K-triviality, lowness for K and being a base for
ML-randomness [16, 11].

Lowness for Schnorr randomness has previously been studied in the litera-
ture. Some studies, however, have suggested that uniform Schnorr randomness
(the uniform relativization of Schnorr randomness) is the proper relativization
because it satisfies van Lambalgen’s theorem [14, 15] and has natural lowness
properties [9, 14, 13]. Similar phenomena have been found for other notions of
randomness [1, 2, 5]. In particular, the second author and Rute [15] have claimed
that uniform relativization is the correct relativization for all randomness no-
tions.

In this paper we study a version of Kurtz randomness. There are already some
known results on lowness for Kurtz randomness [8, 18, 10]. Again, however, van
Lambalgen’s theorem does not hold for Kurtz randomness [9], and it seems that
uniform Kurtz randomness (the uniform relativization of Kurtz randomness) is
a more natural notion. (We will show in another paper that van Lambalgen’s
theorem holds for uniform Kurtz randomness in a weaker sense, hence Kurtz
randomness and uniform Kurtz randomness are different.) In this paper, we
show that lowness for uniform Kurtz randomness has many characterizations,
which advocates for its naturalness.
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The overview of this paper is as follows. In Section 3 we introduce uniform
Kurtz randomness defined by tests and characterize it via complexity and mar-
tingales. In Section 4 we introduce the notion of Kurtz h-dimensional measure
zero where h is an order, and give characterizations via complexity and martin-
gales. In Section 5 we characterize lowness for uniform Kurtz randomness via
Kurtz h-dimensional measure zero and Kurtz tt-traceability. To prove this, we
make use of the svelte tree introduced in Greenberg-Miller [10].

2 Preliminaries

We say that n > 0 is the index of a finite set {x1, · · · , xr} of natural numbers
if n = 2x1 + 2x2 + · · · + 2xr , while 0 is the index of ∅. In the following we
often identify a finite set with its index. We also often identify σ ∈ 2<ω with
the natural number n represented by 1σ in binary representation. An order is a
nondecreasing unbounded function from ω to ω. We denote the empty string by
ε.

We recall some results on Kurtz randomness. The reader may refer to [7,
17] for details. Let µ be the uniform measure on the Cantor space 2ω. A set
A ∈ 2ω is weakly 1-random, or Kurtz random, if it is contained in every c.e.
open set with measure 1 [12]. A Kurtz null test is a sequence {[[f(n)]]} such that
f : ω → (2<ω)<ω is a computable function and µ([[f(n)]]) ≤ 2−n. A set is Kurtz
random if and only if it passes all Kurtz null tests [19]. A computable measure
machine is a prefix-free machine M such that µ([[domM ]]) is computable [6].

3 Uniform Kurtz randomness

The definition of uniform relativization [15] requires some definitions in com-
putable analysis [20, 4, 3, 21]. Let τ be the class of open sets on 2ω. A partial
function f :⊆ 2ω → τ is computable if there is a partial computable function
ψ :⊆ 2ω × ω → (2<ω)<ω such that f(Z) =

⋃
n∈ω[[ψ(Z, n)]] for each Z. If such a

function ψ is total, then f is also called total.

Definition 1. A uniform Kurtz test is a total computable function f : 2ω → τ
such that µ(f(Z)) = 1 for all Z ∈ 2ω. A set B ∈ 2ω is Kurtz random uniformly
relative to A ∈ 2ω if B ∈ f(A) for each uniform Kurtz test f .

Definition 2. A uniform Kurtz null test is a computable function f : 2ω×ω →
(2<ω)<ω such that, for each Z ∈ 2ω and n ∈ ω, µ([[f(Z, n)]]) ≤ 2−n. For a fixed
set X, we also say that {[[f(X,n)]]}n∈ω is a Kurtz null test uniformly relative to
X.

We give characterizations of uniform Kurtz randomness via machines and
martingales. Recall the following characterization of Kurtz randomness: A set
X is not Kurtz random if and only if there is a computable measure machine M
and a computable function f such that, for all n, KM (X �f(n)) < f(n)−n [8] if
and only if there are a computable martingale d and a computable order h such
that d(X �n) > h(n) for all n [19, 8].
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Proposition 1. The following are equivalent for sets A and B.

(i) A is not Kurtz random uniformly relative to B.
(ii) There are an oracle prefix-free machine M and a computable function h

such that Z 7→ µ(domMZ) is a computable function and KMB (A �h(n)) <
h(n)− n for all n ∈ ω.

(iii) There are a Q-valued martingale d ≤tt B and a computable order h such
that d(A�n) > h(n) for all n ∈ ω.

Proof. The proof of (i)⇐⇒ (ii) is a straightforward modification of the unrela-
tivized version in [8].

(i)⇒(iii): Suppose that A is not Kurtz random uniformly relative to B. Then
there is a uniform Kurtz null test f such that A ∈ ⋂n[[f(B,n)]]. Since f is a
total computable function, we can assume the existence of a strictly increasing
computable function g such that g(0) = 0 and σ ∈ f(Z, n) ⇒ |σ| = g(n). Let
k be a computable order such that k(0) = 0 and k(n) ≥ g(k(n − 1)) + 1 for all
n ≥ 1.

We construct a Q-valued martingale dZ as follows. Let dZ(ε) = 2. At stage
n ≥ 1, we define d(σ) for σ ∈ 2<ω such that g(k(n − 1)) < |σ| ≤ g(k(n)). Note
that g(k(0)) = 0. For each τ ∈ f(Z, k(n− 1)), let a(τ) be the number of strings
ρ ∈ f(Z, k(n)) such that τ ≺ ρ. For each τ 6∈ f(Z, k(n− 1)), let a(τ) = 0. Note
that a is computable from Z. We assume that, for each ρ ∈ f(Z, n), there is
τ ∈ f(Z, n − 1) such that τ ≺ ρ, whence

∑
τ∈f(Z,k(n−1)) a(τ) = #f(Z, k(n)) ≤

2g(k(n))−k(n) where the last inequality follows from µ([[f(Z, k(n))]]) ≤ 2−k(n).
Let σ ∈ 2<ω be such that g(k(n − 1)) < |σ| ≤ g(k(n)). We define a Q-valued
martingale dZ(σ) by

dZ(σ) =





dZ(σ �g(k(n− 1))) if a(σ �g(k(n− 1))) = 0

eZ(σ) if there is τ ∈ f(Z, k(n)) such that σ � τ
dZ(σ�g(k(n−1)))

2 otherwise,

where

eZ(σ) = dZ(σ �g(k(n− 1)))

(
1

2
+

2|σ|−g(k(n−1))

2 · a(σ �g(k(n)))

)
.

Clearly, d = dB ≤tt B.
First we show that d(A �g(k(n))) >

(
3
2

)n
for all n ∈ ω. If n = 0, d(ε) = 2 >

1 =
(
3
2

)0
. By assuming that d(A�g(k(n− 1))) >

(
3
2

)n−1
, we have

d(A�g(k(n))) = eB(A�g(k(n))) ≥d(A�g(k(n− 1)))

(
1

2
+

2g(k(n))−g(k(n−1))

2g(k(n))−k(n)+1

)

≥3

2
d(A�g(k(n− 1))) >

(
3

2

)n
.

We define a computable order h by

h(m) =

⌊
1

2
·
(

3

2

)n−1⌋
where g(k(n− 1)) ≤ m < g(k(n)),
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where bxc denotes the largest integer not greater than x. If m = 0, then d(A �
m) = d(ε) = 2 > 1 = h(0) = h(m). If m satisfies g(k(n − 1)) < m ≤ g(k(n)),
then

d(A�m) ≥ d(A�g(k(n− 1)))

2
>

1

2
·
(

3

2

)n−1
≥ h(m).

(iii)⇒(i): Assume that d ≤tt B. Then there is a truth-table functional Ψ
such that ΨZ is a Q-valued martingale for each Z ∈ 2ω and d = ΨB . Let f be a
computable order such that h(f(n)) ≥ 2n for all n ∈ ω. Consider the following
clopen set: CZn = {σ ∈ 2f(n) : ΨZ(σ) ≥ 2n}. Then µ(CZn ) ≤ 2−n for all n ∈ ω
and Z ∈ 2ω. Since ΨB(A � f(n)) = d(A � f(n)) > h(f(n)) ≥ 2n for each n, we
have A ∈ ⋂n CBn . ut

4 Kurtz Dimensional Measure

The effectivization of concepts from fractal geometry such as Hausdorff dimen-
sion is playing a greater role in algorithmic randomness theory (see [7, Section
13]). In this section, we introduce and give some characterizations of the notion
of effective Hausdorff-like dimension, which we call Kurtz h-dimensional measure
zero.

Definition 3. For an order h : ω → ω, a set E ⊆ 2ω is Kurtz h-dimensional
measure zero if there is a computable sequence {Cn}n∈ω of finite sets of strings
such that

E ⊆ [[Cn]] and
∑

σ∈Cn

2−h(|σ|) ≤ 2−n for all n ∈ ω.

We also say that A ∈ 2ω is Kurtz h-dimensional measure zero if {A} is Kurtz
h-dimensional measure zero.

Theorem 1. Let h be any computable order. Then the following are equivalent
for a set A.

(i) A is Kurtz h-dimensional measure zero.
(ii) There are a computable martingale d and a computable order g such that

(∀n ∈ ω)(∃k ∈ [g(n), g(n+ 1))) d(A�k) ≥ 2n · 2k−h(k).
(iii) There are a computable measure machine M and a computable order g such

that
(∀n ∈ ω)(∃k ∈ [g(n), g(n+ 1))) KM (A�k) ≤ h(k)− n.

Proof. (i)⇒(ii): Suppose that A is Kurtz h-dimensional measure zero via a se-
quence {Cn}n∈ω. Find t(n + 1) ≥ 2(n + 1) + 1 such that all strings contained
in Ct(n+1) are longer than any strings of Ct(n). Here t(n) ≥ 2n+ 1 implies that∑
σ∈Ct(n)

2−h(|σ|) ≤ 2−2n−1. For each σ, let Bσ be a martingale defined by

Bσ(τ) =





2|τ |−h(|σ|) if τ � σ
2|σ|−h(|σ|) if σ ≺ τ
0 otherwise.
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Then d =
∑
n

∑
σ∈Ct(n)

2nBσ is a computable martingale with the initial capital

∑

n

∑

σ∈Ct(n)

2n−h(|σ|) =
∑

n

2n · 2−2n−1 ≤
∑

n

2−n−1 = 1.

Define g to be a computable order such that the length of every string in Ct(n)
is contained in [g(n), g(n+1)). Then, for all n ∈ ω, there is a k ∈ [g(n), g(n+1))
such that A�k ∈ Ct(n), that is,

d(A�k) ≥ 2nBA�k(A�k) = 2n · 2k−h(k).

(ii)⇒(iii): By our assumption, for every n ∈ ω, there is k ∈ [g(n), g(n + 1))
such that d(A�k) ≥ 2n2k−h(k). Without loss of generality, we may assume that
d(ε) = 1. Consider the following clopen set:

Cn = {σ ∈ 2<ω : |σ| ∈ [g(2n), g(2n+ 1)), and d(σ) ≥ 22n2|σ|−h(|σ|)}.

Let Dn be an antichain generating Cn. Then

∑

σ∈Dn

2n−h(|σ|) ≤
∑

σ∈Dn

2n−h(|σ|)
2−2nd(σ)

2|σ|−h(|σ|)
= 2−n

∑

σ∈Dn

2−|σ|d(σ) ≤ 2−n.

Here, the last inequality follows from Kolmogorov’s inequality (see [7, Theo-
rem 6.3.3] with our assumption d(ε) = 1. Thus, by the KC theorem [7, Theorem
3.6.1], we can construct a computable measure machine M such that, for each
n ∈ ω, KM (σ) ≤ h(|σ|) − n for each σ ∈ Dn. In particular, for all n ∈ ω, there
is k ∈ [g(2n), g(2n+ 1)) such that KM (A�k) ≤ h(k)− n.

(iii)⇒(i): Assume that KM (A � k) ≤ h(k) − n for some k ∈ [g(n), g(n + 1)).
Consider the sequence {Cn}n∈ω of clopen sets defined by

Cn = {σ ∈ 2<ω : |σ| ∈ [g(n), g(n+ 1)), and KM (σ) ≤ h(|σ|)− n}.

Then A ∈ ⋂n Cn, and

∑

σ∈Cn

2−h(|σ|) ≤ 2−n
∑

σ∈Cn

2−KM (σ) ≤ 2−n.

Hence, A is Kurtz h-dimensional measure zero. ut

5 Lowness for Uniform Kurtz Randomness

In this section, we give characterizations of lowness for uniform Kurtz random-
ness. A set A ∈ 2ω is said to be low for uniform Kurtz randomness if X ∈ 2ω is
uniform Kurtz random relative to A whenever X is Kurtz random. A set A ∈ 2ω

is said to be low for uniform Kurtz tests if f(A) includes a Kurtz test for every
uniform Kurtz test f . For a given order p, a computable trace with bound p is

145



a computable sequence {Dn}n∈ω of finite sets of strings such that #Dn ≤ p(n)
for each n ∈ ω. A computable trace {Dn}n∈ω Kurtz-traces a function f : ω → ω
if there is a strictly increasing computable sequence {ln}n∈ω of natural numbers
such that

(∀k ∈ ω)(∃n ∈ [lk, lk+1)) f(n) ∈ Dn.

A set A ∈ 2ω is said to be Kurtz tt-traceable if there is a computable order
p such that, for every f ≤tt A, there is a computable trace with bound p that
Kurtz-traces f .

Theorem 2. The following are equivalent for a set A.

(i) A is Kurtz h-dimensional measure zero for every computable order h.
(ii) A is low for uniform Kurtz tests.
(iii) A is low for uniform Kurtz randomness.
(iv) A tt-computes no infinite subset of a Kurtz random set.
(v) A is Kurtz tt-traceable.

Proof. (i)⇒(ii): Let {CAn }n∈ω be a Kurtz null test uniformly relative to A, that
is, there is a truth table functional Ψ such that [[ΨA(n)]] = CAn , and µ(CAn ) ≤
2−n. Then there is a computable order u such that, for all Z ∈ 2ω and all
n ∈ ω, the value ΨZ�u(n)(n) is determined. In particular, [[ΨA�u(n)(n)]] = CAn . Let
h be a computable order fulfilling 2−h(u(n)) ≥ 1/(n + 1) for all n ∈ ω. Assume
that A is Kurtz h-dimensional measure zero. By our assumption, we have a
computable sequence {Dn}n∈ω of finite sets of strings such that A ∈ [[Dn]] and∑
σ∈Dn

2−h(|σ|) < 1/(n+ 1) for all n ∈ ω. Thus, each σ ∈ Dn has length greater
than u(n), and moreover Dn contains at most k strings of length ≤ u(n + k),
since, otherwise,

∑

σ∈Dn

2−h(|σ|) ≥ (k + 1)2−h(u(n+k)) ≥ k + 1

n+ k + 1
≥ 1

n+ 1
.

Hence, Dn can be viewed as a finite sequence {σnk }k<|Dn| of strings such that
the length of each σnk is greater than or equal to u(n+k). Thus, there is k < |Dn|
such that A �u(n+ k) = σnk �u(n+ k). Inductively define a computable order r

by r(0) = 0 and r(n+ 1) = r(n) + |Dr(n)|. Now ρ(k) is defined by σ
r(n)
k−r(n) �u(k)

for each k ∈ [r(n), r(n+ 1)). Then

(∀n ∈ ω)(∃k ∈ [r(n), r(n+ 1))) A�u(k) = ρ(k).

For all n ∈ ω and k ∈ [r(n), r(n+ 1)), define Ek ⊆ 2ω by

Ek =

{
[[Ψρ(k)(k)]], if µ([[Φρ(k)(k)]]) ≤ 2−k,

∅, otherwise.

Note that |ρ(k)| = u(k) implies that Ψρ(k)(k) is defined for all k ∈ ω by our
assumption for u. Therefore, {Ek}k∈ω is a computable sequence of clopen sets,
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and we have

CAn ⊆
r(n+1)−1⋃

k=r(n)

Ek, and µ



r(n+1)−1⋃

k=r(n)

Ek


 ≤ 2−r(n)+1 ≤ 2−n+1.

Consequently, for Bn =
⋃
r(n−1)<t≤r(n)Et, the sequence {Bn}n∈ω is a Kurtz

null test such that
⋂
n C

A
n ⊆

⋂
nBn. In other words, A is low for uniform Kurtz

null tests.
(ii)⇒(iii): Obvious.
(iii)⇒(iv): Let I ⊆ ω≤ω be the set of (finite or infinite) strings σ ∈ ω≤ω

which are strictly increasing, that is, σ(n) < σ(n+ 1) for each n ∈ ω. Let rng(σ)
denote the range of σ ∈ I, so that rng(σ) = {σ(n) : n < |σ|}. From now on, we
think of each B ⊆ ω as a strictly increasing string B? ∈ I, where B?(n) is the
n-th least element contained in B. For any σ ∈ I, we denote by Pσ all supersets
of the subset of ω obtained from σ, that is,

Pσ = {X ∈ 2ω : rng(σ) ⊆ X}.

Lemma 1. A set A tt-computes an infinite subset of a Kurtz random set if and
only if there exists an infinite set B ≤tt A such that the class PB

?

contains a
Kurtz random set. Moreover, if a set A tt-computes an infinite set B ⊆ ω, then
PB

?

is a Kurtz null test uniformly relative to A.

Proof. The first equivalence clearly holds. Assume that there is a truth-table
functional Ψ such that ΨA = B. Inductively define a truth-table functional
ΦZ(n) by ΦZ(0) = ΨZ(0), and ΦZ(n+ 1) = max{ΨZ(n+ 1), ΦZ(n) + 1} for each
n ∈ ω. Then, ΦZ defines an infinite set B(Z), for every Z ∈ 2ω. Moreover, if
B(Z) is infinite, then PB(Z)? is null. Therefore, Z 7→ PB(Z)? is a uniform Kurtz
null test. Hence, PB

?

= PB(A)? is a Kurtz null test uniformly relative to A. ut

Now, assume that A is low for uniform Kurtz randomness. By Lemma 1, the
class PB

?

is a Kurtz null test uniformly relative to A for every B ≤tt A. By
lowness, PB

?

contains no Kurtz random set. Again by Lemma 1, A tt-computes
no infinite subset of a Kurtz random set.

(iv)⇒(v): We again use the notation P f for f ∈ I. As in the proof of Lemma
1, for each increasing total function f ∈ I ∩ ωω we can see that f ≤tt A if and
only if rng(f) ≤tt A. We first recall the following property of P f .

Lemma 2 (See Greenberg-Miller [10, Theorem 5.2]). Let f : ω → ω be a
strictly increasing function. Then, no Kurtz null test includes P f if and only if
P f contains a Kurtz random set.

Proof. Obviously, if P f contains a Kurtz random set, then there is no Kurtz
test including P f . Conversely, as mentioned in Greenberg-Miller [10, Theorem
5.2], if some nonempty clopen subclass P f ∩ [ρ] is covered by a Kurtz test, then
so is all of P f . Assume that P f is covered by no Kurtz test. Let {Qn}n∈ω be a
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(non-effective) list of all Kurtz tests. We construct an element X = limn ξn ∈ P f
which is contained in no Kurtz test. Let ξ0 be the empty string. Assume that
ξn has been already defined, and it is extendible in P f . Then, P f ∩ [ξn] is not
covered by a Kurtz test, as mentioned before. Hence, we can find some ξn+1

extending ξn in the class (P f ∩ [ξn]) \Qn. Then, X = limn ξn is Kurtz random,
which is contained in P f . ut

The key notion we will use is that of the svelte tree introduced by Greenberg-
Miller [10]. A finite antichain A ⊆ ω<ω is k-svelte via a sequence {Sn}n∈ω of
finite sets if

Sm ⊆ ωk+m, #Sm ≤ 2m, and [[A]] ⊆
⋃

m∈ω
[[Sm]].

Lemma 3 (See Greenberg-Miller [10, Theorem 3.3]). For a finite an-
tichain A ⊆ ω<ω and a natural number k ∈ ω, if µ(

⋃
f∈[[A]] P

f ) ≤ 2−(k+1) holds,
then one can find a sequence confirming that A is k-svelte, effectively in A and
k. ut

Given a closed set Q ⊆ 2ω, let NQ ⊆ ωω be the set {f ∈ ωω ∩ I : P f ⊆ Q}.

Lemma 4 (See Greenberg-Miller [10, Lemma 4.3 and Remark 4.4]). If
Q ⊆ 2ω is clopen, then we can effectively find a finite antichain AQ ⊆ ω<ω such
that NQ = [[AQ]]. ut

We restrict our attention to a bounded subset of NQ for a given closed set Q.
For each order u, we denote by Nu

Q the set of all f ∈ NQ such that |f(n)| = u(n)
for each n ∈ ω, where we think of each f ∈ NQ as a function from ω into 2<ω.

Lemma 5. Assume that Q is a Kurtz null test. Then, for each order u, there
are a computable trace {Dn}n∈ω with bound n 7→ 2n and Dn ⊆ ωn for each
n ∈ ω and a computable sequence {lk}k∈ω of natural numbers such that

Nu
Q ⊆

lk+1−1⋃

n=lk

[[Dn]], for every k ∈ ω.

Proof. Assume that a Kurtz null test {Cn}n∈ω with µ(Cn) ≤ 2−n and Q =⋂
n Cn is given. By Lemma 4, we can effectively find a sequence {An} of finite

antichains generating {NCn
}. By the definition of NCn

, we have
⋃
g∈[[An]]

P g ⊆
Cn. Hence, µ(

⋃
g∈[[An]]

P g) ≤ 2−n. Therefore, by Lemma 3, we can effectively

find a sequence {Snm}m∈ω confirming that An+1 is n-svelte, uniformly in n. In
other words,

Snm ⊆ ωn+m, #Snm ≤ 2m, and NCn+1 = [[An+1]] ⊆
⋃

m∈ω
[[Snm]].

For each computable order u, because Nu
Cn+1

is compact, it is covered by⋃
m<c(n) S

n
m for some c(n) ∈ ω. Note that we can effectively find such a c(n),
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since Nu
Cn+1

and
⋃
m S

n
m are computable. Inductively define l0 = 0, and ln+1 =

ln + c(ln) for each n ∈ ω. For each k ∈ ω and each n ∈ [lk, lk+1), we define
Dn = Slkn−lk ⊆ ωn, where #Dn ≤ 2n−lk ≤ 2n. We now have

Nu
Q ⊆ Nu

Clk+1
⊆

⋃

m<c(lk)

[[Slkm ]] =

lk+1−1⋃

n=lk

[[Dn]]

for every k ∈ ω, as desired. ut
Now, we assume that A tt-computes no infinite subset of a Kurtz random

set. For each g ≤tt A, we claim the existence of a computable trace with bound
n 7→ 2n+1 that Kurtz-traces g. Let Ψ be a truth-table functional such that
Ψ(A) = g, and find a computable order u such that Ψ(Z �u(n), n) is defined for
all n ∈ ω. Then, in particular, Ψ(A �u(n), n) = g(n). Define f(n) = A �u(n) for
each n ∈ ω. By Lemmas 1 and 2, for every order u and every strictly increasing
function f ≤tt A with |f(n)| = u(n) for each n ∈ ω, there is a Kurtz null test
Q ⊆ 2ω such that P f ⊆ Q holds. Note that P f ⊆ Q if and only if f ∈ Nu

Q. Since
Q is a Kurtz null test, we have two sequences {Dn}n∈ω and {lk}k∈ω in Lemma
5. Thus, every h ∈ Nu

Q is Kurtz traced by {Dn}n∈ω and {lk}k∈ω. For each string
σ ∈ (2<ω)<ω, let σ∗ denote the last value of σ, that is, σ∗ = σ(|σ|−1). Note that
σ ∈ Dn+1 ⊆ (2<ω)n+1 implies that Ψ(σ∗, n) is defined, since σ∗ is of length u(n).
For En = {Ψ(σ, n) : σ ∈ Dn+1}, the trace {En}n∈ω Kurtz-traces n 7→ Ψ(h(n), n)
for all h ∈ Nu

Q. In particular, g : n 7→ Ψ(f(n), n) is Kurtz-traced.

(v)⇒(i): Assume that A is Kurtz tt-traceable via a computable order n 7→
2p(n). Given a computable order h, we can find a computable order u : ω → ω
such that h(u(n)) ≥ p(n) + n + 1 for each n ∈ ω. By our assumption, we
have a computable trace {Dn}n∈ω with #Dn ≤ 2p(n) and a strictly increasing
computable sequence {lk}k∈ω of natural numbers, where, for every k ∈ ω, there
is n ∈ [lk, lk+1) such that A � u(n) ∈ Dn. Without loss of generality, we may
assume that Dn ⊆ 2u(n). Then, define Ck =

⋃
n∈[lk,lk+1)

Dn, for each k ∈ ω.

Note that A ∈ [[Ck]] for all k ∈ ω. To estimate the weight of Ck, we note the
following inequality:

∑

σ∈Ck

2−h(|σ|) =

lk+1−1∑

n=lk

#Dn · 2−h(u(n))

≤
lk+1−1∑

n=lk

2p(n)−h(u(n)) ≤
lk+1−1∑

n=lk

2−n−1 ≤ 2−lk ≤ 2−k.

Hence, A is Kurtz h-dimensional measure zero. ut
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Abstract. Recently, modeling of species distributions has emerged into
notice. In this paper we propose a twofold integrated and dynamic species
distributions framework which simultaneously models geographical space
and abstract ecological space. The former corresponds to a P system,
while the latter induces a multiset approximation space in the system of
multisets attached to P system. Evolution rules model biological events
taking place in habitats. Communication rules describe spread of species
living in habitats from inside to outwards and/or from outside to inwards.
Since biotic interactions act at short distances, execution of communica-
tion rules are restricted to membrane boundary zones generated in the
multiset approximation space.

Keywords: Species distribution, ecological niche, ecological niche modeling,
membrane computing, multiset approximation, membrane boundaries

1 Introduction

Human–caused global environmental change has radically altered the geograph-
ical ranges of species widely throughout the world [31, 32]. One of the major
component of this phenomenon is the biological invasion. Invasive species are
characterized by rapid colonization and uncontrolled spread [27, 30, 10]. Recently,
modeling of species distributions has emerged into notice [10]. However, build-
ing an integrated species distributions framework which is able to take all the
remarkable circumstances and meaningful factors into account dynamically is
a difficult task. A brief survey of the modeling techniques of this type can be
found, e.g. in [10] and the references therein.

Species distributions can be investigated in geographical and abstract envi-
ronmental spaces [21, 14]. The unit of geographical space is the habitat where
the species and their related organisms subsist. The unit of environmental space
is the ecological niche which was originated by Grinnell [12] and Elton [8]. Then,
we follow the Grinnellian niche concept which covers the concept that “the en-
vironmental requirements needed for a species to subsist without immigration”
([14], p. 1373).
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In [15], Hutchinson formalized the niche concept as a hypervolume in multi-
dimensional environmental space whose axes represent measurable environmen-
tal variables potentially important for species persistence.3 These variables are
both abiotic and biotic [21]. According to the Grinnellian niche concept and
its Hutchinson’s formalization, a habitat can be thought of as a heap of empty
niches which are waiting to be filled [9, 28].

Hutchinson differentiates between the abstract fundamental (theoretical) and
the realized (actual) niche. The former is the full spectrum of environmental
factors that can potentially be occupied by a species, whereas the latter is a
subset of the fundamental niche which a species actually occupies.4

Niches overlap each other which make way for the coexistence of species.
Coexistent species interact, and their biotic interactions may radically affect
their niches. However, in fact,“biotic interactions act at short distances” ([14],
p. 1374). Niches are not stable but dynamic, e.g. their position may be shifted
within environmental space [11, 21, 14]. After all, overlapping of niches triggers
their differentiation which may result in a stable niche partitioning. Changes of
abiotic environmental varibles may affect the niches as well.

Our proposed ecological framework has a twofold structure. Geographical
space corresponds to a P system, while abstract environmental space induces a
multiset approximation space in geographical space which joins that P system.

As it is well known, in a P system membranes delimit regions separating “in-
side” from “outside” [22, 23, 25]. Regions are arranged in a hierarchical structure
and are represented by multisets or msets for short [1, 2, 5]. They are endowed
with a set of rules providing the functioning of the whole system. There are
two types of rules, the evolution and the communication rules. Evolution rules
regulate the events taking place in the regions and act on the objects which be-
long to the region where the actual rules reside. Communication rules prescribe
movements and/or exchanges of objects through membranes.

Since biotic interactions act at short distances, in real processes an object
actually has to be close enough to a membrane, not necessarily in a spatial
sense, in order to be able to pass through it. To model boundary zones around
membranes, rough set theory [18, 19] and its generalization, the partial approx-
imation of sets [6, 7] should be a plausible opportunity. However, they work on
the bases of the traditional set theory. Thus, to apply their ideas we have to use
its improved version worked out for multisets in [17].

The rest of the paper is organized as follows. Section 2 briefly summarizes ba-
sic notions of mset approximation spaces. Section 3 defines membrane boundaries
in P systems with the help of mset approximation spaces. Section 4 presents the
proposed species distribution framework relying on membrane computing with
boundaries in detail.

3 For a detailed review of the historical development and applications of ecological
niche modeling, see e.g. [13, 9].

4 There is a view that “the realized niche is often larger than the fundamental niche”
([26], p. 351).
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2 General Multiset Approximation Spaces

2.1 Basic Notations of Multisets

Let U be a finite nonempty set.5

Definition 1. A multiset M , or mset M for short, over U is a mapping
M : U → N, where N is the set of natural numbers.

A set M of msets over U is called a macroset M over U .6

Definition 2. Let M be an mset over U .

1. M∗ = {a ∈ U |M(a) 6= 0} is called the carrier (set) or support of M .
2. The mset M is simple, if the cardinality of its support is equal to 1.
3. M is the empty mset, if M∗ = ∅, and denoted by ∅.

First, we define the equality (=) and the inclusion (v) relations for msets.

Definition 3. Let M1, M2, M , M∗ be msets over U .

1. M1 = M2, if M1(a) = M2(a) for all a ∈ U ;
2. M1 vM2, if M1(a) ≤M2(a) for all a ∈ U .

Next definitions give the basic multiplicity relations and operations for msets.

Definition 4. Let M be an mset over U .

1. Multiplicity relation for the mset M is:
a ∈M (a ∈ U), if M(a) > 0;

2. n-multiplicity relation for the mset M is:
a ∈n M (a ∈ U), if M(a) = n ∈ N;

Definition 5. Let M1 and M2 be two msets over U .

1. (M1 uM2)(a) = min{M1(a),M2(a)} for all a ∈ U ( intersection of M1,M2).
2. For a macroset M, (uM)(a) = min{M(a) |M ∈M} for all a ∈ U .
3. (M1 t M2)(a) = max {M1(a),M2(a)} for all a ∈ U ( set–type union of

M1,M2).
4. For a macroset M, (

⊔M)(a) = max{M(a) |M ∈M} for all a ∈ U .
By definition,

⊔ ∅ = ∅.
5. (M1 ⊕M2)(a) = M1(a) +M2(a) for all a ∈ U ( sum of M1,M2).
6. n-successive sum of M is ⊕nM (n ∈ N) where ⊕nM is given by the following

inductive definition:
(a) ⊕0M = ∅;
(b) ⊕1M = M ;
(c) ⊕n+1M = ⊕nM ⊕M .

7. (M1 	 M2)(a) = max {M1(a)−M2(a), 0} for all a ∈ U ( subtraction M2

from M1).

By the n-successive sum, we define the n-successive inclusion relation for
msets as follows.

Definition 6. M1 vn M2, if ⊕nM1 vM2 but ⊕n+1M1 6vM2.

5 Due to our real–life application, it is sufficient to assume that U is finite, however,
it is not necessary from the theoretical point of view.

6 [16], p. 124.
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2.2 Mset Approximation Spaces

Definition 7. Let U be a nonempty set.
The ordered tuple MAS(U) = 〈M,B,DB, l, u〉 is a general mset approxima-

tion space over U , if

1. B is a nonempty macroset, and if B ∈ B, then B 6= ∅; members of B is
called base msets, or B-msets for short.

2. DB is a macroset, and it is an extension of B satisfying the following min-
imal requirements:

– ∅ ∈ DB;
– if B ∈ B, then ⊕nB ∈ DB (n = 1, 2, . . . ).

3. M is a macroset over U in such a way that DB ⊆M.
4. The maps l, u with domain M form an approximation pair 〈l, u〉, if

(a) l(M), u(M) ⊆ DB ( definability of l and u);7

(b) l and u are monotone, that is for all M1,M2 ∈ M if M1 v M2 then
l(M1) v l(M2) and u(M1) v u(M2) ( monotonicity of l and u);

(c) u(∅) = ∅ ( normality of u);
(d) if M ∈ DB, then l(M) = M ( granularity of DB);
(e) if M ∈M, then l(M) v u(M) ( weak approximation property).

Maps l and u are called the lower and upper approximation, respectively.

In Definition 7 each condition in 4 (a)–(e) is independent of the other four.
Next proposition summarizes the most basic consequences of Definition 7.

Proposition 1. Let MAS(U) be a general mset approximation space over U .

1. l(∅) = ∅ ( normality of l).
2. ∀M ∈M (l(l(M)) = l(M)) ( idempotency of l).
3. M ∈ DB if and only if l(M) = M .
4. u(M) ⊆ l(M) = DB.

Definable and crisp msets can be given as usual in rough set theory.

Definition 8. Let MAS(U) be a general mset approximation space over U . An
mset M over U is definable in MAS(U), if M ∈ DB, and crisp in MAS(U), if
l(M) = u(M).

If an mset M ∈M is crisp, then l(M) = u(M) = M by the weak approxima-
tion property. Thus, owing to Proposition 1 (3), it is definable as well. However,
unlike classic rough set theory, definable msets are not necessarily crisp, because
beside l(M) = M , it also possible that l(M) 6= u(M).

Definition 9. Let MAS(U) be a general mset approximation space over U .

– MAS(U) is a set–type union mset approximation space, if ⊕nB1 t ⊕kB2 ∈
DB for all B1, B2 ∈ B and n, k (n, k = 1, 2, . . . );

7 As usual, l(M) and u(M) denote the range of l and u, respectively.
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– MAS(U) is a strict set–type union mset approximation space, if DB is given
by the following inductive definition:

1. ∅ ∈ DB;

2. B ⊆ DB;

3. if B⊕ = {⊕nB | B ∈ B n = 1, 2, . . . } and B′ ⊆ B⊕ , then
⊔

B′ ∈ DB;

Definition 10. In a strict set–type union mset approximation space MAS(U),
〈l, u〉 pair is a generalized Pawlakian approximation pair, if for any mset M ∈M

1. l(M) =
⊔{⊕nB | B ∈ B and B vn M};

2. b(M) =
⊔{⊕nB | B ∈ B, BuM 6= ∅, B 6vM and BuM vn M} ( boundary

of mset M);

3. u(M) = (l(M)⊕ b(M))	 (l(M) u b(M)).

3 P Systems with Membrane Boundaries

3.1 On the P Systems

We briefly summarize the most important notations concerning P systems.

Definition 11. A membrane structure µ of degree m (m ≥ 1) is a rooted tree
with m nodes identified with the integers 1, . . . ,m.

Later on, in the proposed framework we will work with a membrane structure
of degree 2, thus the P system Π in our framework will be of the form as follows.

Definition 12. Let µ be a membrane structure with 2 nodes and U be a non-
empty finite set. The tuple Π = 〈U, µ,w1, w2, R1, R2〉 is a P system, if

1. w1, w2 : U → N are msets over U ;

2. R1, R2 are finite sets of evolution and communication rules in such a way
that the mset wi is associated with the set of rules Ri (i = 1, 2).

Following [24], we define formally the macroset of finite multisets of rules
applicable to wi in the maximally parallel mode as follows:

Applmax(Ri, wi) = {R | R ∈ Appl(Ri, wi), and

there is no R′ ∈ Appl(Ri, wi) with R′ % R},

where Appl(Ri, wi) denotes a macroset whose members are all multisets of rules
from Ri which are applicable to wi (i = 1, 2).

From Applmax(R1, w1) and Applmax(R2, w2) any maximal multisets of rules
can be chosen in order to perform a maximally parallel transition step. Different
maximal multisets of rules assign different msets to the same region. Hence, after
all, the evolution of the P system Π ramifies in a non-deterministic manner.
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3.2 P Systems with Membrane Boundaries

The set–theoretic representations of regions are msets, thus boundaries of regions
delimited by membranes can be formed in mset approximation spaces. In short,
they are also called boundaries of membranes or simply membrane boundaries.
Then, we can say that an object is close enough to a membrane if it is a member
of its boundary. Moreover, inside and outside boundaries of membranes, in other
words the closeness to membranes from inside and outside can also be specified.
For a more detailed discussion of membrane boundaries we refer to [17].

Remark 1. B-msets do not comprise a membrane structure because they do not
form a hierarchical structure in general.

In the following let Π0 = 〈U, µ,w0
1, w

0
2, R1, R2〉 be an initial P system and

MAS(Π0) = 〈M,B,DB, l, u〉 with w0
1, w

0
2 ∈M be a strict set–union type initial

mset approximation space with generalized Pawlakian approximation pair.

Definition 13. Let Π0 and MAS(Π0) a P system and its joint mset approxi-
mation space as above. If B ∈ B, let

N(B, 1) = n, if B u w0
1 vn w0

1;

N(B, 2) =

{
0, if B u w0

2 = ∅ or B v w0
2;

min{k, n | B u w0
2 vk w0

2, B 	 w0
2 vn w0

1}, otherwise.

Then, for i = 1, 2

1. bnd(w0
i ) =

⊔{⊕N(B,i)B | B ∈ B, B u w0
i 6= ∅, B 6v w0

i } — boundary of
membrane w0

i ;
2. bndout(w0

i ) = bnd(w0
i )	 w0

i — outside boundary of membrane w0
i ;

3. bndin(w0
i ) = bnd(w0

i )	 bndout(w0
i ) — inside boundary of membrane w0

i .

Informally, N(B, 1) = n means how many times the B-mset B appears in
the boundary of w0

1. In particular, N(B, 1) = 0 means that B is not in that
boundary. N(B, 2) = 0, if B is not in the boundary of w0

2; otherwise N(B, 2)
gives the exact number of how many times B appears in the boundary of w0

2.

Remark 2. By Definition 13, bnd(w0
i ) =

⊔{⊕N(B,i)B | N(B, i) > 0} (i = 1, 2).

Since MAS(Π0) is a strict set–union type mset approximation space, the
boundary of w0

i is definable, i.e. bnd(w0
i ) ∈ DB (i = 1, 2).

Remark 3. With the Pawlakian boundary map b, b(w0
1) = bnd(w0

1), but b(w0
2) 6=

bnd(w0
2) in general. In the latter case, the Pawlakian boundary of w0

2 is confined
within the region w0

1. In the former case, however, w0
1 is a skin region, thus any

confinement is unnecessary.

Let us investigate the boundary zone of w0
2 in more detailed. Having formed

the membrane boundary of w0
2, we constrain the communication rules residing

in w0
2 for its boundary zone bnd(w0

2). In order to be in this way, let the execution
of a rule R ∈ R2 define in the following form:
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– if a symport rule has the form 〈u, in〉, it is executed only in the case when
u v bndout(w0

2);
– if a symport rule has the form 〈u, out〉, it is executed only in the case when
u v bndin(w0

2);
– if an antiport rule has the form 〈u, in; v, out〉, it is executed only in the case

when u v bndout(w0
2) and v v bndin(w0

2).

4 The Species Distribution Framework

Geographical space in which natural vegetation lives corresponds to a P system
Π of degree 2. The skin region models a larger area (w0

1), and the lower neighbor
included in the skin membrane models a smaller area (w0

2).
We basically investigate the dynamic behavior of the lower neighbor w0

2.
Biological laws of species living in w0

2 are represented by evolution rules from
R2. For instance, they regulate the competition and coexistence of species or
their direct interactions with each other.

Spreading of species is modeled by communication rules from R2. However,
biotic interactions act at short distances. Thus we are able to give an account
of dynamic exchanges taking place along the boundary of w0

2. It can be accom-
plished within mset approximation spaces.

Formally, let U = {s1, s2, . . . , sk} be the set of different species living in the
geographical area which is represented by the P system Π. k is the number of
different species in the vegetation and embodies diversity, the variety of species,
in w0

2. w0
2(si) ≥ 1 (i = 1, . . . , k) is the population size or abundance of the species

si at a particular moment of time, i.e., it is the number of the specimens of the
ith species which are actually present in w0

2 at that time. Ecological studies
require the empirical determination or estimation of population size of plants
and/or animals for a defined site and time. There are many various methods of
them depending on the features of the investigated species, the habitat, and the
available technical means and time [20, 3, 4, 29].

In the Hutchinsonian environmental space, there are numerous theoretical
niches which form a connected hypervolume in the multidimensional space re-
spectively. However, they overlap each other in general. Note that the number of
ecological niches can be interpreted as the complexity, the variety of ecological
processes within a biological community.

It is assumed that there is a one-to-one correspondence between the species
si’s and the fundamental niches in the abstract Hutchinsonian space. Every
fundamental niche, in turn, has a realization in the geographical space. Determi-
nation or estimation of population size usually concern the number of individuals
per a suitable unit of area, e.g., 1 m2, 1 ha, etc. (of course, it may be a suitable
unit of volume, e.g., in hydrobiological research). Let us choose the B-mset Bi as
a simple multiset which contains the species si with the empirically determined
or estimated multiplicity Bi(si) ≥ 1 per a suitable unit of area.

Every fundamental niche in the abstract Hutchinsonian space is a connected
hypervolume whose realization in the geographical space usually consists of dif-
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ferent unconnected patches. Different patches, however, may differ in popula-
tion density. To make the model more realistic, we may choose different B-
msets Bi1 , Bi2 , . . . , , Bil for a species si, if its population densities differ in dif-
ferent patches. Hence, any patch of a realized niche can be represented as an
n-successive sum ⊕nBim with a suitable n(≥ 1) ∈ N. All Bim and ⊕nBim are
definable msets, i.e., Bim , ⊕nBim ∈ DB.

As we mentioned above, overlapping of niches triggers the differentiation of
them. These triggers can be linked on to the base msets in a natural way. After
all, the differentiation of niches may result in a stable niche partitioning.

The computation process of the proposed twofold species distribution frame-
work follows the general algorithm presented in [17].

It has two inputs as defined above:

– an initial P system Π0 = 〈U, µ,w0
1, w

0
2, R1, R2〉 — an observed geographical

area with its natural vegetation, and its narrower or wider environment;

– an initial mset approximation space MAS(Π0) — based on the realized niches
which are connected to the species living in the observed area.

The computation process consists of membrane computations in consecutive
P systems and trigger activities in consecutive mset approximation spaces. Each
iteration is composed of two phases which are completed with additional steps:

1. In the initialization phase, the membrane boundary bnd(w0
2) is formed within

the mset approximation space MAS(Π0). Then, the scope of communication
rules is constrained for the base msets which belong to bnd(w0

2).

2. In the computation phase, first, the evolution rules in w0
2 and communica-

tion rules in the base msets belonging to bnd(w0
2) are executed in a nonde-

terministic and maximally parallel manner. Evolution rules reflect biolog-
ical events taking place within w0

2, while communication rules model the
dynamic exchanges of species’ specimens along the boundary zone of w0

2

between bndin(w0
2) and bndout(w0

2).

After the membrane computation halts, a new P system Π ′ of degree 2
emerges, but the mset approximation space MAS(Π0) is unchanged.

However, bnd(w0
2) could have changed because, e.g., a base mset may entirely

become a part of or get out of w0
2. If so, bnd(w0

2) must be redefined (go to
Step 1).

Otherwise, the dynamic exchanges of species’ specimens between bndin(w0
2)

and bndout(w0
2) start up trigger activities in the base msets belonging to

bnd(w0
2), which activities spread further throughout the space. Triggers fire

in a nondeterministic and a maximally parallel manner.

If there were some trigger activities, a new mset approximation space
MAS(Π ′) emerges in which bnd(w0

2) must be redefined (go to Step 1).

If there were no any trigger activities, the whole computational process stops.
It may happen when the differentiation of overlapped niches results in a
stable niche partitioning.
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5 Conclusion and Future Work

In this paper we have presented a concise formal framework for describing species
distribution. In order to demonstrate our model and clarify its subtle details,
biological studies need to be accomplished by interdisciplinary teams.
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Abstract. This paper gives two new characterizations of regular numerical pred-
icates, i.e. sets of integers definable in FO[<,mod], and proves that satisfiability
of first-order logic over words with an order predicate and a semilinear predicate
(i.e. a numerical predicate definable in FO[+]) that is not regular, is undecidable.

1 Introduction

Let mod be the set of modular predicates. Over words, FO[<,mod] defines a sub-
class of the regular languages [1], hence for a given formula we can decide if there exists
a word that satisfies it. On the other hand, [2, Lemma 6.3] proved that satisfiability of
FO[+] over words is undecidable. Similarly, [3] prove that MSO[<, f ] is undecidable
on N as soon as f in an increasing function whose image is co-infinite.

In this paper we intend to show that the boundary between decidability and unde-
cidability in FO[+] is exactly at FO[<,mod], and to do this we will need to prove that
the theorem of [3] is true even for first-order logic over finite words.

In section 3, Theo. 4 will prove that FO[<, f ] is undecidable as soon as f is some kind
of increasing function, and Theo. 5 does the same for FO[<,R] where R is definable in
FO[+] but not in FO[<,mod].

For this, in section 2, we will give two new characterizations of relations definable in
FO[<,mod], the so-called regular sets, similar to Muchnik’s and Michaux-Villemaire’s
characterizations of FO[+][4,5], the so-called semilinear sets. Those characterizations
may be of independent interest.

The first one, Theo. 1, proves that a set R is definable in FO[<,mod k] if and only
if

1. All sections and diagonals, i.e. hyperplanes defined by xi = c or xi = xj + c, of R
are definable in FO[<,mod k] and

2. R can be translated of −k in every direction.

Furthermore by Theo. 1 there is a FO[<,R] formula that is true over N if and only if R
is definable in FO[<,mod k].

The second characterization, Theo. 2, states that a semilinear set R is regular if and
only if every unary function definable in FO[<,R] is definable in FO[<,mod].
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In this paper, we will explain how to construct formulas, but we will not write them
explicitly due to lack of space.

1.1 Notation

In this paper, we will represent the r-tuple (c1, . . . , cr) by c. If k is in integer, k
r

is
the r-tuple composed of r times k. Addition of tuples is defined componentwise, i.e.
e = c+ d if and only if ei = ci + di for 1 ≤ i ≤ r.

We use standard notation for first order logic with predicate over words, see [6] for
example. An alphabet α is a finite set of letters. If X is a set of predicates, FO[X] over
the words of alphabet α is the set of formulas containing every predicate of X applied
to variables, an unary predicate Pa(x) for a ∈ α stating that the xth letter is an a,
closed by conjunction, disjunction, negation and by universal and existential first-order
quantification. ∃MSO[X] is the set of formulas beginning by existential second order
monadic quantification, followed by a formula of FO[X]. The truth of formula over
words is defined the usual way.

We will use the following predicates: “mod” stands for the set of predicates {≡k a |
0 ≤ a < k, a, k ∈ N} where ≡k a is the predicate that is true for integers equal to a
modulo k. The binary relation ×c for c ∈ Q+ is true over tuples (x, y) ∈ N2 such that
x× c = y, and of course + is defined over N3 as {(a, b, c) | a+ b = c}.

For example, let α = {a, b}, the following formula is true over words with a at even
positions and b at odd positions.

∀x, y.{[(x+ 1 = y)⇒ (Pa(x)⇔ Pb(y))] ∧ [(∀z.z ≥ x)⇒ Pa(x)]} (1)

2 First-Order Logic and Arithmetic

2.1 Relation with finite models

In this section, we will work with N as the universe. In particular we will study the set
of tuples of integers that verify a given formula.

t ∼ t′ is used to speak of a predicate of the form t = t′, t < t′ or t > t′. We will use
constants and consequently we will always be able to use the predicates xi ∼ xj + c
for every c ∈ N.

In section 3 we will speak of finite models. Hence we will need to define the notion
of convergence to state that properties of the formulas over N can also be used on finite
models.

Definition 1 (Function convergence). Let ϕ be a formula such that its graph over the
canonical model of size n (resp. on N) is a function fn (resp. f ), then we say that ϕ is
converging if the sequence of functions (fn)n∈N converges pointwise to f .

This means that for all c ∈ N, there exists m ∈ N such that for all n ≥ m,
fn(c) = f(c).

In this paper we will often speak about subsets with a specific form.
We introduce some definitions and notation which deal with R ⊆ Nr.
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Definition 2 (Section, diagonal and subspace).
If R ⊆ Nr then Rxi=c = {x ∈ Nr−1 | (x1, . . . , xi−1, c, xi, . . . , xr} is called the

ith section of R in c and Rxi=xj+c = {x ∈ Nr | (x1, . . . , xi−1, xj + c, xi, · · ·xr)} is
called the diagonal (i, j, c).

A straight (resp. semi-straight) subspace is either R, or a section of (resp. a section
or a diagonal of) a straight (resp.semi-straight) subspace of R.

This means that a straight (resp. semi-straight) subspace of dimension s ≤ r of R is
defined by r− s equations of the form xi = c (resp. xi = c or xi = xj + c) with c ∈ N.

We will care about the tuples such that all components are big enough, thus we
introduce the following notation.

Definition 3 (l-inside). Let l ∈ N, the l-inside of R is R≥l .
= {x − lr ∈ Nr | x ∈

R, xi ≥ l}. This means that R≥l is the set R moved by −l in every direction, removing
the tuples with a coordinate less than l.

We will also have to assume that the tuples are ordered, hence we will need this new
notation.

Definition 4 (Fixed order). LetEr be the set of permutations of [1, r]. For all (a1, . . . , ar) ∈
Er we define Ra1,...,ar as the restriction of R to r-tuples (x1, . . . , xr) such that xai <
xai+1 for 1 ≤ i < r. That is

Ra1,...,ar
.
= R ∩ {x | xa1 ≤ xa2 ≤ · · · ≤ xar} (2)

Since R =
⋃
a∈Er

Ra, we will be able to work separately on each Ra.

2.2 Semilinear, Regular and modk-Regular set

The relations R ⊆ Nr definable in FO[+] are called semilinear sets [7] and the ones
definable in FO[<,mod] are called regular sets [6]. Let FO[<,mod k] be the restriction
of FO[<, mod ] where only predicate modulo k are used. If R is definable in FO[<
,mod k] we will call it modk-regular. Beware that it is different from k-regular sets as
defined in [5], which are sets definable in FO[+, Vk] where Vk(x) is the biggest power
of k dividing x, and which are not used in this paper.

Proposition 1 ( [7,8]). Let f be a semilinear unary function. There exist constants
l,m, a0, b0, . . . , am−1, bm−1 ∈ Q such that f(x) = ajx + bj for all x > l congru-
ent to j modulo m.

An easy adaptation of the proofs of [8] shows that an unary modk-regular function is
such that m = k and for 0 ≤ j < k, aj ∈ {0, 1}. In particular for an unary semilinear
function f that is not regular there exists j < k such that aj ∈ Q+/{0, 1}.
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Presburger proved that for every first-order formula of FO[+, <,mod] there is an
equivalent quantifier free formula [9]. Another algorithm was given by Cooper [10]. If
there is only one free variable, it is even an FO[<,mod k] formula for some k ∈ N.
The terms used in this formula are sum of variables – where a variable can appear many
times in the same term – plus a constant.

A careful observation of [10]’s quantifier elimination algorithm shows that if the
original formula is in FO[<,mod k] then all terms of the quantifier-free formula are a
variable plus an integer constant, and the only modular predicate is mod k. Hence we
can also assume that every formula in FO[<,mod k] is equivalent to a quantifier-free
formula of FO[<,mod k, {<a}a≥0] where <a= {(x, y) ∈ N | x < y + a}.

We will now give a new characterization of modk-regular relations. We say that a set
R ⊆ Nr is k

r
-periodic if for all (c1, . . . , cr) ∈ Nr, c ∈ R if and only if c+ k

r ∈ R.

Theorem 1. Let R ∈ Nr, and k ∈ N. The three statements are equivalent.

1. R is modk-regular.
2. (a) There exists l ∈ N such that R≥l is k

r
-periodic and

(b) All sections and diagonals of R are modk-regular.
3. For every integer s ≤ r and every semi-straight subspace H of R of dimension s,

there exists l such that H>l is k
s
-periodic.

Proof. We will show by induction on r ∈ N that for every R ⊆ Nr, properties (1), (2)
and (3) are equivalent.

If r = 1 then properties (2) and (3) are equivalent, and the equivalence with (1) is
well-known thanks to quantifier elimination [6]. Let r > 1, and we will assume that the
equivalences are true for every integer in [1, r − 1].

(1)⇒ (3) LetR be a relation defined by ψ ∈ FO[<,mod k]. It is clear that the straight
subspaces H of dimension s defined by

∧s
j=1 xij = cj

∧t
j=1 xkj = xk′j + dj are still

modk-regular by replacing in ψ every variables xi by the constant cj and every xkj by
xk′j + dj .

The restriction of ψ on H , i.e. the formula ψ where the xij are replaced by cij , is a
boolean combination of formulas of the form xi − xj ∼ c, xi ∼ c with ∼∈ {<,=, >}
and xi ≡k a for 0 ≤ a < k. Let l = max{c | xi ∼ c ∈ ψ}.

Then let x ∈ (N>l))r, it is clear that x + k
r ∈ N>l. Furthermore every equation

xi ≡k a is equivalent to xi+ k ≡k a, equation xi−xj ∼ c to (xi+ k)− (xj + k) ∼ c,
and xi ∼ c to xi + k ∼ c since if ∼ is < or = then by definition of l those equations
are false and otherwise if∼ is > then the first equation is true, hence the second too. So
ψ(x)⇔ ψ(x+ k

r
), and so H>l is k

s
periodic.

(3) ⇒ (2) R is a straight subspace of R hence there exists l such that R≥l is k
r
-

periodic. Its sections and diagonals S satisfy property (3), hence by induction hypothe-
sis there exists lS such that S>lS is modk-regular.
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(2) ⇒ (1) Let R be a relation such that all sections of R are modk-regular and there
exists l such that R≥l is k

r
periodic. Let v be a r-tuple of variables. We will create a

formula in FO[<,mod k] that is true on v if and only if v ∈ R. It will be the disjunction
of two formulas, ϕ1 that will consider the tuples having a component smaller than l,
and ϕ2 the tuples x ∈ (N>l)r.

In the first case, let v ∈ Nr, there exists 1 ≤ i ≤ r such that vi < l. Then v is in
R if and only if (v1, . . . , vi−1, vi+1, . . . , vr) is in the section Rxi=vi , and by induction
hypothesis, this can be stated with a quantifier-free FO[<,mod k] formula.

In the second case, we will create a formula to state v ∈ R≥l. If l > 0 we can
replace every instance of xi by xi + l in ϕ2, for i ∈ [1, r] and make a conjunction to
verify that all of the xi are greater than l. Then we can work on {x | x + l

r ∈ R} and
so assume that l = 0.

For every tuple v there exists (a1, . . . , ar) ∈ Er such that va1 ≤ va2 ≤ · · · ≤ var .
We will define ϕa1,...,ar the formula that will define Ra1,...,ar = R ∩ {x | xa1 ≤ · · · ≤
xar}. Our formula for R will be the disjunction of all of those formulas.

Without loss of generality we can assume that v1 ≤ v2 ≤ · · · ≤ vr. Let d = bv1/kc,
and y = v − dkr, then v ∈ R if and only if y ∈ R, and furthermore we can see that
0 ≤ y1 < k.

By property (2), for a ∈ N, the section Rx1=a is modk-regular, so by induc-
tion hypothesis there exists l(Rx1=a) such that R≥l(R

x1=a) is k
r−1

-periodic. Let λ =
max{l(Rx1=a) | 0 ≤ a < k}. The formula ϕ1,...,r will be cut in two parts ψ1 for
v1 + λ < v2, and ψ2 for v1 + λ ≥ v2.

We assume that y1 + λ > y2, and let a = y2 − y1. We have y ∈ R if and only if
(y2, . . . , yr) ∈ Rx2=x1+a, and by property (2) this diagonal is modk-regular.

Otherwise let us assume that y1+λ ≤ y2. Then y ∈ R is equivalent to (y2, . . . , yr) ∈
Rx1=y1 , hence to (y2 + dk, . . . , yr + dk) ∈ Rx1=a, but (y2 + dk, . . . , yr + dk) =
(v2, . . . , vr), hence v ∈ R if and only if (y1, v2, v3, . . . , vr) ∈ R where y1 is the only
integer equal to v1 modulo k and less than k, which can be stated in FO[<,mod k].

IfR is modk-regular then we define lk(R), and call the lag ofR, the smallest integer
such that R≥lk(R) is k

r
periodic.

Corollary 1. For all r, k ∈ N there is a formula in FO[<,R] that does not depends of
R that is true if and only if R is modk-regular.

Proof. Our formula will state the third equivalence of theorem 1. We make a conjunc-
tion for every 0 ≤ s ≤ r, and every subsetE of [1, r] with s elements. Since the number
of possible sets is finite, the conjunction is finite. Then we universally quantify the vari-
ables xi for i ∈ E. By fixing those variables we have a straight subspace H . We have
to check that there exists a l such that H>l is k

r−s
-periodic. We do it by existentially

quantifying this l, then by universally quantifying the r − s-tuples x such that bxc ≥ l.
Finally we check that x is in H if and only if x+ k

s
is also in H .

Corollary 1 looks like theorem 2 of [4] for ϕ ∈ FO[<,mod k], with < and mod k
instead of +. The main difference is that [4] has to guess a set of periods while we know
that if such a set exists, it must be {kr}.
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2.3 Unary function

The paper [5] proves that R ⊆ Nr is not semilinear if and only if there is a set S ⊆
N, definable in FO[+, R] that is not semilinear. In this section, we will prove similar
theorems but for semilinear sets R that are not regular and for unary function instead
of set of integers. Indeed, if R is semilinear we already know that every set of integers
definable in FO[<,R] is semilinear, hence regular.

Theorem 2. Let R ⊆ Nr be a semilinear set that is not regular. There exists a unary
function definable in FO[<,R] that is not regular.

Lemma 1. Let R ⊆ Nr be a semilinear set. There exists an integer k(R) such that
every semi-straight subspace S ⊆ N of R is modk-regular.

Proof. Let ψ ∈ FO[+, <,mod] be a quantifier-free definition of R.
Let I be a non-empty subset of [1, r], and let c ∈ Nr. Let di be x+ ci for i ∈ I , and

di be ci otherwise. Then the set SI,c = {x | d ∈ R} is defined by the formula obtained
from ψ by replacing xi by di. We can see that the modular predicates used depend only
on I and not on c, hence this set is modkI -regular for some kI .

Let k(R) be the least common multiple of the kI , then every set of integers that is a
semi-straight subspace of R is modk(R)-regular.

Proof (of theorem 2). Assume that R ⊆ Nr is semilinear and not regular. Let ψ be the
quantifier-free definition of R in FO[+], and let k = k(R).

Let s ≤ r be the smallest integer such that R has a semi-straight subspace S of
dimension s that is not modk-regular. By definition of k and Lemma 1, we have s > 1.
There is (a1, . . . , as) ∈ Es such that S(a1,...,as) is not modk-regular. Without loss of
generality let us assume that it is (1, . . . , s).

By hypothesis every subspace Sx1=c is modk-regular. Let l(c) be the unary function
defined as lk(Sx1=c). By Theo. 1 it is definable in FO[R,<]. We will prove that l is not
regular by contradiction. Let us assume that l is regular and let us create a formula
ϕR ∈ FO[<,mod] defining R.

Since l is regular, there is a q such that l is defined in ψ ∈ FO[<,mod q]. The
function l′(c) = max{l(b) | 0 ≤ b ≤ c} is definable in FO[<, l] hence in FO[<,mod q].

By Prop. 1, there exists c0, . . . , cq−1, d ∈ N and b0, . . . , bq−1 ∈ {0, 1} such that for
every a > d we have l′(a) = bea+ ce whenever a ≡q e.

First, we assume that there exists an i ∈ [0, k − 1] such that bi equals 0. Since l′ is
increasing, we have bi = 0 for every i ∈ [0, k − 1], but by hypothesis on x1 ≤ x2 we
see that R is included in a finite number of sections of equation x1 = bi, hence R is
regular since the union of a finite number of regular sections is regular. Now we assume
that for all i we have bi = 1.

We will make a few modifications to R by removing some semi-straight hyper-
planes. We can do it since by hypothesis they are modk-regular, and by translating R -
while respecting every constraint that we stated before - so that R become more easy to
work with.
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By induction hypothesis, hyperplanes of equations x1 = b with 0 ≤ b ≤ d are modk-
regular. We only have to show that S = R≥l is modk-regular. By working on R≥l we
can assume that d = 0.

Let c = max{cj | 0 ≤ j < q}. The hyperplanes Sx1+b=x2 with 0 ≤ b ≤ c are
modk-regular. We only have to show that T = {x | x1 + c < x2} ∩ S is modk-regular.
By translating S by (0,−c, . . . ,−c) we can work on T and assume that c = 0.

Since 0 ≤ f < k the hyperplanes T x1+f=x2 are modk-regular so there exists
mf such that T x1+f=x2

>mf
is k

r−1
-periodic. Let m = max{mf | 0 ≤ f < k}. The

hyperplanes T x1=b for 0 ≤ b < m are modk-regular, so we only have to show that
U = T ∩ {x | x1 ≥ m} is modk-regular. By translating T by −mr we can work on U
and assume that mf = m = 0.

We will prove that with those conditions U is k
r
-periodic, which will imply that U

is modk-regular. Let c ∈ Nr, if c 6∈ N(1,...,r) then c 6∈ U by hypothesis, and similarly c+
k
r 6∈ N(1,...,r) so c+k

r 6∈ U , so we only have to prove the periodicity for c ∈ N(1,...,r).
Let u = bc1/kc, t = c1 mod k and let y = c−u(0, k . . . , k). By hypothesis Ux1=c1,>c1

is k
r−1

-periodic so (c ∈ U) ⇔ (y ∈ U). Let z = y + k
r
. Since t ∈ [0, k − 1], the

diagonal of equation x1+t = x2 is k
r−1

-periodic, hence we have (y ∈ U)⇔ (z ∈ U).
Since Ux1=c1+k,>c1 is also k

r−1
-periodic we have (z ∈ U) ⇔ (c + k

r ∈ U), by
transitivity (c ∈ U)⇔ (c+ k

r ∈ U).
So U is k

r
-periodic, and by theorem 1, U is modk-regular.

In Theo. 2, we needed R to be semilinear because the construction required for every
section to be modk-regular for the same value k. To the best of our knowledge, it is an
open question to know if such a function can be created for any non semilinear R.

The definition of the function is not uniform in R because we need to look at every
diagonal, and in FO[<,mod k] we can only define a finite number of them.

We also want to state the following theorem. It is similar to [5, Theo. 5.1], but about
modk-regular and not about semilinear sets. Since this theorem is not needed in the rest
of the paper we will not write the proof, but it is similar to the last one.

Theorem 3. Let R ⊆ Nr, R is modk-regular if and only if for all S ⊆ N definable in
FO[<,R], S is modk-regular.

3 About Satisfiability of Some Class of Formulas Over Words

If ϕ is a formula without free variable, then we state that ϕ is finitely satisfiable if there
exists a finite model A such that A |= ϕ. If ϕ is over the vocabulary of words, then it
means that models of ϕ must be words.

We say that the finite satisfiability of a class of a formula is decidable if there exists
an algorithm that decides if a formula of this class is finitely satisfiable. In this section,
we will look at what we can tell about satisfiability of formulas over the vocabulary X .

Lemma 2. Let X be a vocabulary, then FO[X]’s satisfiability is undecidable on words
if and only if ∃MSO[X]’s satisfiability is undecidable.
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Proof. Let α be an alphabet and ϕ ∈ FO[X] be a formula over words of α∗, let ϕ′ .=
∃a∈αPaϕ ∈ ∃MSO[X] is a formula that is satisfiable if and only if ϕ is satisfiable.

Letψ = ∃Pa1 , . . . , Pan [∀x
∨n
i=1(Pai(x)∧

∧n
j=1,j 6=i ¬Paj (x))]ξ with ξ ∈ FO[(Pai)1≤i≤n, X ,

let α = {ai | 1 ≤ i ≤ n} then ξ is a FO[X] formula over the words of alphabet α, and
ξ is satisfiable over words if and only if ψ is satisfiable.

Lemma 3. LetX be a vocabulary, FO[X]’s satisfiability over words is decidable if and
only if FO[X,mod]’s finite satisfiability is.

Proof. Let ϕ ∈ FO[X,mod k] be a formula over alphabet α. Let ϕ′ .
= ϕ ∧ 0 ≡k

0 ∧ ∀x 6= 0.(
∨

0≤i<k x− 1 ≡k i ∧ x ≡k i+ 1). Let α′ = α× [0, k − 1] and let ϕ′′ be

ϕ′ where Pa(x) is replaced by
∨k−1
i=0 Pa,i(x) and x = c mod k by

∨
a∈α Pa,c(x). It is

a formula over alphabet α′ that is satisfiable if and only if ϕ is satisfiable.

3.1 Counter Automaton

Let us define k counter automata for k ≥ 2. The paper [11] proves that their halting
problem is undecidable. We will be able to prove the undecidability of the satisfiability
of FO[<, f ] where f is some kind of increasing function by writing a formula that
accepts models that code an halting computation.

Note that [2, Lemma 6.3] reduces the emptiness problem for deterministic linear
bounded automaton, which is undecidable, to the satisfiability problem for FO[+], but
they need the full power of the addition to compare the size of two segments, while we
can not use the addition.

Given k ≤ 2, a k-counter automaton is a list of J instructions, and k counters whose
value is in N, and initialized at 0. The instructions are "incr(i)" to increment the counter
i, "decr(i)" to decrement it, "jmp(m)" to jump at instruction m, "jz(i,m)" to jump at
instruction m if the ith counter’s value is 0, with 1 ≤ i ≤ k, 0 ≤ m < J and "Halt"
to stop the computation. The notation I(m) means the mth instruction. without loss of
generality we assume that the only Halt instruction is in position J − 1 and that we
begin with instruction 0.

LetM be a k-counter automaton, a configuration ofM is a (k+1)-tuple of integers
(m, c1, . . . , ck) where m is the index of the next instruction of the automaton and cj is
the value of the jth counter.

A simulation of M is a list, finite or infinite, of successive configurations of M . We
write m[l], ci[l] for the lth instruction and the value of the ith counter at time l.

3.2 Undecidability of FO[f,<] For Some Function f

Definition 5 (Increasing enough function). LetN be an infinite subset of N, f : N →
N be a strictly increasing function such that there exists a sequence of integers (vi)i∈N
with vi+1 = f(vi) and for all i, ([vi, vi+1] ∩ N)’s cardinality is strictly greater than
([vi, vi−1] ∩N)’s cardinality.

Then f is called Increasing enough function on N . The set N may be implicit.
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Theorem 4. Let N ⊂ N be definable in FO[<,mod], R be a relation such that f :
N → N is an increasing enough function definable in FO[<,mod, R]. The satisfiability
of FO[<,R] over words is undecidable.

Proof. We will encode a k-counter automaton M with a formula in FO[<, f ]. By lem-
mas 2 and 3 it is equivalent to work on ∃MSO[<, f,mod], so we will use monadic
second order variables, V for the vi’s, E for the state and Ci for the ith counter. We
must state that those variables are subsets of N . Let us call [vn, vn+1 − 1] ∩N the nth
segment. We can check the constraints of V thanks to f .

We encode the nth configuration in the nth segment. We associate with the config-
uration (e, c1, . . . , cn) a segment S such that the cardinality of (Ci ∩ S) is ci and the
cardinality of (E ∩ S) is e. The formula ϕ(M) will state that there exists a word that
encode a halting computation. Because, even if we can not count, since f is an injec-
tion, we can use it to send the nth segment to the n+1th, hence to check that a counter
had not changed, had increased or had decreased. We will check that for every x of the
nth segment such that Ci(x) is true,then Ci(f(x)) is also true, except for the first such
x if the ith counter was decremented. We will also check that for each y in the (n+1)th
segment such that Ci(y) is true, there exists x such that Ci(x) is true and f(x) = y,
except maybe for the first position such that there are no such x if the ith counter is
incremented.

We see that for v, v′ and v′′ such that [v, v′−1] and [v′, v′′−1] are two consecutive
segments, we can use f to assert that the number of times a predicate is true in segment
[v, v′[ is equal (less or minus 1) to the number of times it is true in [v′, v′′[, and clearly
we can also assert that this number is equal to a constant. Hence, we only have to see
that this is enough to write formulas that state that the transition between two segments
is correct, that the first and last segment encode an initial state and an accepting state,
respectively.

Corollary 2. FO[<,×c] for c ∈ Q+/{0, 1} and FO[+] are undecidable.

3.3 Undecidability of FO[R,<] for R Semilinear Not Regular
Theorem 5. Let R be a semilinear relation, then either R is definable in FO[<,mod],
or the satisfiability of FO[R,<] is undecidable over words.

Proof. If R is definable in FO[mod k,<] then the satifisfiability of ∃MSO(mod k,<
,R) is decidable, since we can replace R by its definition, and apply the algorithm to
decide satisfiability of ∃MSO(mod k,<) [1].

Let us assume that R is not regular. By Theo. 2 we can define a semilinear converg-
ing function f ∈ FO[<,R] that is not regular. Hence by Theo. 4 there is a d such that
for all n ∈ N there is m(n), k and a < k such as x ≡k a and d ≤ x ≤ m(n) we have
f(x) = bx+ c with b ∈ Q+/{0, 1}. If b < 1 we can use the inverse of this function.

We then have an increasing function, hence by Theo. 4 ∃MSO[<,R] is undecidable.
So the satisfiability of FO[<,R] is undecidable.

The condition of semilinearity is mandatory, it is used in the proof to construct the
increasing enough function in Theo. 2. Indeed let T = {2k | k ∈ N}, T is clearly
not semilinear but [12] proved that MSO[+, T ] is decidable. Similarly [13] proved that
MSO[<, dsin(x)e] is decidable while the graph of dsin(x)e is not semilinear.
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4 Conclusion

We have proved that the satisfiability of FO[<,R] is undecidable on words for every
semilinear relation R that is not regular. Let Πi be the set of first-order formulas with
i − 1 alternation of quantifiers, beginning with universal ones. A careful study of the
formula – not here by lack of space – allows to prove that undecidability already holds
for Π2[<,+1, R] and Π3[<,R].

We see many directions for further research. We may want to minimize the number
of alternations of quantifiers needed to have undecidability, and conversely to find an
algorithm to decide those logics with one or two alternations. We plan to study the
expressive power of FO[+1, f ] where f is an uninterpreted function.

We also intend to extend Theo. 4 to use +1 instead of < – the proof is a little bit
more complex –, we also want to have less restrictive conditions on f , to accept strictly
increasing function with an infinity of n such that f(n+1) > f(n)+ 1, as in [3], or an
f such that there is an infinite number of integers n such that f−1(n) is infinite.

I would like to thanks the referees for providing useful corrections to the first version
of the paper. I also thank Alexis Bes, who was my advisor during the internship when I
did this research.
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PASSIVE COMPUTATION AND THE
POWER OF INACTIVITY

HOW TO GET A BRAIN TO COMPUTE WITHOUT
FIRING ITS NEURONS

Bernard Molyneux

The University of California at Davis

Abstract. Passive computation is neural computation that is imple-
mented using timely non-activations at key junctures. Consider e.g. an
‘inverted granny neuron’ that fires all the time except when granny is
around, whose sudden non-firing signifies granny’s presence. In this pa-
per, I explore the limits of passive computation by showing how any
neural net could be transformed into one that, for an arbitrary input,
processes using only passive computation, i.e. without firing any neu-
rons. I suggest that this undermines the assumption, dominant in the
mind sciences, that activity is required for consciousness.

1 Introduction

David Chalmers ([CE4], p.298) asks “an interesting question”, namely:

... whether active causation is required for experience. Could a ther-
mostat have experience when it is sitting in a constant state (in a sense
“causing” an output, but without really doing anything)? Or does it
have experience only when in a state of flux?... I do not know the answer
to this question, but there is an intuition that some sort of activity is
required for experience.

The claim is usually presented more strongly: That not only is activity needed,
but, specifically, that neural or brain activity is required. Hence we have Antony
([CE1], p. 109) claiming that ‘the state of one’s unused brain parts at a time is no
more relevant to the character of one’s experience at that time than is the state
of the moon’; and Maudlin ([CE7], p. 409) insisting that, since conscious experi-
ences occur at particular times, the ‘nearly inescapable’ conclusion is that ‘one’s
phenomenal state at a time is determined entirely by one’s brain activity at that
time’. Neuroscientists almost universally agree with the philosophers in making
these assumptions. For Crick and Koch ([CE5], p. 475), for example, the ‘key
question... [is] how do the neural activities that correspond to consciousness...
differ from somewhat similar brain activities that are unconscious?’ (my italics
in this and all of the following). For Melloni et al ([CE8], p. 2858) it is to dis-
cover ‘which signatures of neural activity critically differentiate conscious from
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unconscious processing ’. And according to Dehaene and Naccache ([CE6], p. 3),
it is to determine ‘whether there is a systematic form of information process-
ing and a reproducible class of neuronal activation patterns that systematically
distinguish mental states that subjects label as ‘conscious’ from other states.’

I claim, though, that human-like mentality, including consciousness, can
emerge from a neural system that is entirely inactive. I won’t have room to
present the entirety of my case, but I can provide the foundational argument in
which I show that, for any sequence S of stimuli lasting as long as you like, it
is possible to transform any neural net N that would react to S into one that
(i) reacts to S, and to all other stimuli, just as N does but which (ii) exhibits
no internal neural activity in processing S. The key insight is that neural nets
are capable of what I call passive computation – that is, computation that is
performed by sets of neurons not firing at appropriate times. If this neural net,
which could be as complex as the human brain, were in control of a body, it
would control it the way a regular brain would even while none of the internal
neurons were firing.

2 A Functionally Equivalent But Inactive Brain

2.1 Passive Processing

Let’s warm up with a thought experiment:

Example 1. The Passive Signaling System. Settlers living at the center of an
island construct an advance warning system to tell them when raiders approach
their coasts. Sentinels flash a coastal beacon on the quarter-hour if the horizon
is clear, but do nothing if enemies approach (or if they are slain). Each interme-
diary beacon, between the coast and the settlement, flashes just when a more
peripheral beacon is lit, transmitting a signal inland. When all is well, the set-
tlers see lights from every direction upon the quarter-hour. But when there is
danger a signal absence indicates that their enemies approach, and from which
direction. If that happens, the settlers ready themselves for battle.

The story encodes several lessons. Firstly, that there is such a thing as pas-
sive representation, for the non-lighting signifies or encodes the approach of
enemies. Secondly, that passivity can cascade. For when some sentinel fails to
flash, this results in a series of resultant non-flashings heading inland. Thirdly,
it even points the way towards passive computation: Suppose an inland sentinel
can see two coastal beacons, and he stays dark upon the quarter-hour if and
only if both the beacons he sees stay dark. He therefore implements a passive
AND-gate, silently communicating the approach of enemies from two directions.
Another sentinel might function as a passive OR-gate, similarly; and another
might perform a passive NOT operation, staying dark if and only if he sees a
flash.

In principle a similar passive representation and computation system could
be implemented in an organic system. A pain signal, for example, could consist,
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not in a sudden burst of activation against a backdrop of inactivity, but in the
sudden absence of an otherwise constant message to the effect that everything
is fine.

2.2 Neural Nets

Fig. 1 shows the basic idea behind a neural net. Each node, at a given time, takes
one of two possible values; 0 or 1. It will take value 1 if the totality of incoming
stimulation exceeds its ‘threshold’. If it takes value 1, it is said to ‘activate’ or
‘fire’. 0 corresponds, similarly, to inactivity.

Fig. 1. A typical neural net. The shaded nodes implement input and output.

When a node ‘fires’, it activates ‘outgoing’ connections (which, in the dia-
gram, point away from it; ‘incoming’ connections point towards it). Those con-
nections implement a linear function wy + x, where w is the ‘weight’ of the
connection, y is the value (either 0 or 1) of the connection’s ‘source’ node (the
node to which its tail connects) and x is the ‘baseline’ activity of the connection.
The connections will, in turn, stimulate the nodes downstream.

The input to the net consists of the values in the ‘input nodes’ (shaded nodes
without incoming arrows), which correspond to what would be sensory receptors
in an organic net. The output of the net consists of the values in the output nodes
(the shaded nodes without outgoing arrows) which, in an animal, would control
muscle contractions. We refer to all other nodes – that are not input or output
nodes – as ‘internal nodes’.

To claim that all the nodes can be made to take value zero while retaining
functional equivalence would be to ignore the fact that functional equivalence
requires the same inputs (in the input nodes) to be mapped to the same outputs
(in the output nodes). Hence the input and output nodes must retain their old
(nonzero) values. The claim may only be that any net can be changed so that,
for a special input, it processes that input without anything activating between
input and output.
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2.3 Nullification

A neural net is ‘nullified’ with respect to a stream S of stimuli if it is replaced
by a functionally equivalent net that processes S without activating any internal
neurons or connections. Surprisingly, any neural net can be nullified with respect
to any one stream S of stimuli. We will first show this for just those nets that do
not use any neuron twice in the processing of S, generalizing to other nets later.
We proceed in two passes, first silencing the connections and then the nodes:

Phase 1: Take any internal node n in the net. Let ‘vi’ denote the activity of
the ith input connection ci on S. Take the function wy + x that ci implements
and replace it with wy+x− vi. It will now transmit vi less in all situations, and
hence transmit 0 on S. After doing this to all connections feeding into n, reduce
the threshold of n by V , where V is the sum over the vi. The total effect of all
these changes is that n will receive V less stimulation in all circumstances, but
will require V less stimulation in order to fire. Functionally speaking, we have
performed a total-of-nothing operation, yet we have succeeded in making the
connections that feed into n transmit no activation for stimulus S.

Note that when we ‘zero’, in this way, the connections heading into a node
n, but compensate by changing n’s threshold, all other nodes are unaffected. It
follows, then, that we can perform the same procedure on another node, and
another, without undoing our earlier work. Each time we do it, we produce a
new, functionally equivalent, net, but one where fewer connections activate in
processing stimulus stream S. After performing the operation on all the neurons
in the net, the net as a whole, though functionally equivalent to the original net,
is such that none of its connections fire when S is processed.

Phase 2: Now take any internal node in the (modified) net. Check whether
it activates when the net as a whole is exposed to S. If not, leave it be. But if
so, ‘invert’ it, so that instead of firing when the sum of its inputs is greater than
its threshold θ, it fires when the total stimulation is less than or equal to θ. To
functionally compensate, replace the linear function on each outgoing connection
from wy + x to −wy + x + w (i.e. replace the weight w with −w and replace
the baseline +x with +x + w).1 To see how this cancels out the changes made
to the node itself, suppose that the original neuron was a ‘granny neuron’ that
fired when and only when granny was around, so that:

Before the change, when granny was around, the former neuron would
fire, hence y would equal 1, and so an arbitrary connection exiting the
original granny neuron would transmit z = 1w+x – i.e. w+x. After the
change, when granny is around, the inverted neuron receives the same
input as before. But this now causes it not to fire. Hence y equals 0. But
since the arbitrary outgoing connection has been altered to implement

1 This may require some signals to be negative in value. A negative signal is simply
one that has inhibitory force. One way to implement such things is to have signals
with wavelengths, and to have the phase angle between stimulatory and inhibitory
signals be equal to π radians.
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the function −wy+x+w, the inverted neuron transmits z = −w0+x+w
which equals w + x. The same as before.

Before the change, when granny was not around, the former neuron
would not fire, hence y would equal 0, and so an arbitrary connection
exiting the original granny neuron would transmit z = 0w + x which
equals x. After the change, when granny is not around, the inverted
neuron fires, hence y equals 1, hence the (altered) arbitrary connection
transmits z = −1w + x+ w which equals x. The same.

The operation just described satisfies the following two conditions: (i) If n is
the node upon which we are operating then, after the operation, n is disposed
to take value 0 when the net as a whole is exposed to S (as just shown). (ii)
For all η, where η is some other node or a connection in the net, if, before the
operation, η was disposed to take value 0 when the net as a whole was exposed
to S then, after the operation, η remains disposed to take value 0 when the net
as a whole is exposed to S.

In other words, the operation deactivates one node while preserving the de-
activation of all other internal nodes and connections in the net. To see that the
operation has property (ii), divide the entities in the net into two groups:

I: The connections that immediately exit n.
II: All other internal nodes and connections.
The elements of group I were specifically altered so as to always transmit

the same activation after the operation that they did beforehand. Hence, if they
transmitted 0 in response to S before, they will transmit 0 afterwards. With
respect to all other nodes, we simply note that nothing has changed. In more
detail, an arbitrary node or connection η in group II can change its activation
only by either changing its function or by receiving different input. But it does
not calculate a different function, since the operation on n altered η in no way.
And we specifically ensured that the changes to n made no difference to its
outputs, so they can’t have made any difference to the inputs received by η.

Since the zeroing of each node preserves the earlier zeroings, we can zero
node after node while preserving our work. When we perform this operation on
all the internal nodes in the net, they will all take value 0 for stimulus S.

2.4 Causation

It’s puzzling to see how an inactive brain could cause any behavior in the body
or vehicle it is assigned to control. Inactivity, intuitively, ought to beget more
inactivity, and hence an inactive net ought to cause no movement in the corre-
sponding body. It’s tempting to think that this nixes the notion that an inactive
brain could maintain functionally equivalence. Yet, unless we have made a mis-
take, functional equivalence has been established. So how is the same behavior
caused when the inactive brain can’t cause anything?

To see how, let the output nodes be neuromuscular junctions that cause
contractions or twitches in a muscle sheet when they take nonzero activation.
Now take an arbitrary neuromuscular junction ‘o’ (for ‘output’). Initially, the
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net for which o is an output node is one that activates throughout in response
to S, passing activation onto o in the regular fashion. We will show that the
activity value of o is preserved, in all conditions including S, as we nullify the
net for S.

To see how, note that, at each step in the nullification, one of three things
happens:

(i) o itself is modified. Or...
(ii) the connections leading directly to o are modified. Or...
(iii) some other connection or node is modified.
Proceeding in reverse: In case (iii), where some connection or node k other

than o or its incoming connections is modified, this makes no difference to o. k
was changed, after all, in such a way that it had the same effect on the rest of
the net.

What about case (ii), where some connection c leading to o is modified? That
happens in one of two conditions: The first is when c’s source node is zeroed and
c has to compensate. But when c is made to compensate, it is ipso facto made
to send the exact same value it used to. So no change to o results. The other
occasion is when, along with all of o’s other incoming connections, c is zeroed.
When that happens, o itself is modified to compensate. But in that case, o is
modified in such a way as to ensure that it takes the same value as before.
Specifically, it has its threshold lowered so that, if the connections now feed it
V less input in all circumstances, it requires V less activation to fire. And thus
it continues to take the same values that it did before any change.2

Situation (i), then, is already taken care of. For we only modify o itself when
we are compensating for the changes in its incoming connections. And as we just
saw, this results in o taking the same value it always did.

Thus the nullification of the net leaves o’s activity levels, across all possible
circumstances, unchanged. Which means that if o activated before, and hence
caused a twitch in the muscle sheet, then it activates afterwards likewise.

2.5 More Complex Nets

We have been assuming that the net-to-be-nullified only grants each node and
connection in the net one opportunity to fire during the processing of S. But
what if a net has connections that feed back into earlier layers? Or if the stimulus
stream is temporally extended? Then the same neuron might fire twice in the
processing of S.

In such cases, we cannot straightforwardly apply the techniques outlined
above. For if a node has more than one opportunity to activate, then it might
take different values on each. Inverting it, in that case, would simply switch one
activation for another, not silence it for the whole of input S. Similarly, lowering
the activation of a connection by a single quantity v across all circumstances

2 Indeed, the short answer to how it is that o can activate when it receives input zero
is that it has had its threshold lowered so that it requires zero stimulation to fire. It
fires now by default, unless it is inhibited.
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might not nullify the connection tout court, since it might take different values
v and v′ on different occasions. Since there is no single shift in absolute values
that will transform both v and v′ into 0 for input stream S, this net cannot be
nullified for the input stream S. At least, we cannot nullify it by merely using
the techniques above.

How, then, might we extend our techniques? Essentially, we must (i) trans-
form the net into one that only grants each node and connection one opportunity
to fire for the duration of the stimulus S and then (ii) use the procedures above.
Hence the transformation occurs in two passes:

(i) Expansion: We replace each internal neuron n by a set of special turn-
taking neurons f1(n), f2(n), f3(n), etc, each of which is disposed to remain
inactive until it is its turn to play the role of n. So f1(n) plays the role of n
for the first time-step, f2(n), plays that role for the second, and so on. The
collection is not infinite, so ultimately f1(n) will take over again, and the cycle
will reinitiate. We expand the brain until the collection of turn-taking neurons
is so large that no node, and no connection between them, fires twice in the
processing of S. See fig. 2.

output

output
OUTPUT

OUTPUT

Fig. 2. Each node in the simple net on the left is replaced with a looping track of
turn-taking nodes on the right. In the net on the left, if the shaded neuron fires at time
tn, it will cause the unshaded node to fire at time tn+1. Equivalently, in the net on the
right, the shaded node whose turn it is at time tn will, if it fires at time tn, cause the
unshaded node whose turn it is at tn+1 to fire at tn+1.

(ii) Nullification: After expansion, each turn-taking node can fire a maximum
of one time in the processing of S. We now nullify for S using the procedures
above.3

3 It’s not correct to say that an inverted turn-taking neuron fires until it is switched
off, for a turn-taking neuron keeps quiet until its turn. Rather, it activates by default
when its turn comes unless it is subject to inhibition.
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3 Functional Equivalence

The net at the end of this procedure is, to all appearances, very different from
the net we started out with. In fact, though, the resultant net is functionally
equivalent to the original net at the level of individual neural firings. To see why,
forget pass (ii), nullification, for the moment and just consider the expanded
net E(N) we get from the original net N after pass (i), expansion. For any
arbitrary stimulus stream S, each firing at an arbitrary node n at time t in
the simpler net N corresponds to a firing with the exact same value, causing
the exact same output in its efferent connections and causing identical valued
firing events downstream, at node ft(n) in the more complex net E(N). And vice
versa. Hence there is two-way functional equivalence between the two nets at the
level of firing events. The only reason the more complex net looks architecturally
different is because it has been ‘unfolded’ with respect to time, with a set of turn-
taking neurons in the latter net replacing a single neuron in the former. But this
difference is a difference in the identity of the pieces that are arranged to play
the implemented roles, not a difference in the implemented roles themselves, and
hence not a functional difference.

All that changes when we nullify this net is that the corresponding values
between n at t and ft(n) are not always identical values. Indeed, sometimes
ft(n) uses a 0 to accomplish what n at t did with a nonzero value. Still, what
is important is that the new encoding is functionally equivalent to the old, and
we know that it is from the fact that, when we nullified the net, we ensured
that each neuron, and each value taken by each node or connection, played the
same local (and hence global) role. Nullification, after all, was a process that
proceeded locally, node by node, with the functional integrity of each neuron,
connection and value being preserved at every step.

What we can now see is that any brain can, with respect to any sequence of
stimuli S no matter how long or complex, be reengineered so that it processes
S passively. We could, to work with a memorable example, create a brain that
passively computes the stimuli that Lee Harvey Oswald encountered when in-
terrogated by the Dallas police, and which passively maps those inputs to the
exact behavioral responses that Oswald himself exhibited. Of course, it would
only passively compute that input if it were arrested for assassinating the US
President and asked those exact questions in that exact order, in a room of the
exact right color etc, and that is vanishingly unlikely. But the point is one of prin-
ciple: That if it were put in that situation it would exhibit the same behaviors
exhibited by Oswald, but without any of its neurons firing.

Oswald’s actual interrogation ran to several hours. To get the system to pas-
sively compute for that long, we must simply loop together sufficiently many
Oswald-nets (in the manner of figure 2) so that no node or connection activates
twice for that period, then nullify the resulting net. Such a network would obvi-
ously be gargantuan, too large for a human head, and so we might have to put
it on the moon and have it radio-control its body. But these are, again, practical
problems, distinct from the fundamental points of principle.
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Could the creature be conscious even while its brain remains inactive? Is the
passively produced behavior perforce unintelligent? Many philosophical consid-
erations intrude upon our answering these questions, too many to contemplate
fully here. Still, we can make a brief and broad case to the effect that the inactive
brain is mindful. Two separate arguments can be brought to bear:

(A) Recall that the system is functionally equivalent to the original system at
the level of neuron firings. Since functionalists generally believe that the interest-
ing functional facts are implemented by the neurofunctional facts they ought to
believe that, in reproducing the neurofunctionality, we thereby produce a system
with similar mental states. Non-functionalists, meanwhile, may add additional
requirements - e.g. that the brain be made of the right stuff (e.g. flesh, not copper
wires and silicon). Block [CE3], for example, persuasively deploys the “Chinese
Nation“ thought experiment to argue that getting the functionality right isn’t
enough. Ironically, though, since the point we have made is functional, there is
no obvious reason we should not be able to meet any additional requirements
that people like Block might add, on an ad-hoc basis if need be. For example,
we can build our silly net out of organic tissue, if that is required.

(B) That the system behaves just like a regular, intelligent human, even
when its brain is deactivated. If one maintains that it does this despite having
no (conscious) mental states, then one appear to admit that (conscious) mental
states play no fundamental role in the production of regular, intelligent, behavior.
Holding such a position, though, has historically proved problematic.

4 Possible Worries

I have little space to respond fully to all possible worries. But there follows some
prominent concerns with some sketched answers.

The idea that inactivity can encode something interesting is not an entirely
new idea. If the temporal coding view of neural information is correct then spike
trains are to be thought of as sequences of 0s and 1s, with the 0s implemented
by non-firings. One might still think, however, that 0s get their informational
relevance by punctuating sequences of 1s – in other words, inactivity becomes in-
formational by interrupting streams of activity. What the current project shows,
in contrast, is that inactivity has content even when there is no activity for it
to punctuate. For it is the embedding of the inactivity against a backdrop of
counterfactual, not temporal, activity that renders the inactivity informational.

One might suppose that nullification merely produces a system that codes
the null response as the correct response to one particular input (and maps
the null response, in turn, to an appropriate bodily response). But this would
be neither new nor distinctive to connectionists nets. However, we could have
done things a lot more easily if that were all we were after. We could have
imagined a stimulus-stream S that switches the brain off and a corresponding
pre-program in the muscles that reacts as-if-to-S when the brain switches off.
But what would correspond, on this arrangement, to the inverted granny neuron,
passively representing granny’s presence by not firing? Presumably, nothing.
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Yet without such representation we have no concrete reason to believe that the
inactive net is conscious. In contrast, because we showed that the nullified net
is equivalent to the original net at the level of neural firing opportunities, we
know that the new granny node (or track of nodes) continues to play the same
functional role. It merely does so passively. So granny-representation is still going
on in our nullified net. And granny consciousness with it.

Alternatively, one might worry that gargantuan systems are able to fake
intelligence (and perhaps other mental attributes) – e.g. by using giant look-
up tables consisting of every conversation that is (say) less than an hour long
[CE2]. Is our gargantuan, expanded, nullified net a gargantuan cheat in the
same way? To check, note how such intelligence-faking systems are excluded by
compactness criteria such as that offered by Shieber [CE9], according to which a
system counts as intelligent by having a competence for passing Turing tests of
length logarithmic to its storage capacity. So if the storage space of the system
is large, the length of the Turing test it can pass must be correspondingly large
(though ‘large’ is relative. In fact, a conversation-memorizer could be unmasked
by a Turing test lasting about a minute, according to Shieber’s estimates, even
if its storage capacity were equal to the whole universe.) This foils the possibility
of giant look-up tables by ensuring that the test we give the system will be longer
than any pre-canned conversation it could have in memory. Does it also count
our expanded nullified net as being an intelligence faker? No. For it is perfectly
functionally equivalent to the human brain with which we started, so it must
have the same competence for conversation that the human has. In other words,
it can continue indefinitely.
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Abstract. The aim of the present paper is to introduce a formal logic
that can help to test the validity of legal inferences. We begin by pre-
senting the rationale of our method and then we expose the philosoph-
ical foundations of our analysis. If formal philosophy is to be of help
to the legal discourse, then it must first reflect upon the law’s funda-
mental characteristics that should be taken into account. Our analysis
shows that the (Canadian) legal discourse possesses three fundamental
characteristics which ought to be considered if one wants to represent
the formal structure of legal arguments. These characteristics are the
presupposed consistency of the legal discourse, the fact that there is a
hierarchy between norms and obligations to preserve this consistency and
the fact that legal inferences are subjected to the principle of deontic con-
sequences. We present a formal deontic logic which is built according to
these characteristics and provide the completeness results.

Key words
Legal obligations, Legal discourse, Normative consistency, Deontic

consequence, Non krikpean semantics

1 Introduction

Deontic logic began with the work of von Wright [34] and has since been inter-
preted in many different ways. Although the approaches that we find nowadays
within the literature vary significantly, most all share a common feature: the use
of possible world semantics and the interpretation of deontic logic as a modal
logic.1 Among these approaches the reader will find monadic, dyadic, tempo-
ral, non-monotonic, first-order, dynamic and stit deontic logics (see [23] for an
overview).2 The modal interpretations are usually characterized by the fact that

? The author would like to thank Jean-Pierre Marquis for his valuable comments on a
previous draft of this paper and for his continuous support. This paper was supported
by the Social Sciences and Humanities Research Council of Canada.

1 Note that there are some approaches that do not use possible world semantics, as
for instance the input-output logic of [19].

2 See for example [4] for an introduction to monadic and dyadic deontic logic, [30] for
an overview of dyadic deontic logic, [31, 32] for temporal deontic logic and [22] for
non monotonic deontic logic. See [14] for an introduction to stit logics and [37] for a
sketch of possible world semantics in deontic logic.
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the truth value of a normative proposition depends upon the truth value of
the descriptive proposition in the scope of the deontic operator. These inter-
pretations are of the Ougth-to-Be type, meaning that a deontic proposition Oϕ
expresses that a specific description ϕ of the world ought to be the case, or that
the world ought to be in a specific state. However, one can nonetheless find some
modal interpretations of the Ought-to-Do type, which are characterized by the
fact that the proposition in the scope of a deontic operator is instead interpreted
as the name of an action. This kind of interpretation can be found notably within
the dynamic approach to deontic logic3, where an action is forbidden when its
performance implies that the world is in a state within which there is a violation
V . It can also be found in deontic logics based upon a boolean algebra4.

The present paper does not aim at criticizing these approaches but rather
aims at providing a new one, based on different philosophical foundations. The
idea is to propose an interpretation of deontic logic which is based upon the
analysis of (Canadian) legal norms and the fundamental principles that guide
their interpretation. Our goal is not to provide an analysis of how we use the
‘ordinary deontic language’ or how the ‘ordinary deontic reasonings’ work, as
Castañeda [9, p.38] would say, but is rather to show how a normative reasoning
should work. The objective is to establish some basic properties that govern a
‘correct’ use of a (legal) normative inference. In section 2, we expose the rationale
behind our framework and present the philosophical foundations of our system.
The formal deontic logic is presented in section 3. We conclude in section 4 by
presenting the limitations of our approach. Completeness results are provided
within Appendix I together with a semi-formal method which can be used to
analyze the validity of legal inferences in Appendix II.

2 Philosophical assumptions

Contra the modal interpretation of deontic logic, we do not consider deontic
propositions as being of the Ought-to-Be type. Following Solt [29, p.350], the
truth value of a normative proposition Oϕ for the actual world does not depend
upon the truth value of ϕ at any ‘deontic alternative’. The truth value of a
deontic proposition Oϕ does not rely on the performance value of ϕ in every
accessible ‘deontically perfect world’. The fact that ϕ is obligatory depends upon
the existence of a norm, which is established by some authority [1, pp.97,102]
and aims to guide one’s actions [36, p.134]. This is consistent with the legal
adage nullum crimen sine lege: there is no crime without law, nor any obligation
without a norm. Therefore, the truth value of a normative proposition Oϕ does
not depend upon the truth value of the descriptive proposition ϕ in the scope of
the deontic operator but depends upon the fact that there is a norm which makes
ϕ obligatory. By the same reasoning, the truth value of a deontic proposition

3 See [20, 21] for the introduction of dynamic deontic logic and, among others, see
[25], [6], [15], [27], [3], [12], [28] or [24].

4 See for instance [26].
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does not depend upon the fact that there is a ‘violation’ in every state where
the action is performed.

We do not wish to analyze legal obligations within the framework of modal
logics since the operator Oi does not behave as a normal K modality of type 2i.
Although Oi marks the property of an action, this operator is not interpreted as a
predicate since it can be applied to combinations of actions, which are expressed
by molecular compound of descriptive formulas. But Oi is not interpreted as a
modality of type 2i since we do not wish to obtain formulas such as Oi(A∨¬A)
or OiA ⊃ Oi(B ∨ ¬B), which are dubious from a legal point of view.

It is noteworthy that we are not considering the legal discourse as a normative
system, that is a “set of agents (human or artificial) whose interactions can
fruitfully be regarded as norm-governed [7, p.265]”. This point is important: we
are not trying to describe how agents interact within a normative system. Rather,
we wish to define a semantical consequence relation for the validity of normative
inferences. Our approach is normative rather than descriptive. It concerns the
analysis of legal reasoning from a critical point of view. This is mainly why we
will not use stit or dynamic logic: we are not focusing on the notion of agency.
Rather, we are analyzing the semantical consequence relation within a legal
argument.

According to the semantical dichotomy between facts and norms [cf. 18],
descriptive and normative propositions are not true in the same conditions. While
a descriptive proposition is true or false in regards to the world it describes,
the truth of a normative propositions (which says how the world should be
or how people should act, rather than how the world is) depends upon the
existence of a norm, which is established by some authority. We distinguish
between a norm and a normative proposition: the former is neither true nor
false while the latter can be true or false (the truth value of the normative
proposition depending upon the existence of a norm). A normative proposition
expresses that an action (either a specific action or a class of specific actions)
possesses a deontic property. For example, from the Canadian Criminal Code
we can conclude that the action ‘stealing a red bicycle’ possesses the propriety
‘forbidden’ or, equivalently, that the negation action ‘not stealing a red bicycle’
possesses the property ‘obligatory’. Assuming that an action possesses a deontic
property, we want to develop a basic logic that can represent how this property
can be transmitted from an action to another.

One property of a legal discourse is that there are no obligations without
norms. Following Chellas [10, p.24], we want to be able to represent situations
where there are no obligations, and thus our system must not include ‘absolute’
or ‘unconditional’ obligations. Likewise, following Jones and Pörn [16, p.279], it
is always possible for someone to act against one’s obligations, hence tautologies
are not obligations unless there is a norm that makes it so. Formally, we do not
want our system to validate theorems of the form ` Oi> or ` A ⊃ Oi> (with >
a tautology). Also, since the meaning of a deontic operator changes when it is
iterated [16, p.286], it follows that, according to Castañeda [9, p.66], it must not
be possible to iterate the same deontic operator. For now, our system will concen-
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trate on propositions within which there is only one type of deontic operator (one
authority) which cannot be iterated. Finally, we will not be considering mixed
propositions (i.e., propositions composed with both descriptive and normative
atoms). Indeed, it is unclear that a material conditional is sufficient to represent
the transmission of truth value between descriptive and normative propositions
since the truth value assignment for a descriptive proposition differs from the
truth value assignment of a normative one. The connective ‘⊃’ does not preserve
truth from a descriptive proposition to a normative one. For example, it is possi-
ble to have a situation where p ⊃ Piq is true but (p∧p′) ⊃ Piq is false. Therefore,
we will not be considering mixed formulas for now and will concentrate only on
normative ones.5

The deontic logic we propose is based upon an analysis of the Canadian legal
discourse and the fundamental principles that guide its interpretation. Since
legal norms are meant to guide one’s actions, it follows that norms must be
consistent since it would be impossible to act accordingly with an inconsistent
set of norms. Thus, we assume the criteria of normative consistency : obligations
are supposed to be consistent (at least after interpretation) since the legislator is
presupposed to be rational, meaning that he is presupposed to think rationally
and logically [11, p.387]. The set of norms created by the legislator is therefore
presupposed to be consistent, and thus legal obligations must not be interpreted
as contradictory. Consistency is a rational criteria that ensures the accessibility,
the authority and the equity of the law [11, p.387]. The Canadian legal discourse
is considered as forming a ‘logical system’ where there is horizontal and vertical
consistency, meaning that obligations from a same set of norms are consistent
and that the different sets of norms are consistent with each other [11, p.388]. In
other words, the set of all legal laws is presupposed to form a consistent whole
[11, p.433]. Consistency is a rational criterion that enables one to judge the value
of a set of norms, which can be examined through the consistency of the set of
obligations that it generates.

The relation of hierarchy between norms is meant to preserve the legal sys-
tem’s consistency. On the one hand, hierarchy is necessary to insure the vertical
and horizontal consistency. Since there can be (a priori) contradictions between
different sets of laws or different laws within a set of norms, hierarchy enables
us to preserve the consistency of the whole system in resolving potential con-
flicts of obligations.6 On the other hand, laws are constructed in an hierarchical
manner. For example, in Canada, no legislation can go against the Canadian
Constitution. The fact is that there are sets of laws that are superior to oth-
ers by construction, although these relations of hierarchy can also be explicitly
mentioned in the law itself [11, p.45 and p.450].

5 For a more detailed analysis of these points, see [23].
6 It is noteworthy that introducing a relation of hierarchy between norms and obli-

gations to solve a conflict might create another. In this case, the system will have
to interpreted in a way that preserves its consistency, perhaps by introducing other
hierarchies.
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A legal reasoning is characterized by the fact that it is hypothetical: a legal
conclusion cannot be drawn without a legal premise. This is consistent with
the semantical dichotomy. A valid legal inference implies that there is a set
of hypothetical norms (or obligations) from which legal conclusions are drawn.
Thus, an obligation is conditional to a set of norms (or principles), which is
established by some authority. The fact that obligations are derived from norms
(which are stated by certain authorities) implies that normative inferences are
ruled by a specific criteria of validity. Since there is a finite number of norms,
it would seem that there is also a finite number of obligations that will derive
directly from these norms. For example, we can derive from the law that it is
forbidden to steal. However, norms are often formulated in order to be applied to
a class of specific actions. The obligation that derives directly from the law is to
not steal, but clearly it is meant to be applied to a class of actions: not stealing
a car, not stealing money, not stealing Paul’s money, not stealing Peter’s car,
not stealing Paul’s car and Peter’s bicycle, etc. In other words, there is a much
greater number of obligations that can be derived from a specific norm. But how
do we legitimately conclude them since they are not explicitly mentioned by the
norms?

To answer this question, we follow Alchourrón and Bulygin [1, p.102] and
distinguish between fixed and derived obligations. A fixed obligation stems from
a norm and can be general in order to be applied to a class of specific actions.
Thus, there will be a finite number of fixed obligation, according to the norms
which entails them. A derived obligation can be inferred from a fixed one. From
it is forbidden to steal we can derive Paul has the obligation to not steal Peter’s
money. The rule which governs this type of inference is the principle of deontic
consequences [8, p.13]7: if A is an obligation and A implies B, then B is also
an obligation. The mere formulation of the law implies that there are derived
obligations. In French Civil Law it is obvious since the law is formulated in a
general way and applies implicitly to each particular case that falls within its
scope.8 Even though it seems to be the contrary in Common Law, where the
law is constructed upon each particular judgment, the same principle applies
nonetheless since a judgment applies to a class of particular actions. Even if a
judgment comes from a particular action, the case law applies to other similar
cases. Put differently, there are actions that are obligatory (or forbidden) even
though they are not mentioned explicitly by the law (or the case law). The law
is not an enumeration of all possible cases. The law says that it is forbidden
to steal. What it means is that it is forbidden to do any action that implies
stealing.9 Normative consistency implies that legal obligations are subjected to
the principle of deontic consequences since it is possible to deduce from the law

7 See also [33, p.421].
8 Quebec’s legislation is composed of both French Civil Law and Common Law.
9 We are not pretending that logic can resolve the problem of interpreting the law.

We only say that laws are formulated in order to include different kinds of actions,
which has nothing to do with deciding whether the action falls within the scope of
the law or not.
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certain things that logically follow, assuming that the legislator is rational [11,
p.422]. The aim of the present paper is to define this consequence relation.

To sum up, the analysis of the Canadian legal discourse brought to light three
fundamental characteristics, namely its presupposed consistency, the fact that
hierarchy is meant to preserve that consistency and the validity of the principle
of deontic consequences, which enables one to infer derived obligations from
fixed ones. If one is to apply formal philosophy to law, then one must take these
characteristics into account.

3 The logic of legal obligations

According to these characteristics, the logic we propose relies upon a consequence
relation which is defined in function of normative consistency and deontic conse-
quences. For now, we do not need to include hierarchy within the formal defini-
tion since we are only considering one type of deontic operator which cannot be
iterated. However, as we will see, hierarchy will play a role for the analysis of the
soundness of an argument (see Appendix II). The basic idea of our approach is to
define a consequence relation which can represent how the property ‘obligatory’
can be transmitted from an action (or a combination of actions) to another. We
follow Castañeda [9, p.46] and assume a distinction between different types of
obligations, where the type of an obligation depends upon the set of norms from
which it can be derived [1, p.120].

3.1 Syntax

The formulas of OL are built from L and have the form OiA, where Oi is a
single type of obligation and A is a proposition that refers to an action or a
combination of actions.

L = {(, ), P rop,¬,⊃, Oi}
Prop = {p1, . . . , pn, . . . } is a denumerable set of propositional descriptive atoms.
Descriptive propositions are understood as descriptions of actions, hence not as
any description. The other logical connectives ∧, ∨, ≡, Fi and Pi are defined
as usual, with

FiA =def Oi¬A (Interdiction)

PiA =def ¬Oi¬A (Weak permission)

We use A,B and C as meta-variables. Well-formed formulas of L (WFFL) are
defined recursively by:

pi ∈WFFPL for all pi ∈ Prop (1)

if A,B ∈WFFPL, then ¬A, A ⊃ B ∈WFFPL (2)

if A ∈WFFPL, then OiA ∈WFFOL (3)

if A,B ∈WFFOL, then ¬A, A ⊃ B ∈WFFOL (4)

if A ∈WFFPL or A ∈WFFOL, then A ∈WFFL (5)
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PL stands for propositional logic and OL for the logic of legal obligations. Thus
defined, WFFL does not contain any mixed formulas or any formula where there
is an iteration of a deontic operator. This language incorporates the dichotomy
between the descriptive and the normative. The axiom schema for normative
consistency is represented by (A1), which is propositionally equivalent to the
axiom (D) of standard deontic logic.

¬(OiA ∧Oi¬A) (A1)

The principle of deontic consequences is represented by the rule of inference
(R1) and its use is restricted by two conditions.

1
...

2 OiA1 ∧ · · · ∧OiAn
3 (A1 ∧ · · · ∧An) ⊃ B
4 OiB R1 l.2,3

(R1)

First, {A1, . . . , An} cannot be the empty set (n ≥ 1), otherwise B would be
a theorem of PL and there would be a set of absolute obligations. Since every
obligation is conditional to a norm, it follows that B must be a consequence that
depends upon {A1, . . . , An}. Hence, B must not be a tautology. Secondly, the
conditional

(A1 ∧ · · · ∧An) ⊃ B
must be either a theorem of PL or an hypothesis. As a result, (R1) cannot be
applied to any material conditional but can only be applied to a conditional
which is either a theorem of PL or a hypothesis. Let us note that since (R1)
can be applied to an hypothesis, it follows that this rule is invalid in a standard
system such as KD. We introduce OL in a natural deduction system. We say
that A is a theorem of OL, written `OL A, when there is a proof of A without
the use of any hypothesis. In addition to (R1), we assume the rules of PL [cf.
13, p.35], that is

1. hypothesis (H);
2. reiteration (Reit);
3. detachment (⊃ out);
4. conditional proof (⊃ in);
5. double negation (DN).

Although OL contains only normative propositions, the proofs of the the-
orems are done in L. Thus constructed, OL (and moreover L) behaves at the
propositional level according to the rules of PL. We write ‘PL’ as a justification
in a proof when the formula is a theorem of PL.10

10 One the one hand, it should be noted that our syntactical system is similar to that
of [34] (see the axiomatization in [35]). However, the two are not equivalent, since
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3.2 Semantics

Let Act = {ΓA : ΓA is a positive action} be a denumerable set of positive actions
(e.g. walking, talking, stealing, ...), where ΓA stands for the action described by
the proposition A, and Act = {ΓA : ΓA is a negative action} a denumerable
set of negative actions (e.g. not walking, not talking, not stealing, ...). The set
A = Act∪Act is thus the denumerable set of all possible actions (actions in Act
do not need to be atomic). Each action in A can be described by a proposition
of WFFPL. Let the sequence sα =< sα1 , ..., s

α
n, ... > be an arbitrary enumeration

of Act and the sequence sα =< sα1 , ..., s
α
n, ... > an enumeration of Act, where

sαi refers to the negation of the action sαi . A propositional variable pi (or a
molecular compound Ai) refers to an action sαi member of an arbitrary sequence
sα, while ¬pi (or ¬Ai) refers to sαi . If Ai refers to sαi , then sαi is the action ΓAi

(described by Ai), that is the ith member of sα. An arbitrary sequence sα (and
its counterpart sα) is an interpretation of the language L. It assigns a descriptive
proposition of WFFPL to each object of the domain (i.e., each action).

In order to formalize semantically the principle of deontic consequences, we
assume that the set A is pre-ordered by ‘v’. For example, if we suppose that

p1 = Peter steals a red bicycle

p2 = Peter steals a bicycle

p3 = Peter steals

then we have Γp1 v Γp2 v Γp3. This allows us to give a semantical account of the
relation of implication between actions. If an action ΓA implies another action
ΓB , then ΓA v ΓB . Thus, if we assume that ‘stealing implies not violating the
law’ is true in some (descriptive) interpretation, then we assume that ‘stealing’
v ‘not violating the law’ in some normative model. LetM by a standard model
of PL. In oder words, if |=M p1 ⊃ p2 (i.e., p1 ⊃ p2 is assumed to be true in
M), then Γp1 v Γp2 holds in the normative interpretation. (We do not assume
the converse because it would lead us to ideality. It is not because an entailment
between actions is assumed in a normative interpretation that it is necessarily
true in the descriptive one. For instance, one can assume that ‘it is obligatory
that if one is in a public place, then one is not naked ’ holds in a normative model
while the conditional in the scope of the operator is false in a descriptive one.)

Let N = 〈W,A,v, a〉 be a normative model, where W 6= ∅ is the universe of
discourse and contains normative propositions (which are members of WFFOL),
A is a denumerable set of actions pre-ordered by ‘v’ and a : W −→ {>,⊥} a
function which assigns truth values to propositions in W . Let O be a proper
subset of A (O ( A). Informally, O is a set of actions which have the property
‘obligatory’, meaning that O is the extension of the concept ‘obligatory’ within

0OL Oi(A ⊃ A) ⊃ Oi(A ∨ ¬A). On the other hand, even if (R1) may look like the
Rule 0 in [2], they differ from the important fact that {A1, ..., An} cannot be the
empty set. Also, his syntactical system is equivalent to KD, which is not equivalent
to OL since (R1) is invalid in the standard system.
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a normative interpretation. The set has to satisfy three conditions:

If ΓA ∈ O, then ΓA /∈ O (C1)

If ΓA ∈ O, then ΓB ∈ O for any ΓA v ΓB (C2)

such that 6|=PL B

If ΓA ∈ O and ΓA v ΓB⊃C , then ΓB v ΓC (C3)

The first condition assures the consistency of O (i.e., normative consistency)
and the second implies that O is closed ‘upwards’ when B is not a tautology of
the (classical) propositional calculus. The third condition says that if the action
described by A is semantically linked to the action described by B ⊃ C, then the
action described by B is semantically linked to the action described by C insofar
as the action described by A is obligatory. C2 and C3 allow us to represent the
principle of deontic consequences. For a normative interpretation N , aN (A) = >
if and only if there is a sequence sα =< sα1 , ..., s

α
n, ... > which satisfies A. We

now define satisfaction recursively.

Definition 1. For any A, sα satisfies A if and only if

1. If A is OiB, then

(a) If B is pi, then sα satisfies A iff sα satisfies pi iff sαi ∈ O (i.e. the ith

member of sα is a member of O).
(b) If B is ¬C, then sα satisfies A iff sα satisfies C.

i. sα satisfies pi iff sαi ∈ O
ii. sα satisfies ¬D iff s

α
= sα satisfies D

iii. sα satisfies D ⊃ E iff sα satisfies D and sα satisfies E

(c) If B is C ⊃ D, then sα satisfies A iff either

i. sα satisfies Γm = C ⊃ D (i.e. sαm ∈ O) or
ii. sα satisfies D (provided that ΓC is not ΓD).11

2. If A is ¬B, then sα satisfies A iff sα does not satisfy B.
3. If A is B ⊃ C, then sα satisfies A iff sα does not satisfy B or sα satisfies

C.12

We say that a normative proposition A is valid when it is true for any nor-
mative interpretation, i.e., |= A ⇔ ∀N , |=N A. This system is proven to be
sound and complete (see proof in Appendix I). The reader may note that the
deduction theorem does not need to be proven in a natural deduction system
since it follows immediately from the conditional proof rule. See Appendix II for
a graphical representation of the system and how it can be applied to analyze
legal inferences.

11 Informally, the first condition means that the conditional represents a fixed obligation
while the second represents a derived obligation.

12 Let us note that it would be incorrect to infer from the fact that sα satisfies pi that
it also satisfies A ⊃ pi from condition 1(c). Rather, if sα satisfies pi, then sα satisfies
¬pi, and thus sα satisfies A ⊃ ¬pi.
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4 Closing remarks

This paper contributes to the literature insofar as it provides a simple language
that covers a portion of the intuitive validity of legal inferences which was not
covered by other frameworks in the literature. To sum up, we introduced a formal
deontic logic which can be applied to analyze the validity of legal reasoning. It
is our view that if formal philosophy is to be of help to the legal discourse, then
it must first reflect upon the law’s fundamental characteristics that should be
taken into account. We provided the reader with a brief analysis of the Canadian
legal discourse and we exposed three fundamental characteristics which ought to
be considered if one wants to represent the formal structure of legal arguments.
These characteristics are the presupposed consistency of the legal discourse, the
fact that there is a hierarchy between norms and obligations to preserve this con-
sistency and the fact that legal inferences are subjected to the principle of deontic
consequences. The formal logic that was built according these characteristics is
restricted to normative inferences in which there is only one type of obligation,
no iteration of deontic operator and no mixed formulas. This is both a strength
and a weakness of our approach. It is a strength insofar as the paradoxes which
use these properties cannot be formulated in our framework. However, it is a
weakness since we cannot formulate conditional obligations, which are of central
importance in legal reasoning. The main contribution of this paper is that our
method covers a portion of the intuitive validity of legal inferences which was not
covered by other monadic frameworks in the literature. For instance, the princi-
ple of deontic consequences is not valid in standard deontic logic. Although the
principle of deontic consequences can be formulated (and validated) in multi-
modal deontic logics which include a minimal necessity operator 2, our aim was
to develop a system which can easily be applied to test the validity of some basic
legal inferences, which can be done with the help of graphical representations of
arguments. Moreover, our intention was to introduce an alternative to the modal
logic K, which is usually used as a building block for the construction of deontic
logics. It is our view that our framework is better suited than K to formalize
the transmission of the property of ‘legally obligatory’ between actions.

For future research, we intend to extend this method to arguments in which
there are different types of obligations which can be iterated and are linked by a
relation of hierarchy to prevent conflicts of obligations. We will also work on the
representation of mixed formulas and conditional obligations. Another avenue
will be to explore how this system can incorporate (or be incorporated in) the
frameworks of dynamic and stit logics.
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Appendix I

5 Completeness

The following lemmas will be useful. As a notational convention, we will write sαA
to refer to the action ΓA (i.e., the action described by the descriptive proposition
A), and which is the mth member of sα. We also write sα¬A instead of sαA.

Lemma 1. If sα satisfies OiA, then sαA ∈ O.

Proof. We proceed inductively on the length of the formula. Suppose that sα

satisfies OiA but that sαA /∈ O. (The inductive step (HI) is that if the property
holds for l = n, then it also holds for l = n+ 1.)

1. A is pi, thus sα satisfies pi and sαpi ∈ O.
2. A is ¬B, thus sα satisfies B.

(a) B is pi, thus sα satisfies pi and sα¬pi ∈ O.
(b) B is ¬C, thus sα satisfies ¬C, meaning that sα satisfies C and by (HI)

sαC ∈ O, and thus sα¬¬C ∈ O by C2 since |=PL C ⊃ ¬¬C and ΓC v Γ¬¬C .
(c) B is C ⊃ D, thus sα satisfies C ⊃ D, meaning that sα satisfies C and

sα satisfies D. But by (HI) sαC ∈ O and sα¬D ∈ O, and since |=PL C ⊃
(¬D ⊃ ¬(C ⊃ D)), we have sαC v sα¬D⊃¬(C⊃D), thus by C3 we have
sα¬D v sα¬(C⊃D), and by C2 we obtain sα¬(C⊃D) ∈ O since sα¬D ∈ O.

3. A is B ⊃ C, thus either

(a) sα satisfies Γm = B ⊃ C and thus sαB⊃C ∈ O
(b) sα satisfies C (ΓB 6= ΓC) and by (HI) sαC ∈ O and by C2 sαB⊃C ∈ O

since |=PL C ⊃ (B ⊃ C) and thus ΓC v ΓB⊃C .

Lemma 2. If sαA ∈ O, then sα satisfies OiA.

Proof. We proceed inductively on the length of the formula. Suppose that sαA ∈ O
but that sα does not satisfy OiA.

1. A is pi, thus sαpi ∈ O and so sα satisfies pi.
2. A is ¬B, thus sα does not satisfy B.

(a) B is pi, thus sα¬pi ∈ O and so sα satisfies pi
(b) B is ¬C, thus sα does not satisfy ¬C, meaning that sα does not satisfy

C. Since |=PL ¬¬C ⊃ C, we obtain sα¬¬C v sαC and by C2 we have
sαC ∈ O, and by (HI) sα satisfies C.

(c) B is C ⊃ D, thus sα does not satisfy C ⊃ D, meaning that either sα

does not satisfy C or sα does not satisfy D. By hypothesis, we have
sα¬(C⊃D) ∈ O, and by PL we obtain sα¬(C⊃D) v sαC and sα¬(C⊃D) v sα¬D
since |=PL ¬(C ⊃ D) ⊃ C and |=PL ¬(C ⊃ D) ⊃ ¬D. Therefore, by C2
we obtain sαC ∈ O and sα¬D ∈ O, which by (HI) implies that sα satisfies
C and sα satisfies D.
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3. A is B ⊃ C, thus sα does not satisfy Γm = B ⊃ C and either sα does not
satisfy C or sαB = sαC . However, by definition if sα does not satisfy Γm, it
implies that sαm /∈ O, that is sαB⊃C /∈ O.

Lemma 3. If ΓA v ΓB, 6|=PL B and sα satisfies OiA, then sα satisfies OiB.

Proof. Assume ΓA v ΓB, 6|=PL B and sα satisfies OiA but sα does not satisfy
OiB. By lemma 1 we have sαA ∈ O, thus by C2 sαB ∈ O and by lemma 2 sα

satisfies OiB.

Lemma 4. (A1) preserves validity.

Proof. Suppose that (A1) does not preserve validity. Thus, we have `OL ¬(OiA∧
Oi¬A) and 6|=N ¬(OiA ∧ Oi¬A). However, if 6|=N ¬(OiA ∧ Oi¬A), then |=N
OiA∧Oi¬A. It follows that sα satisfies OiA and Oi¬A, meaning that sα satisfies
A and it satisfies ¬A. By lemma 1, it implies that both sαA ∈ O and sα¬A ∈ O,
which contradicts C1.

Lemma 5. (R1) preserves validity.

Proof. Assume that (R1) does not preserve validity. This means that we have a
situation where OiA `OL OiB is obtained by the use of (R1) but OiA 6|=N OiB,
that is |=N OiA and 6|=N OiB, and so sα satisfies OiA but does not satisfy OiB.
By the use of (R1), we know that A ⊃ B is true by hypothesis and that 6|=PL B,
and moreover that ΓA v ΓB. Therefore, by lemma 3 sα satisfies OiB.

Theorem 1 (Adequacy). If `OL A, then |= A.

Proof. Since OL is based upon PL, it suffices to show that (A1) and (R1) pre-
serve validity, which follows from lemmas 4 and 5.

Lemma 6 (Lindenbaum’s lemma). OL has a maximally consistent exten-
sion.

Suppose K =
⋃∞

0 Ki, with K0 = OL the smallest set of wffs of L closed under
the rules of PL, (A1) and (R1). Let A1, . . . , An, . . . be an arbitrary enumeration
of OL’s wffs. If `Kn−1

¬An, then Kn = Kn−1, else Kn = Kn−1 ∪ {An}. This
way, we have Ki extension of OL for all i ≥ 0. It is obvious that K is maximal
since by construction either Ai ∈ K or ¬Ai ∈ K for all i. We now show that K
is consistent.

Proof. Assume K ` ⊥. Thus, there is a finite proof of ⊥ from a finite subset
of K, meaning that there is Kn such that Kn ⊂ K and Kn ` ⊥. If Kn is
inconsistent, it implies that by construction the proposition An added to Kn−1
broke Kn’s consistency. However, such a situation is impossible. Indeed, this
means that Kn ` An ∧ ¬An, with Kn = Kn−1 ∪ {An} and Kn−1 ` ¬An. But
if Kn−1 ` ¬An, then Kn = Kn−1, thus Kn 0 ⊥. And if Kn−1 0 ¬An, then
Kn = Kn−1 ∪ {An}, thus Kn 0 ⊥ since Kn 0 ¬An. Therefore, K is consistent.
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Lemma 7. N is a model of K.

Proof. Assume that N is not a model of some maximally consistent extension
K. It follows that there is a proposition A such that `K A and K 6|=N A. But if
`K A, it means that there is a finite proof of A from a finite subset of K, thus
`Kn

A and Kn 6|=N A. However, since every subset of K is an extension of OL,
it implies that Kn `OL A. By theorem 1, if Kn `OL A, then Kn |=N A, which
contradicts our first hypothesis. Therefore, N is a model of K.

Theorem 2 (Completeness). If H |= C, then H `OL C.

Proof. Assume that there is a maximally consistent extension of OL where H |=N
C and H 0K C. Since K is maximally consistent, it follows that H `K ¬C, and
since N is a model of K it implies that H |=N ¬C. However, if H |=N C, then
H 6|=N ¬C, which contradicts our first hypothesis. Therefore, if H |=N C, then
H `K C for any N .

195



Appendix II

6 Validity of legal reasoning

6.1 Graphical representation

The idea that lies behind this approach is that, according to the semantical
dichotomy, a scenario w is divided in two parts : one descriptive (D) and the
other normative (N), which contains a set of obligations O. A scenario w is
inconsistent if either D or N is. An argument’s validity can be tested through
a counterexample: assume a scenario w in which the premises are true but the
conclusion is false and see if it is inconsistent. If it is, then the argument is valid. If
it is not inconsistent (i.e., it is consistent), then it is invalid, meaning that there is
a truth value assignment where the premises are true but the conclusion is false.
The propositional rules (figure 1) representing schematically truth conditions for
complex propositions are quite straightforward [cf. 13, p.91].

¬(A ⊃ B)

A
¬B

A ⊃ B

¬A B

¬¬A

A

A ∨B

A B

¬(A ∨B)

¬A
¬B

¬(A ∧B)

¬A ¬B
A ∧B

A
B

Fig. 1. Propositional rules

The semantical dichotomy implies that normative and descriptive proposi-
tions are not true in the same conditions. While the truth of a descriptive propo-
sition can be represented by the fact that it belongs to the descriptive part of a
scenario, the truth of a normative proposition depends upon a norm established
by some authority: A is obligatory if and only if there is a norm which makes the
action described by A (i.e., ΓA) an obligation. From a propositional standpoint,
complex normative formulas behaves schematically as complex descriptive for-
mulas since both are composed of the same logical connectives (figure 1). The
difference of truth conditions between normative and descriptive propositions
can be seen through the representation of normative atoms. If OiA is true for
w, then

1. there is a norm (established by authority i) which makes ΓA obligatory;
2. the action described by A pertains to a set of obligations.

Since logical connectives can (classically) be reduced to composition of ¬ and
⊃, we will only represent schematically truth conditions for Oip, Oi¬A and
Oi(A ⊃ B) (figure 2). These rules, combined with conditions C1, C2 and C3,
allow us to verify the validity of a normative inference.
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O
Γp

N

Oip
O

Γ¬p

N

Oi¬p
O

ΓA

N

OiA

O

ΓA
Γ¬B

N

Oi¬(A ⊃ B)

O
ΓA⊃B

N

Oi(A ⊃ B)

OiB

(ΓA 6= ΓB)

N

Oi¬¬A

OiA

Fig. 2. Truth conditions of normative atoms

As an example, let us test (R1)’s validity with n = 1 (figure 3). Assume that
w is a counter-example for (R1). Then, place the assumptions in their respective
descriptive or normative part of w. According to the rules for normative atoms,
Γp is in O. Since p ⊃ q is assumed to be true in the descriptive part of w, it
follows that Γp v Γq holds in its normative part. By C2 we obtain Γq in O,
meaning that we can conclude Oq in the normative part of w. The only branch
in the normative part closes (schematically represented by ×) since it contains
a normative contradiction (i.e., Oiq and ¬Oiq). Therefore, there is no possible
scenario in which the premises of (R1) are true while its conclusion is false, hence
the proof of (R1)’s validity. The proof can be rephrased as following. Assume
that the action described by p is obligatory, that p implies q but that the action
described by q is not obligatory. Since the action described by p is obligatory,
it follows that it pertains to a set of obligation. Considering that p implies q is
taken to be true in the descriptive part of w, it follows that there is a semantical
relation between the action described by p and the action described by q. From
this relation and the condition C2, we can conclude that the action described
by q also pertains to the set of obligations, and thus the action described by q is
obligatory, which contradicts our hypothesis. (Ask author for more examples.)

We now list some semantical properties of the model. These properties are
useful for both the formal semantical proofs and the graphical representation.
(Ask author for proofs. Most of them are straightforward from C1, C2, C3 and
PL).

197



w

O

D N

Oip
p ⊃ q
¬Oiq

Oip
¬Oiq

p ⊃ q

¬p q Γp

Γq

Oiq
×

Fig. 3. Test of (R1)’s validity

Lemma 8. If ΓA ∈ O, then ΓB⊃A ∈ O for any B.

Lemma 9. If ΓA ∈ O and ΓB ∈ O, then ΓA∧B ∈ O.

Lemma 10. If ΓA∧B ∈ O, then ΓA ∈ O.

Lemma 11. If ΓA ∈ O and ΓA⊃B ∈ O, then ΓB ∈ O.

Lemma 12 (De Morgan). ΓA∧B ∈ O if and only if Γ¬(¬A∨¬B) ∈ O.

Lemma 13. The next lemmas are consequences of (De Morgan) and lemma 8.

If ΓA ∈ O, then ΓA∨B ∈ O (6)

If ΓA ∈ O, then Γ¬(¬A∧¬B) ∈ O (7)

If Γ¬A ∈ O, then Γ¬A∨¬B ∈ O (8)

If Γ¬A ∈ O, then Γ¬(A∧B) ∈ O (9)

If Γ¬(A∨B) ∈ O, then Γ¬A ∈ O (10)

If Γ¬(¬A∨¬B) ∈ O, then ΓA ∈ O (11)

6.2 Soundness of legal inference

In addition to the formal method developed so far, one might want some hints
to test the soundness of a legal inference. Without pretending to be exhaustive,
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we only give some philosophical insights regarding relevant questions one might
try to answer. A sound inference is valid and has true (or acceptable) premises.
The second question (after the validity test) is thus are the premises true? The
truth of a normative proposition depends upon the fact that there is an authority
which establishes that norm. Hence, one must first contextualize the normative
proposition to a legal authority: is it true according to the Constitution? the
Civil Code? the Criminal Code? the Canadian Charter of Rights and Freedom?
It is noteworthy that some inferences can be fallacious when the meaning of
‘ought’ is not the same throughout the argument.

The context of the argument is also relevant. Consider the premise ‘Paul
ought to tell the truth’. Assume that ‘ought’ is understood legally. While one is
not legally obliged to tell the truth in one’s day to day life, one is however legally
obliged to tell the truth in a court of justice. It might also be useful to analyze the
descriptive propositions used in conjunction with (R1). The conditional must be
analyzed in terms of necessity and sufficiency. Is the conditional representing a
semantical relation of entailment between two actions? Is the action described by
the consequent necessarily entailed by the action described by the antecedent?

Furthermore, one must contextualize the descriptive propositions according
to the normative authority. For instance, the meaning of the proposition ‘Paul
respects his neighbor’ will vary according to the legal authority. Indeed, the
meaning of ‘Paul must respect his neighbor’ will vary depending whether the
legal authority is the Civil Code or the Criminal Code (or the Canadian Charter
of Rights and Freedom). When this is done, the question that must be answered
is what legally counts as a lack of respect from the Civil Code’s point of view?
In other words, one must answer the question ‘what action counts as A from the
authority’s standpoint?’.13

Now, consider the following argument and assume a context in which premises
P2 and P3 are acceptable. Assume that P1 ‘Paul ought to rescue Peter from
drowning’, P2 ‘If Paul rescues Peter, then Paul calls 911’ and P3 ‘If Paul calls
911, then Paul breaks into Sam’s house’. Therefore, we can conclude that ‘Paul
ought to break into Sam’s house’. Assuming that breaking and entering is legally
forbidden, this argument leads to a conflict of obligations, hence to a contradic-
tion into our current framework. The contradiction can be obtained with the
addition of the premise P0 ‘ Paul ought to not break into Sam’s house’. But
although valid, this argument is not sound: either P0 or P1 must be rejected.
The conflict of obligations can be overruled with the help of the relation of hi-
erarchy since it allows one to prioritize P1 over P0. It is not only likely that
breaking into Sam’s house to call 911 and save Peter from drowning would not
count as breaking and entering per se, but it is also likely that preserving the
integrity of one’s life would overrule preserving the integrity of one’s property.
Hence, premise P0 can be rejected and the conflict of obligations is solved.

A final clue is to consider the principle ought implies can. Replace P2 and P3

in the aforementioned example by P4 ‘If Paul rescues Peter from drowning, then
Paul jumps in the water to retrieve Peter’. From P1 and P4 one can conclude

13 For an analysis of ‘count as’, see [17] and [5].
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that ‘Paul ought to jump in the water to retrieve Peter’. However, if Paul cannot
swim (e.g. if Paul has two broken arms) then the action described by ‘rescuing
Peter from drowning’ does not entail the action described by ‘jumping in the
water to retrieve Peter’. Thus, in this context, one could reject premise P2 on
the ground that it is a violation of the ought imply can principle.
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Abstract. The generalized vehicle routing problem (GVRP) is one of
the challenging combinatorial optimization problems that finds a lot of
practical applications especially in the field of distribution, collection
and logistics. The GVRP is a natural extension of the classical vehicle
routing problem (VRP), obtained by replacing the nodes of a graph with
sets of nodes (clusters) and looking for the minimum-cost collection of
routes subject to capacity restrictions, from a given depot to a number of
predefined clusters passing through exactly one node from each cluster.
This paper describes an efficient memetic algorithm (MA) for solving the
GVRP obtained by combining a genetic algorithm (GA) with a powerful
local search (LS) procedure. The preliminary experiments on benchmark
instances show that the proposed algorithm compares favorably to all
previous methods.

Keywords: generalized vehicle routing problem, memetic algorithms,
genetic algorithms, local search.

1 Introduction

The generalized vehicle routing problem (GVRP) is a natural extension of the
classical vehicle routing problem (VRP) and it was introduced by Ghiani and
Improta [3]. The GVRP consists in finding the minimum-cost delivery or collec-
tion of routes, subject to capacity restrictions, from a given depot to a number
of predefined clusters passing through one node from each cluster. The problem
can be viewed as a particular type of location-routing problem.

The GVRP has several real world applications mainly in network design.
Some applications of the GTSP can be extended naturally to GVRP and several
other situations can be modeled as a GVRP: the post-box collection problem,
routing vessels in maritime transportation, health care logistics, the design of
tandem configurations for automated guided vehicles, urban waste collection
problem, survivable telecommunication network design, etc. For a more detailed
description of the GVRP applications we refer to [1, 2].

The existing literature on the GVRP is rather scarce: Ghiani and Improta
[3] showed that the problem can be transformed into a capacitated arc routing
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problem (CARP) and Baldacci et al. [1] proved that the reverse transformation
is valid. Integer programming formulations for the GVRP have been proposed
by Bektas et al. [2] and Pop et al. [7].

The difficulty of obtaining optimal solutions for the GVRP has led to the
development of heuristics and metaheuristics: the first such algorithms were the
ant colony algorithm of Pop et al. [9], the genetic algorithm of Pop et al. [8] and
more recently a branch-and-cut algorithm and an adaptive large neighborhood
search proposed by Bektas et al. [2] and an incremental tabu search heuristic
described by Moccia et al. [5].

The aim of this paper is to develop an efficient memetic algorithm (MA), ob-
tained by combining a genetic algorithm with a powerful local search procedure,
for solving the GVRP.

The remainder of the paper is organized as follows. Section 2 formally states
the GVRP and introduces the corresponding notations. Section 3 recalls the MA
methodology and describes how the GVRP based on the MA framework can be
solved. Section 4 presents and analyses the results of the computational exper-
iments. The obtained results are compared with the state-of-the-art algorithms
for solving the GVRP: the branch-and-cut algorithm [2] and the tabu search
(TS) heuristic [5]. Finally, the last section concludes the paper.

2 Problem description

Formally, the GVRP is defined on a directed graph G = (V,A) with V =
{0, 1, 2, ...., n} as the set of nodes and the set of arcs A. The set of nodes con-
sists of vertex v = 0 which represents the depot and the vertices v = 1, ..., n
which represent the customers and it is partitioned into k+1 mutually exclusive
nonempty subsets, called clusters, V0, V1, ..., Vk (i.e. V = V0 ∪ V1 ∪ ... ∪ Vk and
Vl ∩ Vp = ∅ for all l, p ∈ {0, 1, ..., k} and l 6= p). The cluster V0 is a singleton
consisting of the depot vertex v = 0. The set of arcs is defined by arcs connecting
vertices belonging to different clusters called intra-cluster arcs. Inter-cluster arcs
do not exist. A distance dij is associated to each arc (i, j) ∈ A and it represents
the travel cost between vertices i and j. Each customer has a certain amount
of demand and the total demand of each cluster can be satisfied via any of its
nodes. There exists m identical vehicles, each with a given capacity Q.

The generalized vehicle routing problem (GVRP) consists in finding the mi-
nimum total cost collection of routes starting and ending at the depot, such that
each cluster should be visited exactly once, the entering and leaving nodes of
each cluster is the same and the sum of all the demands of any route does not
exceed the capacity of the vehicle Q.

Therefore the GVRP involves the following two related decisions:

– choosing a node subset S ⊆ V , such that |S ∩ Vi| = 1, for all i = 1, ..., k.

– finding a minimum cost collection of routes in the subgraph of G induced by
S, fulfilling the capacity constraints.
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We will call such a route (i.e. a route visiting exactly one node from a num-
ber of clusters and fulfilling the capacity constraints) a generalized route. An
illustrative scheme of the GVRP and a feasible collection of routes is shown in
the next figure.
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Figure 1: An example of a feasible solution of the generalized vehicle routing
problem (GVRP)

The GVRP reduces to the classical Vehicle Routing Problem (VRP) when all
the clusters are singletons and to the Generalized Traveling Salesman Problem
(GTSP) when Q = ∞.

Concerning the complexity, the GVRP is an NP -hard optimization problem
because it includes the generalized traveling salesman problem as a special case.

3 A memetic algorithm for solving the GVRP

Memetic algorithms have been introduced by Mascato [6] to denote a family
of metaheuristic algorithms that emphasis on the used of a population-based
approach with separate individual learning or local improvement procedures for
problem search. Therefore a memetic algorithm is a genetic algorithm (GA)
hybridized with a local search procedure to intensify the search space.

Genetic algorithms are not well suited for fine-tuning structures which are
close to optimal solutions. Therefore, incorporating of local improvement op-
erators into the recombination step of a GA is essential in order to obtain a
competitive GA.

Our effective heuristic algorithm for solving the GVRP is a memetic algo-
rithm, which combines the power of genetic algorithm with that of local search.
The general scheme of our heuristic is:
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Figure 2: Generic form of our memetic algorithm

3.1 The genetic algorithm

We used a natural, compact and efficient encoding of solutions of GVRP similar
to that described by Pop et al. [8]. Specifically, 0 represents the depot and each
customer is tagged with a non-duplicated natural number from 1 to n. We repre-
sent a chromosome by a variable length array so that the gene values correspond
to the nodes selected to form the collection of routes which are delimited by 0
representing the depot.

The corresponding chromosome representation of the feasible solution of the
GVRP presented in figure 1 is: (3 5 0 6 7 11 0 13), where the values {1, ..., 13}
represent the customers while the depot denoted by 0 is the route splitter. Route
1 begins at the depot then visits customers 3 and 5 belonging to the clusters V1,
respectively V2 and returns to the depot. Route 2 starts at the depot and visits
the customers 6-7-11 belonging to the clusters V3 − V4 − V5. Finally, in route 3
only customer 13 from the cluster V6 is visited.

The first step of any genetic algorithm is to generate a set of possible solutions
as an initial generation or population to the problem. Although it seems simple,
the convergence, the performance and the ability of the GA are critically affected
by the initial generation.

In the case of the GVRP we carried out experiments with the initial popula-
tion generated randomly and with an initial population of structured solutions.
The initial population generated randomly has the advantage that is represen-
tative from any area of the search space. In order to generate the population of
structured solutions we used a Monte Carlo based method. Based on computa-
tional experiments we observed that this method assures an initial population
with a average fitness with 20% better than a population generated entirely ran-
domly, but the major drawback was that such a population lacks the diversity
needed to obtain near-optimal solutions.
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Analyzing the advantages and disadvantages of these ways to generate the
initial population and based on computational experiments we decided to choose
the initial population randomly.

In order for genetic algorithms to work effectively, it is necessary to be able to
evaluate how ”good” a potential solution is relative to other potential solutions.
In our case, the fitness value of a feasible solution, i.e. collection of routes, is
given by the sum of the costs of the arcs selected in the routes. The aim is to
find the minimum cost collection of routes.

The crossover operator requires some strategy to select two parents from
previous generation. We used in our algorithm an elitist approach: the parents are
chosen randomly between the best 40% (parameter chosen based on preliminary
experiments) of all the solutions in the previous generation. We select randomly
two chromosomes from the best 40% of the all the solutions of the previous
generation, assign the cheapest (w.r.t. cost minimization) to parent 1 and repeat
the procedure to select parent 2.

Offspring are produced from two parents using the following 2-point order
standard crossover procedure: it creates offspring which preserve the order and
position of symbols in a subsequence of one parent while preserving the relative
order of the remaining symbols from the other parent. It is implemented by
selecting two random cut points which define the boundaries for a series of
copying operations. First, the symbols between the cut points are copied from
the first parent into the offspring. Then, starting just after the second cut-point,
the symbols are copied from the second parent into the offspring, omitting any
symbols that were copied from the first parent. When the end of the second
parent sequence is reached, this process continues with the first symbol of the
second parent until all the symbols have been copied into the offspring. The
second offspring is produced by swapping round the parents and then using the
same procedure.

Next we present the application of the proposed 2-point order crossover in the
case of the problem presented in fig. 1. We assume two well-structured parents
chosen randomly, with the cutting points between nodes 2 and 3, respectively 5
and 6:

P1 = (13 0 | 3 5 0 | 11 7 6) P2 = (4 2 | 13 0 11 | 10 6)

Note that the length of each individual differs according to the number of
routes. According to figure 1, the cluster representation of the parents is as
follows:

C1 = (6 0 | 1 2 0 | 5 4 3) C2 = (2 1 | 6 0 5 | 4 3)

The sequences between the two cutting-points are copied into the two off-
spring:

O1 = (x x | 3 5 0 | x x x) O2 = (x x | 13 0 11 | x x)

The nodes of the parent P1 are copied into the offspring O2 if O2 does not
contain already nodes in the same clusters as the nodes of P1. The sequence
of the nodes of P1 is 13 − 0 − 3 − 5 − 0 − 11 − 7 − 6, and the clusters are
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6 − 0 − 1 − 2 − 0 − 5 − 4 − 3. Note that the cluster 6 is already represented
in O2 by the node 13 and the cluster 5 by the node 11. The depot (0) is kept
any way as it is a splitter. Therefore the remaining sequence of nodes in P1 is
0−3−5−0−7−6. Therefore the offspring O2 is: O2 = (0 3 | 13 0 11 | 5 0 7 6).

Then the nodes of the parent P2 are copied into the offspring O1 in the
same manner. The nodes of the clusters not present in O1 are copied into the
remaining positions: O1 = (13 0 | 3 5 0 | 11 10 6).

Mutation is a genetic operator that alters one ore more gene values in a
chromosome from its initial state. This can result in entirely new gene values
being added to the gene pool. With these new gene values, the genetic algorithm
may be able to arrive at better solution than was previously possible.

We use in our GA two random mutation operators: the first one (intra-route
mutation) selects randomly a cluster to be modified and replaces its current
node by another one randomly selected from the same cluster and the second
one (inter-route mutation) is a swap operator, it picks two random locations in
the solution vector and swaps their values. The new chromosome is accepted
directly if it results in a feasible GVRP, otherwise the route that exceeds the
vehicle capacity is decomposed into several ones as describe before.

The selection process is deterministic. In our algorithm we use the (µ + λ)
selection, where µ parents produce λ offspring. The new population of (µ + λ)
is reduced again to µ individuals by a selection based of the ”survival of the
fittest” principle. In other words, parents survive until they are suppressed by
better offspring. It might be possible for very well adapted individuals to survive
forever.

The genetic parameters are very important for the success of a GA, equally
important as the other aspects, such as the representation of the individuals, the
initial population and the genetic operators. The most important parameters
are: the population size µ has been set to 2 times the number of the clusters,
the intermediate population size λ was chosen twice the size of the population:
λ = 2 · µ and the mutation probability was set at 10%.

The loop of chromosome generations is terminated when certain conditions
are met. When the termination criteria are met, the elite chromosome is returned
as the best solution found so far. In our algorithm we used the termination
condition based on the number of generations, namely 104 generations seems
necessary to sufficiently explore the solution space.

3.2 Local improvement procedure

Classical GAs are not aggressive enough for some combinatorial optimization
problems. One possibility to obtain more competitive heuristics is to combine
the GAs with local search procedures.

For each solution belonging to the current generation we use a local improve-
ment procedure that runs several local search heuristics sequentially. Once an
improvement move is found, it is immediately executed. In our algorithm we
used the following local search heuristics:
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– 2-opt intra-route moves: consist of eliminating any two non-adjacent edges
in each of the routes of the solution and reconnect the two resulting paths
in a different way to obtain a different route. An improvement is obtained
if the cost of the new collection of routes is less than the cost of the initial
collection of routes. The heuristic applies all the improvements found.

– Cluster route optimization (CO): uses the shortest path algorithm to find
the best node from each cluster when the order of visiting the clusters is
given.
Given a collection of r global routes of form (V0, Vk1

, ..., Vkp
) in which the

clusters are visited, we show that the best feasible route R∗ (w.r.t cost min-
imization), i.e. a collection of r generalized routes visiting the clusters ac-
cording to the given sequence can be done in polynomial time, by solving
the following r shortest path problems.
For each sequence of visiting the clusters (V0, Vk1

, ..., Vkp
), the best gener-

alized route visiting the clusters according to the given sequence can be
determined in polynomial time by constructing a layered network (LN) with
p+ 2 layers corresponding to the clusters V0, Vk1

, ..., Vkp
and in addition we

duplicate the cluster V0. The layered network contains all the nodes of the
clusters V0, Vk1

, ..., Vkp
plus an extra nodes 0′ ∈ V0.

V0

V

V V
k

Vk

k

V0

1

2

p

...

Fig. 3: Example showing a route visiting the clusters V0, Vk1
, ..., Vkp

in the
constructed layered network LN

We consider paths from 0 to 0′, 0′ ∈ V0, that visits exactly one node from
each cluster Vk1

, ..., Vkp
, hence it gives a feasible generalized route. Con-

versely, every generalized route visiting the clusters according to the sequence
(V0, Vk1

, ..., Vkp
) corresponds to a path in the layered network from 0 ∈ V0

to 0′ ∈ V0.
Therefore, it follows that the best (w.r.t cost minimization) collection of
routes R∗ can be found by determining r shortest paths from 0 ∈ V0 to the
corresponding 0′ ∈ V0 with the property that visits exactly one node from
each of the clusters (Vk1

, ..., Vkp
).

– Neighborhood cross (NC): this neighborhood includes all feasible solutions
obtained by the replacement of two arc by other two. Given two different
routes r1 and r2, an arc is deleted from each of them dividing the routes into
two components that are combined such that a new route is made of the
first component of r1 and the second of r2 and another new route is made
of the first component of r2 and the second component of r1.
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Fig. 4. An example of a possible string cross

– Neighborhood exchange (NE): two strings of at most k vertices are exchanged
between two routes. A new solution is obtained from the current one by
selecting k vertices from one route and exchanging them with k vertices
belonging to another route. The exchange is acceptable only if it produces a
feasible solution.

V0
V0

Vp

Vq

Vi

Vj

Vq

Vp

Vi

Vj

Figure 5: An example of a possible string exchange for k = 1

– Neighborhood relocation (NR): a string of at most k vertices is moved from
one route to another (k = 1 or k = 2). This neighborhood includes all feasible
solutions obtained by deleting one or two vertices from their route r1 and
inserting them into a route r2.

V0
V0

Figure 6: An example of a possible string relocation

Our improvement procedure applies all the described local search heuristics
cyclically.

4 Computational results

In order to asses the performance of our proposed memetic algorithm for solv-
ing the GVRP, we conducted our experiments on a set of instances generated
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through an adaptation of the existing instances in the CVRP-library available
at http://branchandcut.org/VRP/data/. The naming of the generated instances
follows the general convention of the CVRP instances available online, and fol-
lows the general format X − nY − kZ −CΩ − V Φ, where X corresponds to the
type of the instance, Y refers to the number of vertices, Z corresponds to the
number of vehicles in the original CVRP instance, Ω is the number of clusters
and Φ is the number of vehicles in the GVRP instance. These instances were used
by Bektas et al. [2] and Moccia et al. [5] in their computational experiments.

We considered for our instances as in [2, 5] two clustering procedures one with
θ = 2 and the other one with θ = 3. However, the solution approach proposed
in this paper is able to handle any cluster structure.

The testing machine was an Intel Dual-Core 1,6 GHz and 1 GB RAM. The
operating system was Windows XP Professional. The algorithm was developed
in Java, JDK 1.6.

In Tables 1 and 2, we summarize the results of all methods on a set of 30 test
small to medium instances with θ = 2 and θ = 3. The first column in the tables
give the name of the instances, the second column provides the values of the best
lower bounds in the branch-and-cut tree [2]. Next three columns contains the val-
ues of the best solutions obtained using the adaptive large neighborhood search
(ALNS) [2], the incremental tabu search (ITS) [5] and our memetic algorithm.

Table 1. Computational results on small
and medium instances with θ = 2

Instance LB [2] ALNS [2] ITS [5] MA

A-n32-k5-C16-V2 519 519 519 519
A-n34-k5-C17-V3 489 489 489 489
A-n38-k5-C19-V3 476 476 476 476
A-n45-k6-C23-V4 613 613 613 613
A-n63-k9-C32-V5 900.3 912 912 908

B-n31-k5-C16-V3 441 441 441 441
B-n34-k5-C17-V3 472 472 472 472
B-n38-k6-C19-V3 451 451 451 451
B-n45-k5-C23-V3 497 497 497 497
B-n63-k10-C32-V5 816 816 816 816

P-n16-k8-C8-V5 239 239 239 239
P-n20-k2-C10-V2 154 154 154 154
P-n21-k2-C11-V2 160 160 160 160
P-n22-k2-C11-V2 162 162 162 162
P-n55-k15-C28-V8 545.3 555 565 558

Table 2. Computational results on small
and medium instances with θ = 3

Instance LB [2] ALNS [2] ITS [5] MA

A-n32-k5-C11-V2 386 386 386 386
A-n33-k5-C11-V2 315 318 315 315
A-n34-k5-C12-V2 419 419 419 419
A-n38-k5-C13-V2 367 367 367 367
A-n63-k9-C21-V3 625.6 642 643 642

B-n31-k5-C11-V2 356 356 356 356
B-n34-k5-C12-V2 369 369 369 369
B-n35-k5-C12-V2 501 501 501 501
B-n45-k5-C15-V2 410 422 410 410
B-n50-k7-C17-V3 393 393 393 393

P-n16-k8-C6-V4 170 170 170 170
P-n19-k2-C7-V1 111 111 111 111
P-n20-k2-C7-V1 117 117 117 117
P-n40-k5-C14-V2 213 213 213 213

P-n50-k10-C17-V4 292 292 292 292

From the summary Tables 1 and 2, we can observe that our memetic algo-
rithm performs slightly better in comparison to all other approaches for solving
the considered both small and medium size instances. In one instance P-n55-
k15-C28-V8 the solution returned by our algorithm exhibits a gap of 0.01 %
with the best known solution provided by the ALNS and for the rest of the in-
stances for which the optimal solution is known we solved them optimally with
our algorithm.

Regarding the computational times, it is difficult to make a fair comparison
between algorithms, because they have been evaluated on different computers
and they are implemented in different languages. The running time of our MA
is proportional with the number of generations. From the computational exper-
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iments, it seems that 104 generations are enough to explore the solution space
of the GVRP. Our proposed heuristic algorithm seems to be slower than ALNS
and comparable with ITS. Therefore we can conclude that our approach will be
appropriate when the execution speed is not critical.

5 Conclusions

In this paper, we developed a memetic algorithm for solving the GVRP. The pro-
posed heuristic integrates a number of original features: we combine a genetic
programming with a powerful local search procedure, our local search proce-
dure consists of five local search heuristics, their diversity and power being an
important factor for solving successfully the GVRP.

The preliminary experimental results show that our algorithm is robust and
compares favorably with all known heuristic approaches to the problem in terms
of solution quality. In the future, we plan to asses the the generality and scala-
bility of the proposed hybrid heuristic by testing it on more instances.
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Abstract. A modal type system for distributed computing is introduced
which defines incorrect output states by mistakes and failures, followed
by appropriate resolution strategies. Structural properties for error ex-
pressions and error reduction are shown.

1 Introduction

Programs as instances of algorithmic processes are mathematical structures em-
bedded and executed in the real world and as such are not void of errors. Error
handling is a major issue for both formal methods and applications with impor-
tant consequences in the design of distributed systems, security, fault prediction,
formal verification, repair strategies. From an engineering viewpoint, fault toler-
ance and handling are well-studied notions since the 70’s,1. The formal study of
computational errors in logical systems is, on the other hand, far less extensive.
Propositional Dynamic Error Logic2 offers a semantic interpretation for formu-
las and programs in a labelled transition system including an error state. Given
its classical dynamic setting, a system incurring in a error state is not provided
with any means for recovery. In a type system, the standard rule for falsehood
expresses instructions to abort inconsistent processes, again with no recovery
procedure. Our interest lies in three tasks for a type system:

1. to define minimal (in-)correctness conditions for reachable states;
2. to analyse errors in view of the different conditions breaches;
3. to design formal strategies to identify and correct errors.

We build on the recent extensive work on constructive modalities ([7, 8]) with
applications to type theories ([9, 10]) and distributed systems (see e.g. [11–15])
made possible by the interpretation of proofs-as-programs under the Curry-
Howard isomorphism. We build on previous work for a multi-modal polymorphic
system ([16], [18]) where truth and validity of terms are used to interpret call-by-
value and call-by-name operations in distributed computing. A calculus to reason
about error states and their resolution is given in three steps. First, we formu-
late a language with locally indexed processes by functions for locally valid code

1 See [1], [2], [3], [4], [5].
2 PDEL is an extension of Propositional Dynamic Logic PDL, see [6].
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and global values: errors can arise in executing them at locations where they are
not valid. Second, we enrich the language with the means for mobility of terms
and code via modal-style functions, for global and local validation from and to
addresses: then errors can arise in fetching and sending data at wrong locations.
Finally, we internalize these two main kinds of errors: functions for mistakes as
conceptual, semantic or syntactic errors; and functions for failures as procedural,
mobility-related errors.3

2 ML�♦err: A Type System with Error States

ML�♦err is a modal type system for mobile distributed programming with error
states and handling procedures, inspired by an extension of a standard Martin-
Löf type theory with judgemental modalities, avoiding dependent types.

Definition 1 (Syntax). The syntax of ML�♦err is defined by the following al-
phabet:

Programs Π := xi | ai, for i ∈ I

Specifications Σ := α | ⊥ | α× β | α+ β | α→ β | α ⊃ β
Locations I := 1 < · · · < n
Operations Φ := exec(α) | runi(α) | runi∪j(α · β) | runi∩j(α · β)
| synchroj(β(exec(α))), where · ∈ {+,×}
Error Functions H := fail@i(τ) | mistake(τ)
Concurrency Functions C := access@i(t :τ \ ⊥) | φ(τ)WITH(Π ∪ I ∪ Γ ),φ ∈ Φ
Data Stacks (Contexts) := Γi, ∆i | ◦iΓ, ◦ ∈ {�,♦}
Remote Operations := GLOB(�i∪jΓ, α) | BROAD(♦i∩jΓ, α)
Portable Code := RET (Γi∪j , α) | SEND(Γi∩j , α)

Program terms (Π) include variables (xi) to refer to local code and constants
(ai) to refer to globally safe values. Indices (I) collect strictly ordered locations
for execution of programs in a network. Types of programs (Σ) are output val-
ues defined recursively from the atomic type α using ‘connectives’ as functions.
Local codes and global values define the two main operations in Φ by rule con-
structions: exec(α) is the output value generated by constant construction, is
globally valid and can be called by name; runi(α) is the local output value at
i generated by variable construction, is locally bounded and can only be called
by value. Compound code execution at ordered intersection of locations i ∩ j
is given by ×; at union of locations i ∪ j by +; code functional composition
(⊃) composes the outputs of two derivable run to their intersection at loca-
tions; values composition (→) transforms a local run and a global exec into
each other; synchro associates a value of a run with an exec function. Contexts
express data stacks for program execution with valid code (true assumptions)
Γi := {runi(α), . . . , runi(ν) | x1 : α, . . . , yi : ν} and safe values (valid assump-
tions) ∆i := {exec(α), . . . , exec(ν) | a1 : α, . . . , ni : ν}. Modal contexts express

3 This formal treatment is based on the taxonomy of errors for information systems
with procedural semantics introduced in [17].
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the occurrence of run and exec functions: �iΓ = {exec(α) | for all ai :α ∈ Γ} is
obtained from a stack of safe values only, and �iΓ ` α declares code correctness
of value α with complete instructional informations at run-time in Γ , all available
from i but valid at any other location accessible from i; ♦iΓ = {◦i(α) | ◦ ∈ {Φ}}
is inferred from a stack of valid code so that ` runi(α) for at least one xi :α ∈ Γ ,
and ♦iΓ ` α declares code correctness of value α with complete instructional
informations at run-time in Γ , accessible only locally at i. Mobility rules are
added in the form of introduction and elimination rules for transmission opera-
tors that allow to express at which reachable locations in a network a program
executes and terminates. GLOB works as a remote procedure call for safe values
with RET as the corresponding declaration of portable value; BROAD is the
remote procedure call for valid code, with SEND the corresponding portable
rule. Concurrency functions C include: access as a command for program (t ∈ Π)
accessibility at a location; and function execution (φ ∈ Φ) on values (τ ∈ Σ) with
(WITH) an indexed, eventually compound program. Error functions H include
failures for syntax errors on local processes and mistakes for semantic errors
global on a specification.

Definition 2 (Typing Rules). The set of typing rules for execution and mo-
bility of code and values is:

Global
∆i, ai :α ` exec(α)

∆i, ai :α ` exec(α)
@I

∆i ` access@i(a :α)

∆i;Γi ` access@i(a :α)
@E

∆i;Γi, xi :α ` runi(α)

∆i;Γi ` φ(α)
WITH-I

∆i ` φ(α)WITH(t, Γ )

∆i ` φ(α)WITH(t, Γ ) ∆i;Γ ` t :α
WITH-E

∆i;Γ, t :α ` φ(α)

ai :α ` exec(α) bj :β ` exec(β)
I×

` runi∩j(α× β)

` runi∩j(α× β)
E1×

` exec(α)
` runi∩j(α× β)

E2×
` exec(β)

ai :α ` exec(α)
I + (l)

` runi(α+ β)

bj :β ` exec(β)
I + (r)

runj(α+ β)

` runi∪j(α+ β) runi(α) ` ck :γ runj(β) ` ck :γ
E+

` runi∩j∩k(γ)

` runi(α) xi :α ` runj(β)
I ⊃

runi∩j(α ⊃ β)
` runi∩j(α ⊃ β) xi :α

E ⊃
xi :α ` runj(β)

` exec(α) ai :α ` exec(β)
I →` runi∪j(α→ β)

` runi∪j(α→ β) ai :α
E →

exec(α) ` exec(β)

` runi∩j(α ⊃ β) ai :α
Synchro

` synchroj(β(exec(α)))
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Γi, xj :α ` runj(α) �iΓ, xj(aj) : α ` exec(α)
RPC1

GLOB(�i∪jΓ, α)

Γi, xj :α ` runj(α) ♦iΓ ` runj(α)
RPC2

BROAD(♦i∩jΓ, α)

�iΓ, aj :α ` exec(α) GLOB(�i∪jΓ, α)
PORT1

RET (Γi∪j , α)

�iΓ, xj :α ` runi∩j(α) BROAD(♦i∩jΓ, α)
PORT2

SEND(Γi∩j , α)

Global generates an output value under valid assumptions or safe values.
The @-operator tells how to access and run locally code for which safe value is
available. The other concurrency function WITH simply associate the run or
exec function on value with the required program term and stack. Connectives
+,× work as expected with values and codes. An instance of I⊃ with runi(α)
and xi(α) ` runj(α), allows to move from runi to runi∩j . To move from runi to
runi∪j , one needs the intermediate step of obtaining an exec(α) from runi(α),
thus inducing runi∪j(α→ α). RPC1 says that if all valid code for the execution
of a program of type α is available, then α is globally valid with the relevant stack.
The corresponding elimination PORT1 starts from a similarly derived value to
decompose its valid locations. RPC2 says that if execution at i of a program for
α requires code bounded to address j, then resources at the intersection of i, j
are needed for any execution. The corresponding elimination PORT2 starts from
a similarly derived valid code to infer its variable constructor for local validity
of α. Error states are obtained either by a syntax error at execution of a valid
program; or by a semantic error related to the (possibly correct) execution of a
program. Both induce an invalid 〈ti, τ〉 | t ∈ Π; i ∈ I; τ ∈ Σ pair. Error functions
have the following intended meaning:

– fail@i(τ) is the state of the system where a program t :τ \⊥ induces a failure
when accessed at index i;

– mistake(τ) is the state of the system where reference to specification τ
induces an error.

Because φ does not range over H in WITH, the mistake function will not iterate.
Similarly, in access@, the term t cannot be typed in ⊥. This is required to obtain
error reducibility formulated by Theorem 4.

2.1 Mistakes

Mistakes are semantic errors caused by missing resources for a given pair 〈ti, τ〉.
In the following, we consider two formulations, with respectively φ := (exec) and
φ := (runi). In the first case, the system refers to a τ ∈ Σ for which no running
t ∈ Π has been defined. This is for example the case of a program that includes
in its specification design a sub-process for which no routine has been defined.
Consequently, any further specification υ depending on τ will induce an error
state.
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∆i;Γi ` runi(τ → ⊥) ∆i; xi :τ ` runi(υ)
Mistake1

Γi;∆i ` mistake(exec(υ)WITH(τ))

In the second case, given a τ ∈ Σ, the corresponding t ∈ Π is not reducible to
any other valid one in the system. This is the case where a routine for the called
specification exists, but is ill-defined. Correspondingly, matching any υ with any
running t is ill-defined.

∆i;Γi ` runi(t ⊃ ⊥) Γi, xi :τ ` runi(υ)
Mistake2

Γi;∆i ` mistake(runi(υ)WITH(ti))

2.2 Failures

Failures are syntax errors related to the use, accessibility and retrieval of physical
resources. To reason about them we use the access@i function and generate
failure of mobility rules. The first case of failure is given by a program accessing
wrong resources (possibly at the right location). An example would be the choice
of inappropriate procedural steps, like rules in a logical derivation. In this case
we consider mobility rules for overall safe code that do not call upon the required
resources. The operation involved is PORT1:

�iΓ, tj :τ ` exec(υ) GLOB(�i∪jΓ, τ)
FailPort1�iΓ, access@j(t

′ : τ ′) ` fail@i∪j(υ) (t′ 6= t; τ ′ 6= τ)

The first premise declares the required resources, the second the allowed mobility,
while the conclusion states failure in view of renamed resources. Computation-
ally, this rule is very expensive: to be complete it requires declaration for every
t′ : τ ′ that does not reduce to tj :τ .

The other case of failure is caused by programs accessing (possibly correct)
data at wrong locations. It satisfies cases of failing calls on local resources. We
refer here to program execution where code mobility is not overall safe in remote
procedure calls and code portability. The rule involved is RPC2:

�iΓ ; xj :τ ` runi∩j(υ) BROAD(♦i∩jΓ, τ)
FailPort2♦iΓ, access@k>j(t :τ) ` fail@i∩j(υ)

The first premise declares the required local resources, the second the allowed
mobility, while the conclusion states failure in view of non-accessible locations.

3 Error Handling Mechanisms

For each error and failure function rule, we define an appropriate handling mech-
anism.

Γi ` mistake(exec(υ)WITH(τ)) Γi, tj :τ
′ ` exec(τ ′)

HandleMistake1
Γi ` synchroj(υ(exec([τ/τ ′])))

Γi ` mistake(runi(υ)WITH(ti)) Γi, [ti/xj ] :τ ` runi(υ)
HandleMistake2

Γi ` runj∩i(τ ⊃ υ)
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�iΓ, access@j(t
′ :τ ′) ` fail@i∪j(υ) RET (Γi∪j , τ) τ 6= τ ′

HandleFailPort1�iΓ, [t
′
j :τ
′/tj : τ ] ` exec(υ)

♦iΓ, access@k>j(t :τ) ` fail@i∩j(υ) SEND(Γi∩j , τ)
HandleFailPort2♦iΓ, [tk/xj ] : τ ` runi∩j(υ)

For wrong typing, we require binding under a new typing element in the
stack. For a well-defined specification using a wrong process, a new running
one must be selected. For failures related to accessing wrong resources, we force
access readdress. For failures related to accessing resources at wrong locations,
we force access restriction. Substitutions are justified below by Theorem 2.

A final step induces the abort function from everywhere failing error handling
mechanisms:

Γi ` mistake(exec(υ)WITH(τ)) GLOB(�iΓ,mistake(exec(τ(υ)))
abortM1

Γi, τ ` abort(υ)

Γi ` mistake(runi(υ)WITH(ti)) BROAD(♦iΓ,mistake(runi(ti(υ))))
abortM2

Γi, ti :τ ` abort(υ)

�iΓ, access@j(t
′ :τ ′) ` fail@i∪j(υ) Γi∪j ` synchro(υ(exec(τ ′)))

abortFP1�iΓ, t
′
j :τ
′ ` abort(υ)

♦iΓ, access@k>j(t :τ) ` fail@i∩j(υ) Γi∩k ` synchro(υ(exec(τ)))
abortFP2�iΓ, tk : τ ` abort(υ)

4 Properties of Error Expressions

Theorem 1 (Structural Rules). Structural Rules hold for any arbitrary deriva-
tion of ML�♦err, where in the following φ, ψ, ρ ∈ {xi, ai, access@i} and
ϕ ∈ {runi, exec,mistake, fail@i, abort}, as appropriate:

1. If ∆i;Γi, φ(α), ψ(α) ` ϕ(γ) then ∆i;Γi, ψ(α), φ(α) ` ϕ(γ);
2. If ∆i;Γi, φ(α) ` ϕ(γ) then ∆i;Γi, φ(α), φ(α) ` ϕ(γ);
3. If ∆i;Γi, φ(α), ψ(α) ` ϕ(γ) then ∆i;Γi, ρ(α) ` ϕ(γ)[φ/ρ;ψ/ρ].

Proof. By induction on the structure of the given derivations.

Theorem 2 (Substitution on terms). The following substitutions hold:

1. If Γi, xi :τ ;∆i ` runi(υ), Γi;∆i ` mistake(exec(υ)WITH(τ)) and
Γi ` synchroj(υ(exec(τ ′))), then Γi;∆, [xi/tj ] : τ ′ ` exec(υ).

2. If Γi, xi :τ ;∆i ` runi(υ), Γi;∆i ` mistake(exec(υ)WITH(t) and
Γi ` runj∩i(τ ⊃ υ), then Γi;∆, [xi/tj ] : τ ` runj∩i(υ).

3. If �iΓ, tj :τ ` exec(υ), �iΓ, acess@j(t
′ : τ ′) ` fail@i∪j(υ) and

RET (Γi∪j , τ), then �iΓ, [ti/tj ] :τ ` exec(υ).
4. If �iΓ, xj :τ ` runi∩j(υ), ♦iΓ, access@k>j(t :τ) ` fail@i∩j(υ) and SEND(Γi∩j , τ),

then �iΓ, [xk/xj ] :τ ` runi∩j(υ).
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Proof. By induction on the relevant derivation, using the structure of the mistake
or failure rule.

Error functions and their handling rules can be seen as respectively intro-
duction and elimination rules for fail and mistake. To show that these are
meaningful in a logical sense, detours obtained by the error introduction and its
handling should generate a valid expression which would hold without errors.
This proves local soundness.

∆i; xi :τ ` runi(τ) exec(τ) ` ⊥
→-I

∆i ` runi(τ → ⊥) ∆i, xi :τ ` runi(υ)
M1

∆i;Γi ` mistake(exec(υ)WITH(τ) Γi, tj :τ
′ ` exec(τ ′)

HM1
Γi;∆i ` synchroj(υ(exec(τ ′)))

 

Γi, xj :τ
′ ` runi∩j(τ

′ ⊃ υ) ∆i ` tj :τ ′
Synchro

Γi;∆i ` synchroj(υ(exec(τ ′)))

Γi; xi :τ ` runi(τ) runi(τ) ` ⊥ ⊃-I
Γi ` runi(τ ⊃ ⊥) Γi, xi :τ ` runi(υ)

M2
Γi ` mistake(runi(υ)WITH(ti) Γi, xj :τ ` runi(υ)

H2
Γi ` runj∩i(τ ⊃ υ)

 

Γi ` runj(τ) Γi, xj :τ ` runi(υ)
I⊃

Γi ` runj∩i(τ ⊃ υ)

Γi ` access@i(t :τ)
@E

Γi, xi :τ ` runi(τ) �iΓ, xi/ti :τ ` exec(τ)
RPC1

GLOB(�i∪jΓ, τ)
FP1�iΓ, access@i(t

′ : τ ′) ` fail@i∪j(τ) RET (Γi∪j , τ)
HFP1�iΓ, ti :τ ` exec(τ)

 

Γi ` ti :τ
Global�iΓ, ti :τ ` exec(τ)

∆i, ti :τ ` exec(τ)
@I

∆i ` access@i(τ) ∆i, xi :τ ` runi(τ)
RPC2

BROAD(♦i∩jΓ, τ)
FP2♦iΓ, access@j>i(t : τ) ` fail@i∩j(τ) SEND(Γi∪j , τ)

HFP2♦iΓ, xj :τ ` runi∩j(τ)

 

Γi ` runi(τ) xi :α ` runj(τ)
I⊃♦iΓ, xi :τ ` runi∩j(τ)
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Definition 3 (βerr). The following resolve reductions hold in view of local sound-
ness shown above:

1. ∆i;Γi ` mistake(exec(υ)WITH(τ)) and Γi, tj : τ ′ ` exec(τ ′) βerr

−−→ ∆i;Γi `
synchro(υ(exec([τ/τ ′])));

2. Γi ` mistake(runi(υ)WITH(ti) and Γi, xj :τ ` runi(υ)
βerr

−−→ Γi ` runj∩i([ti/tj ] :
τ ⊃ υ);

3. �iΓ, access@i(t
′ : τ ′) ` fail@i∪j(τ) and RET (Γi∪j , τ)

βerr

−−→ �iΓ, [t′i/ti] `
exec(τ);

4. ♦iΓ, access@j>i(t :τ) ` fail@i∩j(t :τ) and SEND(Γi∪j , τ)
βerr

−−→ ♦iΓ, [ti/xi] :
τ ` runi∩j(τ).

The appropriate counterparts are expansions obtained by eliminations fol-
lowed the relevant introductions, to show that handle-rules are not too weak.
This proves local completeness.

GLOB
Γi, tj :τ

′ ` exec(τ ′) Γi ` mistake(exec(υ)WITH(τ)
HM1

Γi ` synchroj(υ(exec(τ ′)))
@I

Γi ` access@j(τ
′)

@E
∆i;Γi, xj :τ

′ ` runj(τ
′) ∆i;Γi ` runi(τ → ⊥)

M1
∆i;Γi ` mistake(exec(υ)WITH(τ))

Γi ` access@i(t :τ)
@E

Γi, xj :τ ` runi(τ
′) Γi ` mistake(runi(υ)WITH(ti)

HM2
Γi ` runj∩i(τ ⊃ υ) ⊃ E
Γi, xj :τ ` runi(υ) Γi ` runi(t→ ⊥)

M2
∆i;Γi ` mistake(runi(υ)WITH(ti))

PORT1
RET (Γi∪j , τ) �iΓ, access@j(t

′ :τ) ` fail@i∪j(υ)
HFP1�iΓ, tj :τ ` exec(υ) GLOB(�i∪jΓ, υ)

FP1�iΓ, access@j(t
′ :τ ′) ` fail@i∪j(υ)

PORT2
SEND(Γi∩j , τ) ♦iΓ, access@k>j(t :τ) ` fail@i∩j(υ)

HFP2�iΓ, xj :τ ` runi∩j(u :υ) BROAD(♦i∩jΓ, υ)
FP2♦iΓ, access@j>i(t :τ) ` fail@i∩j(υ)

Definition 4 (ηerr). The following error expansions hold in view of the local
completeness shown above:

1. ∆i, run(τ → ⊥) ` runi(υ)
ηerr−−→ ∆i;Γi ` mistake(exec(υ)WITH(τ);

2. Γi, runi(t ⊃ ⊥) ` runi(υ)
ηerr−−→ ∆i;Γi ` mistake(runi(υ)WITH(ti);
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3. �iΓ,GLOB(�i∪jΓ, τ) ` runi∪j(υ)
ηerr−−→ �iΓ, access@j(t

′ :τ ′) ` fail@i∪j(u :
υ);

4. �iΓ,BROAD(♦i∩jτ) ` runi∩j(υ)
ηerr−−→ ♦iΓ, access@k>j(t : τ) ` faili∩j(u :

υ).

In the following, we use respectively ERR for an expression obtained by
M1,M2, FP1 or FP2; and RES for one obtained by HM1, HM2, HFP1 or
HFP2:

Theorem 3 (Error Reduction and Expansion). Subject reduction and ex-
pansion for error expressions hold as follows:

– If ∆i;Γi ` ERR and ERR
βerr

−−→ RES, then ∆i;Γi ` RES.

– If ∆i;Γi ` ERR and ERR
ηerr−−→ ERR′, then ∆i;Γi ` ERR′.

Proof. For
βerr

−−→, use substitution properties on the relevant expression of RES.

For
ηerr−−→, reconstruct the derivation of ERR′.

β-reduction reduces ERR-expressions to RES-expressions, possibly after a finite

number of
ηerr−−→ operations, until it cannot be longer reduced to a sub-expression

of error-type. This is called an irreducible resolution expression, which can still
contain a traditional redex of a non-error type.

Theorem 4 (Irreducible RES-expression). If ∆i;Γi ` ERR and ERR
βerr

−−→
RES and there is no RES′ such that RES

βerr

−−→ RES′, then RES is an irre-
ducible resolution expression.

Proof. The proof proceeds by error reduction. By inversion, consider the last
inference step (error rule) in the derivation. Because RES has no further error
reduction available, it will be obtained by one of HM1, HM2, HFP1, HFP2
and because iteration of error functions is not allowed, this term will have no
subterm which is introduced by M1,M2, FP1, FP2. Hence it is an irreducible
RES-expression.
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Abstract. We present a natural interpretation B of Errett Bishop’s
Constructive Analysis ([2]) inside classical Nonstandard Analysis ([10–14])
in the spirit of the ‘reuniting the antipodes’ program ([15]). The two
fundamental notions proof and algorithm of Constructive Analysis are
interpreted by B as Transfer and Ω-invariance. Intuitively, an object is
Ω-invariant if it is independent of the choice of infinitesimal used in its
definition. As the latter is the way infinitesimals are used in e.g. physics
and engineering, Ω-invariance constitutes an alternative ‘natural’ model
of computation directly inspired by these disciplines. Furthermore, we
discuss the connection between B and the well-known double negation
translation ([5, Chapter V]). In particular, we show that this translation
is compatible with B, and the results in this paper provide additional
evidence for the faithfulness or naturalness of B. Finally, we suggest an
alternative version of the double negation translation based on B.

1 Introduction

1.1 Interpreting Constructive Analysis inside Nonstandard Analysis

In [10,12], the author introduces an interpretation of Errett Bishop’s Construc-
tive Analysis (or BISH, [2, 3]) inside a system NSA of Nonstandard Analysis.
This interpretation, called B, is ‘natural’ and ‘faithful’ in the following sense:

(i) Non-constructive principles (LPO, LLPO, MP, etc) are interpreted by B as
instances of the Transfer Principle from Nonstandard Analysis not available
in NSA. This even seems to hold for the semi-constructive WMP and BD-N.

(ii) Non-constructive principles still satisfy the well-known equivalences and im-
plications of Constructive Reverse Mathematics ([8, 9]) under B.

(iii) Due to the absence of Markov’s principle, the primitive notion of algorihm on
N is weaker than that of recursive function in BISH, i.e. not all ∆0

1-formulas
are decidable. This property is preserved by B.

The central notions of Constructive Analysis, i.e. proof and algorithm, are in-
terpreted by B as Transfer (T) and Ω-invariance. The latter are natural and
elegant notions inspired by Mathematics and Physics; We sketch them now.
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The Brouwer-Heyting-Kolmogorov interpretation used in BISH ([4]) is lim-
ited to formulas that come with proofs. Similarly and intuitively, we only consider
formulas A in NSA which satisfy A ↔ ∗A, where ‘∗’ is the star morphism from
Nonstandard Analysis. The formula ‘A ↔ ∗A’, abbreviated as ‘A ∈ T’, is the
general form of the Transfer Principle of Nonstandard Analysis. As NSA is a
weak system, the Transfer Principle is not available. We also read ‘A ∈ T’ as ‘A
satisfies Transfer’.

The notion of Ω-invariance is defined as follows. The set of infinite or non-
standard numbers Ω is ∗N \N, where N is the set of standard or finite numbers
and ∗N is its nonstandard extension.

Definition 1 (Ω-invariance) Let ψ(n,m) be ∆0 and fix ω ∈ Ω.
The formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω, ω′ ∈ Ω)(ψ(n, ω)↔ ψ(n, ω′)). (1)

The generalization of Ω-invariance to formulas ψ(x, ω) is immediate. Note that
an Ω-invariant object does not depend on the choice of the infinite number
used in its definition. This is exactly the way infinitesimals are used in practice
(Physics, Engineering, Applied Mathematics).

Initial results towards B can be found in [11–14]. In Section 2, we introduce
B and NSA in detail. Clearly, the above items (i)-(iii) suggest that NSA captures
BISH quite well, albeit indirectly. In Section 3, we show that B is compatible
with the Gödel-Gentzen double negation translation, introduced next. In par-
ticular, the results in this paper suggest a tight correspondence between BISH
and NSA. We also introduce M, an alternative version of the double negation
translation which exploits the nonstandard nature of NSA. Finally, the study
of the double negation translation leads to a number of small (but necessary)
technical improvements to our interpretation B, as discussed in Appendix B.

1.2 The Double Negation Translation

The Gödel-Gentzen double negation translation is the syntactical operation N
defined in Definition 2 (See [5, Chapter V]). The translation N connects prov-
ability in intuitionistic and classic logic, as is clear from Theorem 3 below.

Definition 2 [Double negation translation]

1. If A is atomic, then AN is ¬¬A, and (¬A)N is ¬(AN ).
2. (A ∧B)N is AN ∧BN , and (A→ B)N is AN → BN .
3. (A ∨B)N is ¬¬(AN ∨BN ) ≡ ¬(¬(AN ) ∧ ¬(BN )).

4.
[
(∀x)A(x)

]N
is (∀x)

[
A(x)

]N
.

5.
[
(∃x)A(x)

]N
is ¬

[
(∀x)¬[A(x)]N

]
≡ ¬¬

[
(∃x)[A(x)]N

]
.

Various versions of the following theorem can be found in [1, Chapter D.5] and
[16, Section 3.8]. Here, ‘intuitionistic logic’ refers to the well-known Brouwer-
Heyting-Kolmogorov (BHK) interpretation of the logical connectives ([4, 5]).
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Theorem 3 The formula A is provable in a system T using classical logic if
and only if the formula AN is provable in a system TN using intuitionistic logic

In light of (i)-(iii) in Section 1.1, the essential features of BISH are captured by
NSA under the interpretation B. Given this similarity, and as BISH is based on
intuitionistic logic, we expect the following to hold:

NSA + LPO ` A if and only if NSA ` AN , (2)

where LPO is B(LPO). In particular, for a non-constructive principle X implied
by LPO, we expect that NSA can prove XN , where X is B(X). We investigate
this claim in Section 3.

2 The interpretation B of BISH in NSA

The system NSA is defined in Appendix A. Essentially, it is a nonstandard
extension of RCA0 with recursive comprehension replaced by comprehension
for Ω-invariant formulas, called Ω-CA in Definitions 18 and 19. Also, there is
an intermediate nonstandard extension �N between N and ∗N providing the
following additional structure: The numbers in �N \ N are called ‘small infinite’
and the numbers in ∗N \ �N are called ‘large infinite’, while elements of �N are
also called ‘�-standard’ or ‘�-finite’. These ‘levels of infinity’ are essential for B,
as discussed in Remark 7.

The system NSA is rather weak, given its role as a base theory described in
Section 1.1. Furthermore, Constructive Reverse Mathematics is mostly limited to
objects of low type and this is reflected in the language of NSA. Extending NSA
with more induction or higher types is straightforward, as long as the Transfer
Principle remains unprovable, as is clear from (i) and (ii) in Section 1.1.

The interpretation B from BISH to NSA takes a formula C in the language
of BISH as input and produces a formula B(C) in the language of NSA. The new
symbols ‘V’, ‘V’, and ‘∼’ from Definition 5 are called ‘hyperconnectives’ and are
the nonstandard counterparts of the constructive connectives.

Definition 4 [B] Let A,B be formulas in the language of BISH.

1. For A ∈ ∆0, we have B(A) ≡ A.
2. For formulas A,B, we have B(A ∨B) ≡ [B(A) V B(B)].
3. For formulas A,B, we have B(A ∧B) ≡ [B(A) ∧ B(B)].
4. For formulas A,B, we have B(A→ B) ≡ [B(A) V B(B)].
5. For a formula A, we have B(¬A) ≡ [∼B(A)].
6. For a formula A, we have3 B

(
(∃x)A(x)

)
≡ [(∃x)B(A(x))]

7. For a formula A, we have B
(
(∀x)A(x)

)
≡ [(∀x)B(A(x))]

3 By Definition 6, the BHK-existential quantifier is not interpreted as the classical
existential quantifier, although one may get this impression from the definition of B.
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The following definition is part of classical Nonstandard Analysis. Hence, the
connectives ‘→’, ‘∧’, etc. have their usual classical meaning. The exact definition
of ‘A ∈ T’ is given in Definition 6 below. Intuitively, ‘A ∈ T’ denotes an instance
involving A of the Transfer Principle of Nonstandard Analysis.

Definition 5 [Hyperconnectives] Let A,B be formulas in the language4 of NSA.

1. The formula AV B is defined as [A ∧A ∈ T]→ [B ∧B ∈ T].
2. The formula AVB is defined5

ψ(x, ω)→ [A(x) ∧A(x) ∈ T] ∧ ¬ψ(x, ω)→ [B(x) ∧B(x) ∈ T], (3)

for formulas A(x), B(x) involving standard parameters x.
3. The formula ∼A is defined as AV 0 = 1.

On a technical note, to make sure A V B is similar to the BHK-implication
A → B, the system NSA includes a standard part principle (or comprehension
principle) for Ω-invariant formulas. Indeed, A ∧ A ∈ T, i.e. the antecedent of
A V B, allows us to define new6 Ω-invariant formulas involving A and Ω-CA
converts these into standard objects used to show B ∧B ∈ T.

It is clear that our interpretation B from BISH to NSA hinges on the notation
‘A ∈ T’. We now define the latter in NSA. It should be noted that there is an
asymmetry in T between the existential and universal quantifier, involving �N.
As explained in Remark 7, this is essential to obtain an interpretation of BISH.

The following formulas are called ‘trivial for T’: ∆0-formulas, (∃n ∈ N)ϕ(n),
(∃n ∈ �N)ϕ(n), (∀n ∈ ∗N)ϕ(n), (∃n ∈ N)(∀m ∈ ∗N)ϕ(n,m), and (∃n ∈
�N)(∀m ∈ ∗N)ϕ(n,m) for ϕ ∈ ∆0, and formulas unsuitable for Transfer, like
(∀n ∈ N)(n 6∈ Ω). Finally, define ‘u is v-standard’ as ‘if v is standard (resp.
�-standard), then u is standard (resp. �-standard).

Definition 6 [T] For formulas A, we define A ∈ T as follows, where ϕ ∈ ∆0.

A A ∈ T

A is trivial for T 0 = 0
(∀n ∈ N)ϕ(n) (∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)
(∀n ∈ �N)ϕ(n) (∀n ∈ �N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)
(∃n ∈ ∗N)ϕ(n) (∃n ∈ ∗N)ϕ(n)→ (∃n ∈ �N)ϕ(n)

(∃n ∈ ∗N)(∀m ∈ ∗N)ϕ(n,m) (∃n ∈ ∗N)(∀m ∈ ∗N)ϕ(n,m)→ (∃n ∈ �N)(∀m ∈ ∗N)ϕ(n,m)
(∃n ∈ �N)(∀m ∈ �N)ϕ(n,m) (∃n ∈ �N)(∀m ∈ �N)ϕ(n,m)→ (∃n ∈ �N)(∀m ∈ ∗N)ϕ(n,m)
(∃n ∈ N)(∀m ∈ N)ϕ(n,m) (∃n ∈ N)(∀m ∈ N)ϕ(n,m)→ (∃n ∈ N)(∀m ∈ ∗N)ϕ(n,m)

4 The language of NSA is introduced in Appendix A. It is a nonstandard version of
L2, the language of second-order arithmetic.

5 For general formulas involving A(x) VB(x), see Definition 21.
6 For instance, if A ∈ Π0

1 is (∀n ∈ N)ϕ(n) and we have A∧A ∈ T, then (∀n ≤ ω)ϕ(n)
is Ω-invariant.
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For ϕ(n, z) ∈ ∆0 and A as (∀n ∈ N)(∃z ∈ Z)ϕ(n, z), the formula A ∈ T is

(∀n ∈ N)(∃z ∈ Z)ϕ(n, z)→ (∀n ∈ ∗N)(∃z ∈ ∗Z)[z is n-standard ∧ ϕ(n, z)]. (4)

For A given as (∀n ∈ N)(∃m ∈ N)(∃k ∈ N)ϕ(n,m) ∈ Π3, the formula A ∈ T is

A→ (∀n ∈ ∗N)(∃m ∈ ∗N)(∀k ∈ ∗N)[m is n-standard ∧ ϕ(n,m, k)]. (5)

A ‘mixed’ formula like (∀n ∈ N)(∀m ∈ �N)ϕ(n,m) is treated as (∀n ∈ N)(∀m ∈
N)ϕ(n,m). If A fits several of the above categories, then we chose the one with
the lowest number of quantifier alternations to define A ∈ T. If the number of
alternations is the same but one category is ‘trivial for Transfer’, choose the
other category. Otherwise, choose the existential version of A to define A ∈ T.

Finally, A ∈ T where A is (∃α ∈ 2N)A(α) is defined as follows.

A ∈ VT ∧ (∃α ∈ 2N)A(α)→ (∃α ∈ 2N)
[
A(α) ∧A(α) ∈ T

]
, (6)

where ‘A ∈ VT’ is called ‘Disjunctive Transfer’ and defined7 as

(∀α, β ∈ 2N)
[
A(α) ∨A(β) V A(α) VA(β)]. (7)

Disjunctive Transfer expresses that if one of two formulas A(α) and A(β) satisfies
Transfer, we can decide which one does. Thus, (6) tells us what the ‘constructive’
notion of existence means in NSA: There is a classical witness and given two
potential witnesses, we can pick out the right one, thanks to VT. Note that this
notion of existence is ‘external’ in the same way that Ω-invariance is an external,
i.e. from the outside, notion of algorithm.

Remark 7 In intuitionistic logic, the following asymmetry between the univer-
sal and existential quantifier is present: We have ¬[(∃x)A(x)] ↔ (∀x)¬A(x),
but only ¬[(∀x)A(x)] ← (∃x)¬A(x) in general. In other words, ¬[(∀x)A(x)] is
weaker than (∃x)¬A(x). Thanks to the introduction of �N and T, we have for
A ∈ ∆0 that ∼[(∃n ∈ N)A(n)] WV (∀n ∈ N)∼A(x), but ∼(∀n ∈ N)A(n) W
V (∃n ∈ �N)∼A(n), which is weaker than (∃n ∈ N)∼A(n), as N ( �N. Thus,
the asymmetry in T between the existential and universal quantifier involving
�N is needed to obtain intuitionistic logic, in particular the asymmetry between
existential and universal quantification.

With the above definition of T, it is possible to prove (i)-(iii) from Section 1.1.
In particular, the numerous CRM-equivalences from Ishihara’s overview paper
([8]) are proved with NSA as a base theory in [10,12]. We now list two insightful
examples of these results. For a non-constructive principle X rejected in BISH
like LPO, LLPO, MP etc, we denote B(X) by X.

Theorem 8 In NSA, the following are equivalent.

1. Π1-TRANS, For all ϕ ∈ ∆0, (∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n).

7 For cosmetic reasons, we require that α 6= β in (7).
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2. LPO, For all P ∈ Σ1, P V∼P .
3. LPR, (∀x ∈ R)(x > 0 V∼(x > 0)).
4. MCT, The monotone convergence theorem.

In NSA, the following are equivalent.

1. LLPO, For P,Q ∈ Σ1, ∼(P ∧Q) V ∼P V∼Q.
2. LLPR, (∀x ∈ R)(x ≥ 0 Vx ≤ 0).
3. WKL, (∀n ∈ N)(∃α ∈ 2N)(αn ∈ T ) V (∃α ∈ 2N)(∀n ∈ N)(αn ∈ T ).
4. NIL, (∀x, y ∈ R)(xy = 0 V x = 0 V y = 0).

Note that a real number x is defined (in BISH and NSA alike) as a sequence of
rationals (qn)n∈N satisfying (∀n,m ∈ N)(|qn − qn+m| < 1

2n )

3 The double negation translation in NSA

3.1 Introduction

In this section, we provide the main results of this paper, namely that NSA
proves B(X)N for non-constructive principles X like LPO, LLPO, MP, et cetera.
By items (i) and (ii), NSA cannot prove B(X), as the latter imply Transfer
Principles not available in NSA. Thus, the results in this section suggest that B
is compatible with N , and furthermore provide additional evidence for the tight
correspondence between BISH and NSA in light of Theorem 3. Finally, we also
discuss the possibility of an alternative version of the double negation translation
which exploits the nonstandard nature of NSA. We will use the following (obvious
in light of B) version of the double negation translation in NSA.

Definition 9

1. If A is atomic, then AN is ∼∼A.
2. (A ∧B)N is AN ∧BN .
3. (AVB)N is ∼∼(AN VBN ) WV ∼(∼(AN ) ∧ ∼(BN )).
4. (AV B)N is AN V BN .
5. (∼A)N is ∼(AN ).

6.
[
(∀x)A(x)

]N
is (∀x)

[
A(x)

]N
.

7.
[
(∃x)A(x)

]N
is ∼

[
(∀x)∼[A(x)]N

]
WV ∼∼

[
(∃x)[A(x)]N

]
.

The hyperequivalences in items 3 and 7 of this definition are proved in Ap-
pendix B. We first discuss the definition of T in this context.

The idea behind the definition of T is clear from Definition 6: The formula
A ∈ T is that instance of the Transfer Principle where the universal (resp.
existential) quantifier is transferred maximally (resp. until �N). As the double
negation translation introduces a large number of negations, we will encounter
formulas A for which A ∈ T is not explicitly defined by Definition 6, as BISH is
intended as a ‘negation-free’ development of Mathematics ([2, p. 21]). Therefore,
we list the following definition and Definition 20 below, implicit in Definition 6.
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Definition 10 [T] If A is (∀n ∈ �N)(∃m ∈ ∗N)ϕ(n,m), then A ∈ T is

A→ (∀n ∈ ∗N)(∃m ∈ ∗N)[m is max{�, n}-standard ∧ ϕ(n,m)],

where max{u, v} is the maximum level of standardardness of u and v.

If A is ‘(∃n ∈ ∗N)(∀m ∈ ∗N)[m is max{�, n}-standard→ ϕ(n,m)]’, A ∈ T is

A→ (∃n ∈ ∗N)(∀m ∈ ∗N)[m is max{∗, n}-standard→ ϕ(n,m)].

The previous formula is the first instance of ‘Stratified Transfer’ (See [6, 7]) in
the context of NSA. It would appear that the latter kind of Transfer Principle is
essential to the study of the ‘double negation shift’ principle.

3.2 Non-constructive principles and N
We first treat LPO, the limited principle of omniscience, which is essentially the
law of excluded middle limited to Σ1 formulas.

Theorem 11 The system NSA proves LPON .

Proof. By definition, LPO is P V∼P (P ∈ Σ1). Then (LPO)N is (P V∼P )N and

(P V∼P )N ≡ ∼
[
∼(PN ) ∧ ∼(∼P )N ] ≡ ∼

[
∼(∼∼P ) ∧ ∼∼(∼∼P )

]
. (8)

Assuming P is (∃n ∈ N)ϕ(n,x), it is easy to see that ∼P is (∀n ∈ N)¬ϕ(n,x)
and that ∼∼P is (∃n ∈ ∗N)ϕ(n,x). Thus, (8) becomes

(∀x ∈ Nk)∼
[
∼(∃n ∈ ∗N)ϕ(n,x) ∧ ∼∼(∃n ∈ ∗N)ϕ(n,x)

]
, (9)

and given that∼(∃n ∈ ∗N)ϕ(n,x) is (∀n ∈ �N)¬ϕ(n,x) and∼(∀n ∈ �N)¬ϕ(n,x)
is (∃n ∈ ∗N)ϕ(n,x), then (9) becomes the following:

(∀x ∈ Nk)∼
[
(∀n ∈ �N)¬ϕ(n,x) ∧ (∃n ∈ ∗N)ϕ(n,x)

]
, (10)

which is

(∀x ∈ Nk)
[[

(∀n ∈ �N)¬ϕ(n,x) ∧ (∃n ∈ ∗N)ϕ(n,x)
]
V 0 = 1

]
, (11)

The formula in the small square brackets can be brought in existential or uni-
versal form. In the former, it is not suitable for Transfer, and in the latter it is.
Hence, (∀n ∈ �N)¬ϕ(n,x) ∧ (∃n ∈ ∗N)ϕ(n,x) becomes

(∀n ∈ �N)(∃m ∈ ∗N)[¬ϕ(n,x) ∧ ϕ(m,x)], (12)

Now (12) and the fact that this formula is in T yields, by Definition 10, that

(∀n ∈ ∗N)(∃m ∈ ∗N)[m is max{�, n}-standard ∧ ¬ϕ(n,x) ∧ ϕ(m,x)],

Thus, (11) becomes that for all x ∈ Nk, we have

(∃n ∈ ∗N)(∀m ∈ ∗N)[m is max{�, n}-standard→ ϕ(n,x) ∨ ¬ϕ(m,x)] (13)

Now if (∃n0 ∈ �N)ϕ(n0,x0), then (13) holds for x = x0. Now if (∀n0 ∈
�N)¬ϕ(n0,x0), then (13) also holds for x = x0 by putting n = 0 in (13). ut
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Hence, (LPO)N is a tautology in NSA. In particular, it follows from P ∨¬P , the
instance of LEM in NSA for �N.

A weaker version of LPO is WLPO, which is ¬¬P ∨¬P for P ∈ Σ1. We now
show that NSA proves WLPON , whereas (∼WLPO)N is a contradiction. This is
not surprising, given that ∼WLPO is equivalent to a certain continuity principle
(See [8, 10]) and that ∼WLPO contradicts LPO.

Theorem 12 The system NSA proves WLPON and disproves (∼WLPO)N .

Proof. By definition, (WLPO)N is (∼∼P V∼P )N where P ∈ Σ1, implying

(∼∼P V∼P )N ≡ ∼
[
∼((∼∼P )N ) ∧ ∼(∼P )N ] ≡ ∼

[
∼(∼∼∼∼P ) ∧ ∼∼(∼∼P )

]
.

(14)
Assuming P is (∃n ∈ N)ϕ(n,x), ∼∼P is (∃n ∈ ∗N)ϕ(n,x) and it is easy to see
that the latter is also ∼∼∼∼P . Thus, (14) becomes (10), given that ∼(∃n ∈
∗N)ϕ(n,x) is (∀n ∈ �N)¬ϕ(n,x) and the first part of the theorem follows from
Theorem 11. Furthermore, by definition, (∼WLPO)N is

∼(WLPON ) ≡ [WLPON V 0 = 1] ≡ ¬(WLPON ) ∨ ¬[WLPON ∈ T]. (15)

By (13), WLPON is a tautology and the first disjunct in (15) cannot hold. Fur-
thermore, ‘WLPON ∈ T’ is the formula that, for all standard x, (13) implies

(∃n ∈ ∗N)(∀m ∈ ∗N)[m is max{∗, n}-standard→ ϕ(n,x) ∨ ¬ϕ(m,x)]. (16)

Thus, ¬[WLPO ∈ T] amounts to ‘(13) ∧ ¬(16)’. We now show that (16) is a tau-
tology in NSA, implying that (∼ [WLPO])N is false. Now if (∃n0 ∈ ∗N)ϕ(n0,x0),
then (16) holds for x = x0. Also, if (∀n0 ∈ ∗N)¬ϕ(n0,x0), then (16) also holds
for x = x0 by fixing n as any n1 ∈ ∗N in (16). ut

We now consider LLPO, i.e. De Morgan’s law ¬(P ∧Q)→ ¬P ∨¬Q (P,Q ∈ Σ1).

Theorem 13 The system NSA proves LLPON and NILN .

Proof. By definition, LLPO is ∼(P ∧Q) V ∼P V∼Q for P,Q ∈ Σ1. Hence, the
antecedent of LLPON is

[
∼(P ∧Q)

]N ≡ ∼(PN ∧QN ) ≡ ∼(∼∼P ∧ ∼∼Q),

whereas the consequent is

[
∼P V∼Q

]N ≡ ∼
(
∼(∼P )N ∧ ∼(∼Q)N

)
≡ ∼(∼∼∼∼P ∧ ∼∼∼∼Q).

By the above ∼∼R and ∼∼∼∼R are identical for R ∈ Σ1 and the first case
is done. For NILN , the antecedent expresses that xy = 0 with N replaced with
∗N. This implies that x = 0 or y = 0 with N replaced by ∗N. However, the
consequent of NILN , i.e. ∼(∼(x = 0) ∧ ∼(y = 0)) exactly expresses that x = 0
or y = 0 with N replaced by ∗N; Hence we are done. ut
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Next, we consider Markov’s principle MP, which is essentially double negation
elimination, i.e. ¬¬P → P , (P ∈ Σ1). A weak version of MP is MP∨, i.e.
¬(¬P ∧ ¬Q) → ¬¬P ∨ ¬¬Q. Finally, Weak Markov’s principle WMP is (∀x ∈
R)
[
(∀y ∈ R)(¬¬(y > 0) ∨ ¬¬(y < x))→ x > 0

]
.

Theorem 14 The system NSA can prove MPN , WMPN and (MP∨)N .

Proof. Given the absence of disjunction, ∼∼P V P (P ∈ Σ1) is quite easy to
translate. Indeed, we have

[
∼∼P V P

]N ≡ (∼∼P )N V PN ≡ ∼∼∼∼P V ∼∼P. (17)

Assuming P is (∃n ∈ N)ϕ(n,x), it is easy to see that ∼∼P is (∃n ∈ ∗N)ϕ(n,x).
Furthermore, ∼∼(∃n ∈ ∗N)ϕ(n,x) is (∃n ∈ ∗N)ϕ(n,x), and (17) becomes

(∃n ∈ ∗N)ϕ(n,x) V (∃n ∈ ∗N)ϕ(n,x) ≡ (∃n ∈ �N)ϕ(n,x)→ (∃n ∈ �N)ϕ(n,x),

which is another tautology regarding �N.

For WMPN , we consider its antecedent

[∼∼(0 < y) V∼∼(y < x)]N ≡ ∼[∼∼∼(0 < y)N ∧ ∼∼∼(y < x)
N

],

where the latter is ∼[∼∼∼∼∼(0 < y) ∧ ∼∼∼∼∼(y < x)]. Then WMPN is

(∀x ∈ R)
([

(∀y ∈ R)∼[∼∼∼∼∼(0 < y) ∧ ∼∼∼∼∼(y < x)]
]
V ∼∼(x > 0)

)
.

Applying the antecedent for y = 0, we obtain (∃n ∈ ∗N)(qn > 1
2n ), if x is

(qn)n∈N. But this is the consequent ∼∼(x > 0) and this case is done.

For (MP∨)N , the antecedent is
[
∼(∼P∧∼Q)

]N
, which is ∼(∼∼∼P∧∼∼∼Q),

by definition. Similarly, the antecedent is

[
∼∼P V∼∼Q

]N ≡ ∼
[
∼(∼∼PN ) ∧ ∼(∼∼QN ) ≡ ∼(∼∼∼∼∼P ∧ ∼∼∼∼∼Q).

Hence we are done, as ∼∼∼R and ∼∼∼∼∼R are identical for R ∈ Σ1. ut

Remark 15 The above results suggest thatN produces statements about prop-
erties of �N in NSA. Furthermore, it is easy verify that, FANN (resp. WKLN ) is
essentially FAN (resp. WKL), but with each instance of u-standard replaced by
max{�, u}-standard, i.e. FANN is FAN relative to �N. This suggests that NSA
should be expanded, perhaps via the law of non-contradiction, with axioms re-
garding �N to make N work fully.

3.3 An alternative to the double negation translation N
In this section, we discuss M, an alternative to N which makes use of the
nonstandard nature of NSA. In the BHK-interpretation, the meaning of ∨ and ∃
is much stronger than the ‘classical’ meaning. From Definition 2, it is clear that

229



N replaces these ‘essentially constructive’ objects with a weaker version. Exactly
the same thing happens for V and ∃ for N in NSA, as is clear from Definition 9.
However, there are alternative extremely obvious weakenings of V and ∃ in NSA
already, namely ∨ for V and (∃x ∈ �X) for (∃x ∈ X). Thus, define M in the
same way as N in Definition 9, but with the following8 changes:

(AVB)M ≡ AM ∨BM and
[
(∃x ∈ X)A(x)

]M ≡ (∃x ∈ �X)[A(x)]M. (18)

The interpretationM is motivated by Remark 15 and the reader can verify that
�N cannot be replaced by ∗N in (18). We now briefly study the behavior of M
on non-constructive principles.

Theorem 16 The system NSA proves LPOM, WLPOM, NILM, and LLPOM.

Proof. For LPOM, assume P ∈ Σ1 is (∃n ∈ N)ϕ(n,x) and consider the following:

(P V∼ P )M ≡ PM ∨ ∼(PM) ≡ (∃n ∈ �N)ϕ(n,x) ∨ ∼
[
(∃n ∈ �N)ϕ(n,x)

]
.

As ∼[(∃n ∈ �N)ϕ(n,x)] is (∀n ∈ �N)¬ϕ(n,x), the first case is done. For the
second case, i.e. for WLPOM, consider the following:

(∼∼P V∼ P )M ≡ ∼∼PM∨∼(PM) ≡ ∼∼(∃n ∈ �N)ϕ(n,x)∨
[
(∀n ∈ �N)¬ϕ(n,x)

]
.

As ∼∼[(∃n ∈ �N)ϕ(n,x)] is (∃n ∈ ∗N)ϕ(n,x), the second case is also trivial.

For LLPOM, it is easy to verify that both the consequent and antecedent are
(∀n1 ∈ ∗N)¬ϕ1(n2,x) ∨ (∀n2 ∈ ∗N)¬ϕ2(n2,x) after resolving the hyperimplica-
tion, where P,Q are (∃ni ∈ ∗N)ϕi(ni,x) for i = 1, 2. For NILM, the antecedent
expresses that xy = 0 with N replaced with ∗N. This implies that x = 0 or y = 0
with N replaced by ∗N. However, the consequent of NILM, i.e. x = 0 ∨ y = 0
and the fact that this formula is in T exactly expresses that x = 0 or y = 0 with
N replaced by ∗N; Hence we are done. ut

Theorem 17 The system NSA proves MPM, WMPM, and (MP∨)M.

Proof. For MPM, assume P ∈ Σ1 is (∃n ∈ N)ϕ(n,x) and consider the following:

(∼∼P V P )M ≡ ∼∼PM V PM ≡ ∼∼(∃n ∈ �N)ϕ(n,x) V (∃n ∈ �N)ϕ(n,x).

Now ∼∼(∃n ∈ �N)ϕ(n,x) is (∃n ∈ ∗N)ϕ(n,x) and resolving the hyperimpli-
cation in the pervious formula yields a triviality, proving the first case. For
the second case, the antecedent of WMPM is ∼∼(y > 0)M ∨ ∼∼(x > y)M,
for all y ∈ R. In particular, for y = 0, we have ∼∼(x > 0)M. Now if x is
(qn)n∈N, then (x > 0)M is (∃n ∈ �N)(qn > 1

2n ) and ∼∼(x > 0)M is thus

(∃n ∈ ∗N)(qn > 1
2n ). Thus, in the same way as for MPM, we observe that

WMPM is provable in NSA. Analogously, for (MP∨)M, both the antecedent and
consequent are (∃n1 ∈ ∗N)ϕ1(n2,x) ∨ (∃n2 ∈ ∗N)ϕ2(n2,x), where P,Q are
(∃ni ∈ ∗N)ϕi(ni,x) for i = 1, 2. ut
8 For the second case, it may be necessary to add � to the universal formulas in A.
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A Appendix: The system NSA

In this section, we introduce the system NSA. We adopt Keita Yokoyama’s ap-
proach to Nonstandard Analysis from [17,18].
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The language L2 of second-order arithmetic has two sorts of variables: num-
ber variables x, y, z, etc, and set variables X,Y, Z, etc. The language L∗2 of non-
standard second-order arithmetic has four sorts of variables: standard number
variables xs, ys, zs, etc, standard set variables Xs, Y s, Zs, etc, nonstandard num-
ber variables x∗, y∗, z∗, etc, and nonstandard set variables X∗, Y ∗, Z∗, etc. The
range of these variables is V s = (Ms, Ss) and V ∗ = (M∗, S∗), where the first
(resp. second) entry is for number (resp. set) variables. The usual symbols 0, 1,
=, +, ×, < and ∈ are present (for both the standard and nonstandard language),
plus a new symbol ‘

√
’ which serves as an embedding of the standard into the

nonstandard universe.

With regard to notation, we abbreviate
√
xs and

√
Xs as x̂s and X̂s. For

a sentence Φ ∈ L2, Φs (resp. Φ∗) is obtained by appending ‘s’ (resp. ‘∗’) to all
variables in Φ. Furthermore, we will denote the usual symbols 0, 1, =, +, ×, <
and ∈, without such suffixes, as it will always be clear whether the context is the
(non)standard universe. Finally, if we have (∀ys)(ŷs < x∗), we write ‘x∗ ∈ Ω’
and say that ‘x∗ is infinite’. A number is ‘finite’ if it is not infinite.

We now define s-NSA, a nonstandard version of RCA0 where recursive com-
prehension is replaced by Ω-CA, i.e. comprehension for Ω-invariant formulas.

Definition 18 (s-NSA)

1. Induction: IΣs
1 and IΣ∗1 .

2. Nonstandard Universe: “
√

: V s → V ∗ is an injective homomorphism”.
3. End extension:

(∀x∗, ys)
[
(x∗ < ŷs)→ (∃zs)(x∗ = zs)

]
.

4. Transfer: For any ϕ ∈ ∆0, we have

(∀xs, Xs)
[
ϕ(xs, Xs)s ↔ ϕ(x̂s, X̂s)∗

]
.

5. Ω-CA: For all ϕ ∈ ∆0, we have

(∀xs)(∀y∗, z∗ ∈ Ω)
[
ϕ(x̂s, y∗)∗ ↔ ϕ(x̂s, z∗)∗

]

→ (∃Zs)(∀ws)
(
∀v∗ ∈ Ω)(ws ∈ Zs ↔ ϕ(ẑs, v∗)∗

)
.

It is not difficult to show that s-NSA + Π1-TRANS is a conservative extension
of ACA0 using the results from [18]. In a forthcoming paper, we also show
that s-NSA is a conservative extension of RCA0. Thus, Turing computability
corresponds to Ω-invariance. Hence, s-NSA cannot capture BISH properly. For
this reason, we extend the language L∗2 with two more sorts: x�, y�, z�, etc. and
X�, Y �, Z�, etc; The domain for these variables being V � = (M�, S�). Two new
symbols 1

√
and 2

√
will replace the original embedding

√
from s-NSA. For a

formula Φ ∈ L2, define Φ� as in the same way as Φs and Φ∗. We abbreviate 1
√
xs

and 1
√
Xs as x̂s and X̂s, 2

√
x� and 2

√
X� as x̂� and X̂�, and 2

√
1
√
xs and 2

√
1
√
Xs
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as ˆ̂xs and
ˆ̂
Xs. The set Ω is defined as above. Intuitively, V � is an ‘intermediate’

nonstandard universe between V s and V ∗, and the Transfer principle of NSA
transfers suitable bounded formulas between these universes.

Secondly, to accommodate statements of the form ‘There exists a discon-
tinuous function f : 2N → N’, we need sets of sets. Thus, let Xs,Ys,Zs, etc
denote variables of a new sort called standard sets of sets, and extend V s to
(Ms, Ss, Us), where Us is the range of the new variables. We assume that V �

and V ∗ are extended analogously. Finally, we assume that functions are defined
from sets as usual.

Definition 19 (NSA)

1. Induction: IΣs
1 , IΣ�1 and IΣ∗1 .

2. Nonstandard Universe�: “The mapping
√

1
: V s → V � is an injective

homomorphism”.
3. Nonstandard Universe∗: “The mapping

√
2

: V � → V ∗ is an injective
homomorphism”.

4. End extension�: M� is an end extension of Ms.
5. End extension∗: M∗ is an end extension of M�.
6. Transfer�: For any ϕ ∈ ∆0, we have

(∀xs, Xs)
[
ϕ(xs, Xs)s ↔ ϕ(x̂s, X̂s)� ↔ ϕ(ˆ̂xs,

ˆ̂
Xs)∗

]
.

7. Transfer∗: For any ϕ ∈ ∆0, we have

(∀x�, X�)
[
ϕ(x�, X�)� ↔ ϕ(x̂�, X̂�)∗

]
.

8. Ω-CA: For all Fs : Ms × Ss ×Ms →Ms, we have

(∀xs, Xs)(∀y∗, z∗ ∈ Ω)
[ˆ̂
Fs(ˆ̂xs,

ˆ̂
Xs, y∗)∗ =

ˆ̂
Fs(ˆ̂xs,

ˆ̂
Xs, z∗)∗

]

→ (∃Gs : Ms × Ss →Ms)(∀ws,W s)(∀v∗ ∈ Ω)(
ˆ̂
Gs(ws,W s) =

ˆ̂
Fs( ˆ̂ws, ,

ˆ̂
W s, v∗)∗).

9. Countable Choice: For all decidable ϕ

(∀n ∈ N)(∃x ∈ X)ϕ(n, x) V (∃h ∈ NX)(∀n ∈ N)ϕ(n, h(n)).

10. Transfer Rule For A ∈ Π0
1 , we have A

A∧(A∈T) .

B Appendix: Technical Results

In this section, we prove the items 3 and 7 of Definition 9. We did not consider
these statements in [10,12], as BISH is intended to be a ‘negation-free’ (or ‘pos-
itive’ or ‘affirmative’) part of Mathematics by [2, p. 21]. To this end, we require
some small refinements to B, starting with the following extension of T.

Definition 20 [T]
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1. If A ∨B is unsuitable for Transfer, (A ∨B) ∈ T is defined as

A ∨B →
[
(A ∧A ∈ T) ∨ (B ∧B ∈ T)

]
. (19)

2. The formula ‘(A ∈ VT) ∈ T’ is ‘0 = 0’ and ‘[¬(A ∈ VT)] ∈ T’ is ‘0 = 1’.

The motivation behind the first item is as follows: Even if A∨B is unsuitable for
Transfer, it is possible that one of the formulas A or B is suitable for Transfer.
For instance, if A is suitable for Transfer, but B and A∨B are not, then (19) is

A ∨B →
[
(A ∧A ∈ T) ∨B

]
, (20)

as B ∈ T is 0 = 0. Together with A ∨ B, (20) becomes (A ∧ A ∈ T) ∨ B, as
one intuitively expects to derive from (A ∨ B) ∧ [(A ∨ B) ∈ T], in this case.
Furthermore, if A and B are both unsuitable for Transfer, then (19) is trivial.

The motivation behind the second item is as follows: By Theorem 8,Π1-TRANS
is equivalent to LPO. Now it is not difficult to show that LPO ∈ T is trivial in
NSA, and the same holds for instances of LPO. However, if Φ is an instance of
¬LPO, then Φ ∈ T is false in NSA. By analogy, (A ∈ VT) ∈ T should be trivial
and [¬(A ∈ VT)] ∈ T should be false.

Clearly, the first item of Definition 20 expresses that ‘T should be maximal’,
while the second item expresses that we cannot learn more from A ∈ VT via
Transfer. As A ∈ VT is an instance of Disjunctive Transfer, this not surprising.

Furthermore, in Theorem 9, AVB occurs negatively, i.e. in the scope of a
hypernegation, a situation not usually encountered in Constructive Analysis. In
line with Definition 5, we have the following definition.

Definition 21 [Hyperdisjunction] If A(x) VB(x) occurs positively in (∀x ∈
Nk)Φ(x), then the latter9 is (∃ψ ∈ ∆0)

[
ψ(x, ω) is Ω-invariant ∧(∀x ∈ Nk)Φ̃(x)

]
,

where Φ̃(x) is Φ(x) with A(x) VB(x) replaced by (3).

If A(x) VB(x) occurs negatively in (∀x ∈ Nk)Φ(x), the latter is (∀ψ ∈
∆0)

[
ψ(x, ω) is Ω-invariant → (∀x ∈ Nk)Φ̃(x). If occurrences are in both cate-

gories, the extra quantifiers involving ψ yield an additional Σ2-prefix.

Theorem 22 In NSA, formulas A,B satisfy

∼(AVB) WV ∼A ∧ ∼B and (∀x)∼A(x) WV ∼
[
(∃x)A(x)

]
. (21)

Proof. We first prove the first claim. Let A(x) and B(x) be as stated with all
standard free variables x as shown. We need to prove that

(∀x ∈ Nk)
[
∼(A(x) VB(x)) WV (∼A(x) ∧ ∼B(x))

]
. (22)

9 Note that the formula ‘ψ(x, ω) is Ω-invariant’ has no free variables x.
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The right-hand side of (22) is ¬[A(x) ∧ A(x) ∈ T] ∧ ¬[B(x)B(x) ∈ T] and
the left-hand side of (22) can be brought in the following form, in both cases
distinguished by Definition 21, using only the classical logic of NSA.

(∀ψ ∈ ∆0)
(
ψ(x, ω) is Ω-invariant→
∼
(
[ψ(x, ω)→ [A(x) ∧A(x) ∈ T]] ∧ [¬ψ(x, ω)→ [B(x) ∧B(x) ∈ T]]

))
.

As the formula inside the hypernegation is not suitable for Transfer, the hyper-
negation reduces to negation, yielding

(∀ψ ∈ ∆0)
(
ψ(x, ω) is Ω-invariant→

[ψ(x, ω) ∧ ¬[A(x) ∧A(x) ∈ T]] ∨ [¬ψ(x, ω) ∧ ¬[B(x) ∧B(x) ∈ T]]
)
. (23)

Applying the previous formula for a true and a false instance of Ω-invariant
ψ(x, ω), we obtain that ¬[A(x)∧A(x) ∈ T] and ¬[B(x)∧B(x) ∈ T], i.e.∼A∧∼B.
Similarly, if the latter formula holds, then (23) is true by classical logic.

For the second claim, note that (∀x)∼A(x) is (∀x)[A(x) V 0 = 1], yielding

(∀x)
[
(A(x) ∧A(x) ∈ T)→ 0 = 1

]
≡ (∀x)¬[A(x) ∧A(x) ∈ T].

Now ∼
[
(∃x)A(x)

]
is (∃x)A(x) V 0 = 1, implying

[
(∃x)A(x)∧[(∃x)A(x)] ∈ T

]
→ 0 = 1, which is ¬

[
A ∈ VT∧(∃x)[A(x)∧A(x) ∈ T]

]
,

by Definition 6. The previous formula yields ¬(A ∈ VT)∨(∀x)¬[A(x)∧A(x) ∈ T],
which is ¬(A ∈ VT) ∨ (∀x)∼A(x). Thus, we immediately obtain (∀x)∼A(x) V
∼
[
(∃x)A(x)

]
, by Definition 20, i.e. the forward direction in the second item of

(21). For the other direction, i.e. ∼
[
(∃x)A(x)

]
V (∀x)∼A(x), note that the

antecedent of the latter is

[
¬(A ∈ VT) ∨ (∀x)∼A(x)

]
∧
[[
¬(A ∈ VT) ∨ (∀x)∼A(x)

]
∈ T
]
.

Now the second part of this conjunction is the implication C → D, where C is
¬(A ∈ VT) ∨ (∀x)∼A(x) and where D is

[
¬(A ∈ VT) ∧ [¬(A ∈ VT)] ∈ T

]
∨
[
(∀x)∼A(x) ∧

(
[(∀x)∼A(x)] ∈ T

)]

Again by Definition 20, the left-hand side of this disjunction is false. Thus,
we must have the right-hand side of the previous formula, which means that
∼
[
(∃x)A(x)

]
V (∀x)∼A(x) is immediate. ut
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Abstract. We consider the ring Z∞ of integer sequences, under component-wise addition, or,
equivalently, the multiplicative group Q+ of positive rationals, with the extra structure, which,
in Q+, corresponds to the ‘greatest common divisor’. We show that an extension of this structure
has a decidable theory.

1 Introduction

In what follows Z is the ring of integers. By Z∞ we denote the set of all functions from Z to Z with
finite support; that is, we consider only the functions x : Z→ Z for which the set {i ∈ Z : x(i) 6= 0} is
finite. We use the notation (x)i = x(i). We regard the elements of Z∞ as infinite sequences, (infinite in
both directions), with only a finite set of non-zero coordinates. It is worth mentioning that we could
as well consider the set of all functions from N to Z since this will not affect the results of this paper.
By N we denote the set of positive integers. By N0 we denote the set of non-negative integers.

Observe that the additive group (Z∞,+) is isomorphic to the multiplicative group (Q+,×), where
Q+ is the set of positive rationals. Indeed, let the sequence (pi)i∈N be the natural enumeration of the
set of primes. Then the element n =

∏
pmii of Q+ corresponds to the element x ∈ Z∞ with (x)i = mi

for i ∈ Z. We can define a notion of divisibility | in Q+ as follows: let n1 =
∏
pmii and n2 =

∏
pkii ,

then
n1|n2 ⇐⇒ ∀i(mi ≤ ki).

Thus the restriction of the min function of the structureA on the set A+ = {x ∈ Z∞ : ∀i ∈ Z[(x)i ≥ 0]}
is interpreted as the greatest common divisor (gcd) in the substructure (Z+,×,=) of (Q+,×,=), where,
with the notation as above,

gcd(n1, n2) =
∏

p
min{mi,ki}
i .

We extend this definition for n1, n2 in Q+. It is easy to see that the gcd is definable from | in the
substructure (Z+, |,=) of (Q+, |,=). Indeed, for x, y ∈ Z we have that

d = gcd(x, y) if and only if (d|x) ∧ (d|y) ∧ ∀w[w|x ∧ w|y → w|d]. (1)

Note that | is existentially definable in (Z+,×,=) by

x|y if and only if ∃z[x× z = y]. (2)

∗The research project is implemented within the framework of the Action Supporting Postdoctoral Re-
searchers of the Operational Program ”Education and Lifelong Learning” (Actions Beneficiary: General Sec-
retariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek
State.
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The relation (2) does not extend to the multiplicative rationals. Moreover, the ‘gcd’ is not definable in
(Q+,×,=), because of the following argument: Any module over a fixed ring has stable theory in the
language of modules, (see [4]). On the other hand, the notion of ’gcd’ implies some kind of ordering,
namely the formula ϕ(x, y) : ‘gcd’(x, y) = x is unstable. For details see Section 5.

We work within first-order logic with equality. Let L be the language {+; min; C; {|n}n; {δc}c},
where + and min are function symbols of arity 2, C is an infinitely countable set of constant symbols,
{|n}n and {δc}c are infinitely countable sets of relation symbols of arity 1. We investigate the theory
of the structure

A = (Z∞; +; min; C; {|n}n∈N; {δc}c∈Z∞),

where
x+ y = z ⇐⇒ (x)i + (y)i = (z)i, for all i ∈ Z,

min(x, y) = z ⇐⇒ min((x)i, (y)i) = (z)i, for all i ∈ Z,
C is a set of constants, exactly one for each element of Z∞,

|n(x) if and only if n divides (x)i, for all i ∈ Z,

δc(x) ⇐⇒ for all i ∈ Z if (c)i 6= 0 then (c)i divides (x)i.

In Section 2 we give an effective reduction of the problem of truth of existential formulae in A to
that of solvability of systems of equations and inequations in Presburger Arithmetic. As a result we
obtain the following

Theorem 1. The existential theory of A is decidable.

An (unknown to us) referee has pointed out the following: The structure A can be effectively
interpreted in the structure B = (Q+,×, N,<P ), where N is a 1-place predicate standing for natural
numbers, and <P is a 2-place predicate standing for usual order relation in Q+ restricted on primes.
F. Maurin in [6] proved that the first order theory of (N,×, <P ) is decidable. One can show that the
decidability of Th(B) follows from [6]. We describe this interpretation in Section 3. So we deduce

Theorem 2. The theory of A is decidable.

Since Theorem 1 follows from Theorem 2, we say few words about complexity of algorithm given
in proof of Theorem 1 and the complexity for the translation of the existential fragment of A into B.
In [11] has been proved the following fact on complexity of Presburger Arithmetic:

Theorem 3. There exists a Q.E. procedure assigning to any prenex formula ϕ (in the language of
Presburger Arithmetic) an equivalent quantifier free formula ϕ′. If ϕ has at most a quantifier-blocks

each of length at most b, then the algorithm runs in time and space bounded by 2c·length(ϕ)
(4b)a

for some
positive constant c.

Combining the following facts: Theorem 3 with a=1 and that the reduction of the existential theory
of A to existential theory of Presburger Arithmetic is in time O(2n), where n is the length of input

(i.e., of the existential sentence), we obtain the time complexity for our algorithm to be O(22
length(ϕ)4b

).

On the other hand, the translation of any existential L-sentence ϕ into a {×, N,<P }-sentence ϕ′

gives us that ϕ′ is of depth 3. Using the complexity bounds given in [6] for sentences of depth 3, we

obtain time complexity of the algorithm deciding ϕ′ be O(22
2length(ϕ

′)
).

Therefore the complexity of our algorithm for the existential fragment of A seems to be lower in
comparison to that obtained by translating existential theory of A into the structure B.

In Section 4 we consider the following extension ofA: let G be a finite abelian group and a : Z∞ → G
a recursive epimorphism of groups. For each g ∈ G we consider the predicate Pg, of arity 1 and interpret
Pg(x) as a(x) = g. We augment the structure A by the set {Pg : g ∈ G} to Aa. We show
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Theorem 4. The existential theory of Aa is decidable.

In Section 5 we note that

Theorem 5. Th(A) satisfies the independence property (IP), and is therefore unstable.

For more decidability results concerning Skolem Arithmetic and extensions of Skolem arithmetic
see [10], [5], [3] and [1].

2 Existential theory of the structure A
In this section we describe a simple algorithm which decides whether given existential sentence is true
or not in A by solving a concrete (natural) number of systems in Presburger Arithmetic.

Remarks and notations.

– (i) Subtraction is definable, by x−y = z ⇐⇒ x = y+z, therefore we use the symbol of subtraction
whenever it is required.

– (ii) Some properties of Z are inherited by Z∞. We list some of them, which are going to be used
later.

• (ii-a) Let x, y, z, w ∈ Z∞, then min(x, y) = z ⇐⇒ min(x+ w, y + w) = z + w.
• (ii-b) Let x, y ∈ Z∞, with min(x, y) = y, then (y)i ≤ (x)i, for all i ∈ Z.
• (ii-c) A consequence of (ii-b) is that non-negative sequence x is defined by min(x,0) = 0,

where 0 is a constant sequence with all co-ordinals equal to 0.

– (iii) Every quantifier-free formula in L, with variables x̄ = (x1, ..., xn), is equivalent to a boolean
combination of formulae of the form

min(π1(x̄), π2(x̄)) = π3(x̄) , π(x̄) = 0 , δc(π(x̄)) , |n(π(x̄))

where π, π1, π2, and π3 are polynomials over Z∞ of degree one and c is a constant.
– (iv) We call a formula sentence if no variable that occurs in it is free.
– (v) Let x ∈ Z∞. We denote by Supp(x) the support of the sequence x, i.e., Supp(x) = {i ∈ Z :

(x)i 6= 0}.
Lemma 1. Every existential sentence σ of L is equivalent to a finite disjunction of formulae of the
form:

σ0 ∧ ∃x̄ [σ1 ∧ σ2 ∧ σ3 ∧ σ4 ∧ σ5] (3)

where σ0 is a quantifier-free formula,

σ1(x̄) :
∧

i

fi(x̄) = 0 , (4)

σ2(x̄) :
∧

j

f ′j(x̄) 6= 0 , (5)

σ3(x̄) :
∧

ρ

min(πρ(x̄), π′ρ(x̄)) = 0 , (6)

σ4(x̄) :
∧

v

δcv (hv(x̄)) , (7)

σ5(x̄) :
∧

ξ

|nξ(gξ(x̄)) ∧
∧

ξ′

6 |n′
ξ′

(g′ξ′(x̄)) , (8)

where
each index among i, j, ρ, v, ξ, ξ′ ranges over a finite set, each of fi, f

′
j , πρ, π

′
ρ, hv, gξ, g

′
ξ′ is a degree-one

polynomial of the indicated variables over Z.
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Proof. Given an existential sentence ϕ = ∃x̄ψ(x̄), the quantifier-free formula ψ(x̄) can be written in
disjunction-normal form with literals as mentioned in the remark (iii). The form of σ3, i.e., where only
0 appears on the right-hand side of each relation min, is justified by the remark (ii-a). Note that some
negations can be eliminated:

– min(x, y) 6= z is equivalent to ∃w(w = min(x, y)∧w−z 6= 0). Observe that we define the negation
of min by existential formula. That means that we increase the number of quantifiers by one, but
this is not affecting the result.

– Let c ∈ Z∞. Consider the following set:

Cc = {c′ ∈ Z∞ : c′ 6= 0 and for all i ∈ Z, 0 ≤ (c′)i < |(c)i|},

where by |(c)i|we denote the usual absolute value in Z. Therefore ¬δc(x) is equivalent to
∨
c′∈Cc δc(x+

c′).

This do not work for 6 |n(x), when x is a variable, because we do not know a priori the support of
x.

Lemma 2. With notation as in the conclusion of Lemma 1, the formula σ1(x̄) can be omitted.

Proof. Without loss of generality, we assume that x1 occurs (non-trivially) in first equation of σ1. Then
by multiplying by suitable integers (non-zero) we obtain x1 to have the same coefficient in each of its
occurrence in σ1 ∧ · · · ∧ σ5. Let the first equation of σ1 be a1x1 + · · · + anxn + c = 0, with a1 ∈ Z
and a1 6= 0. We substitute every occurrence of a1x1 in σ1 ∧ · · · ∧ σ5 by −a2x2 − · · · − anxn − c. Then
replace σ5 with σ5 ∧ |a1(−a2x2 − · · · − anxn − c).

We continue by induction on the number of equalities.

Consider an open formula ψ(x̄) of the form σ2 ∧ · · · ∧ σ5, with notation given in Lemma 1. Let K
be the set of all constants that occur in ψ(x̄). Define Supp(K) :=

⋃
c∈K Supp(c). Obviously K is a

finite set. We denote the cardinality of K with |K|.
Let a1x1 + . . . anxn + c be a polynomial with ai ∈ Z, c ∈ Z∞ and variables x1, . . . , xn. Then it is easy
to check that for all κ ∈ Z

(a1x1 + · · ·+ anxn + c)κ = a1(x1)κ + · · ·+ an(xn)κ + (c)κ. (9)

Therefore it makes sense to define the following:

– For each n-tuple x̄ of variables x1, . . . , xn and κ ∈ Z we define (x̄)κ = ((x1)κ, . . . , (xn)κ).
– For each κ ∈ Z we define ϕκ((x̄)κ) to be the formula:

∧

v

(cv)κ|(hv(x̄))κ ∧
∧

ξ

nξ|(gξ(x̄))κ∧

∧
∧

ρ

[[(πρ(x̄))κ = 0 ∧ (π′ρ(x̄))κ ≥ 0 ] ∨ [(πρ(x̄))κ ≥ 0 ∧ (π′ρ(x̄))κ = 0 ]].

Lemma 3. For all κ 6∈ Supp(K) the formulae ϕκ are the same formula.

Proof. For every κ 6∈ Supp(K) we have that (c)κ = 0, for every constant c that occurs in σ. Let
i : 1 ≤ i ≤ n, then observe that due to (9) we have that the corresponding coefficients of (xi)κ are the
same for all κ ∈ Z. This is enough to obtain that all ϕκ, for κ 6∈ Supp(K), are equal.
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Let Σ5 be the set of 6 |n′
ξ′

which occur in σ5. Let Σ2 be the set of inequalities in σ2. A partition of

Σ2 ∪Σ5 of length λ is a set of λ non-empty subsets of Σ2 ∪Σ5, say D1, . . . , Dλ such that
⋃λ
i=1Di =

Σ2 ∪ Σ5 and Di ∩Dj = ∅ for every i 6= j. Consider D to be the set of all partitions of any length of
the set Σ2 ∪Σ5. The set of all partitions of length λ of the set Σ2 ∪Σ5 we will denote with D(λ).

Fix λ ∈ {1, . . . , |Σ2∪Σ5|}. Let K ′ be any finite extension of K such that |K ′|− |K| ≥ |Σ2∪Σ5|+1
and fix κ1, . . . , κλ ∈ K ′. We define the formula ψκ1,...,κλ((ȳ)κ1

, . . . , (ȳ)κλ) in n · λ variables as follows:

(
∨

{D1,...,Dλ}∈D(λ)

)[
λ∧

i=1

(
∧

t∈Di
t((ȳ)κi))].

Lemma 4. Using the notation of Lemma 1 and of the discussion above, the following are equivalent:
(a) ∃x̄ = (x1, . . . , xn) ∈ (Z∞)n[σ2(x̄) ∧ · · · ∧ σ5(x̄)],

(b) (∃(ȳ)j ∈ Zn)j∈K′
[(∧

κ∈K′ ϕκ((ȳ)k

)
∧
(∨|Σ2∪Σ5|

λ=1 [
∨

(κ1,...,κλ)
ψκ1,...,κλ((ȳ)κ1 , . . . , (ȳ)κλ)]

)]
.

Proof. (a)⇒ (b) Let t1, . . . , t|Σ2∪Σ5| be a list of the elements of Σ2 ∪Σ5.
Assume that there are some x1, . . . , xn ∈ Z∞ for which σ2 ∧ · · · ∧ σ5 holds. Let K ′ as we defined
previously. Consider the following cases:

Case 1: Assume that
⋃n
i=1 Supp(xi) ⊆ K ′. For every ti ∈ Σ2 ∪ Σ5 define µi = min{k ∈ K ′ :

ti((x̄)k) holds}. Let µ1, . . . , µ|Σ2∪Σ5| be the produced sequence. Then we define by induction a partition
of Σ2 ∪Σ5 as follows:

D1 = {tj ∈ Σ2 ∪Σ5 : tj((x̄)µ1
) holds},

Di+1 = {tj ∈ Σ2 ∪Σ5 : tj((x̄)µi+1
) holds} \Di.

Let λ be such that Dλ 6= ∅ and Dλ+1 = ∅. It easy to see that {D1, . . . , Dλ} is a partition of Σ2∪Σ5, µi ∈
K ′ and that ψµ1,...,µλ((x̄)µ1

, . . . , (x̄)µλ) holds. Also for every κ ∈ Z we have that ϕκ((x1)κ, . . . , (xn)κ)
holds true. Therefore ϕκ((x1)κ, . . . , (xn)κ) holds for every κ ∈ K ′.

Case 2: Assume that
⋃n
i=1 Supp(xi) 6⊆ K ′. Let M =

⋃n
i=1 Supp(xi). For every ti ∈ Σ2 ∪Σ5 define

µ̃i = min{k ∈ K ∪M : ti((x̄)k) holds}. Let µ̃1, . . . , µ̃|Σ2∪Σ5| be the produced sequence. Then we define
by induction a partition of Σ2 ∪Σ5 as follows:

D1 = {tj ∈ Σ2 ∪Σ5 : tj((x̄)µ̃1
) holds},

Di+1 = {tj ∈ Σ2 ∪Σ5 : tj((x̄)µ̃i+1
) holds} \Di.

Let λ be such that Dλ 6= ∅ and Dλ+1 = ∅. Similarly to the first case, {D1, . . . , Dλ} is a partition of Σ2∪
Σ5. Note that λ ≤ |Σ2∪Σ5|, i.e., there is a correspondence of {µ̃1, . . . , µ̃λ} with some {µ1, . . . , µλ} ⊂ K ′
such that for all i ∈ {1, . . . , λ} if µ̃i ∈ K then µi = µ̃i. Consider y1, . . . , yn ∈ Z∞ defined as follows:

(yi)j =

{
(xi)µ̃ρ , if j = µρ 6∈ K, for some ρ ∈ {1, . . . , λ}
(xi)j , else,

(10)

We have that ϕκ((x̄)κ) holds true for every κ ∈ Z . Therefore ϕκ((ȳ)κ) holds for every κ ∈
Z. Consequently, ϕκ((y1)κ, . . . , (yn)κ) holds for every κ ∈ K ′. For the partition {D1, . . . , Dλ} and
µ1, . . . , µλ ∈ K ′ as given above, we have that ψµ1,...,µλ((ȳ)µ1

, . . . , (ȳ)µλ) holds.

(b) ⇒ (a) Assume that for j ∈ K ′ there are (ȳ)j ∈ Zn such that
∧
κ∈K′ ϕκ((ȳ)k) and there is a

partition {D1, . . . , Dλ} of Σ2∪Σ5 and some κ1, . . . , κλ ∈ K ′ such that ψκ1,...,κλ((ȳ)κ1
, . . . , (ȳ)κλ) holds

true.
For i = 1, ..., n we define the following elements of Z∞:

(xi)j =

{
(yi)j , if j ∈ K ′,
0, else,

(11)

We show that for these x1, . . . , xn the formula σ2 ∧ · · · ∧ σ5 holds true.
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(F1) For every κ 6∈ K ′ we have that (c)κ = 0, for every constant c that occurs in σ. The same holds
for each (xi)κ by definition of xi, i.e., πρ, π

′
ρ, hv, gξ (as given in Lemma 1) are all equal to 0.

Therefore [(σ3(x̄))κ] ∧ [(σ4(x̄))κ] ∧ [
∧
ξ nξ|(gξ(x̄))κ], for every κ 6∈ K ′. Combining this latter fact

with hypothesis for ϕκ((y1)κ, . . . , (yn)κ) for every κ ∈ K ′ together with definition of xi for κ ∈ K ′
we obtain that

(σ3(x̄))κ ∧ (σ4(x̄))κ ∧
∧

ξ

nξ|(gξ(x̄))κ, for every κ ∈ Z.

(F2) Let ti ∈ Σ2 ∪Σ5, with i ∈ {1, . . . , |Σ2 ∪Σ5|}. Then there is j ∈ {1, . . . , λ} such that ti ∈ Dj . Then
by hypothesis we have that

∧
τ∈Dj (τ(ȳ))κj . Thus (ti(ȳ))κj . Observe that ti is a atomic formula

containing (exactly) one negation, i.e.,

∀ȳ ∈ (Z∞)n[ ti(ȳ) ⇐⇒ (ti(ȳ))κ for some κ ∈ Z .]

Combining the latter together with the definition of xi we obtain that

(σ2(x̄)) ∧
∧

ξ′

6 |n′
ξ′

(g′ξ′(x̄)) ,

By (F1), (F2) we obtain the required, i.e., σ2(x̄) ∧ · · · ∧ σ5(x̄)

Theorem 6. The existential theory of A is decidable.

Proof. Observe that due to Lemmas 1, 2 and 4, it is enough to give a decision-algorithm for any
existential sentence in L. The complexity of the reduction is exponential because of the use of partition.
Also exponential time is needed for solving the corresponding problem over Z.

3 The theory of A
F. Maurin proved in [6] that the first order theory of (N,×, <P ), where <P is a 2-place predicate
standing for the usual order relation in N restricted on primes, is decidable. Consider the structure
B = (Q+,×, N,<P ), where N is a 1-place predicate standing for the set of natural numbers. The
decidability of Th(B) follows from the decidability of (N,×, <P ).

We will interpret the structure A into B. To do this we interpret each element of Z∞ as a rational
number, as in the Introduction (for details see below). Towards this task we define in B the constant
1, the predicate Prime(x) (which stands for “x is a prime”), SP (x, y) (which stands for “y is the next
prime, greater than the prime x”) and the predicate Pi(x) (which stands for “x is the i-th prime”).
• x = 1 ⇐⇒ N(x) ∧ ∀y(x× y = y × x = y).
• Prime(x) ⇐⇒ N(x) ∧ ∀y, z(x = y × z → (y = 1 ∨ z = 1)).
• SP (x, y) ⇐⇒ Prime(x) ∧ Prime(y) ∧ ∀z(Prime(z)→ ¬(x <P z ∧ z <P y)).
• P0(x) ⇐⇒ Prime(x) ∧ ∀y(Prime(y)→ (x <p y ∨ x = y)).
• Pi+1(x) ⇐⇒ ∃y1, ..., yi(

∧
j Prime(yj) ∧ Prime0(y0) ∧ yi = x ∧∧j SP (yj , yj+1)).

As we mentioned in the Introduction, the function ‘gcd’(x, y) is not definable from | (divisibility)
when x, y ∈ Q+, but for x, y ∈ N
• d = gcd(x, y) ⇐⇒

N(x)∧N(y)∧∃z1(d×z1 = x)∧∃z2(d×z2 = y)∧∀w[∃z3(d×z3 = x)∧∃z3(d×z3 = y → ∃z4(w×z4 = d))].

Similarly we define lcm(x, y) for x, y ∈ N, i.e.,
• e = lcm(x, y) ⇐⇒

N(x)∧N(y)∧∃z1(x×z1 = e)∧∃z2(y×z2 = e)∧∀w[∃z3(x×z3 = e)∧∃z3(y×z3 = e→ ∃z4(e×z4 = w))].

Finally for every x ∈ Q+, with x = y
z and (y, z) = 1 we define the denominator z of x, den(x):

• den(x) = z ⇐⇒ N(z) ∧N(x× z) ∧ ∀w1[N(w) ∧N(w1 × x)→ ∃w2(w2 × z = w1)].
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The structure A is definable in B as follows:

• d =‘gcd’(x, y) is interpreted by gcd(lcm(den(x),den(y))×x, lcm(den(x),den(y))×y)
lcm(den(x),den(y)) .

• For each constant c of A with support {i1, ..., in} we have x = c is interpreted by

∃y1, ..., yn(
∧
j Pj(yj) ∧ x = y

(c)i1
1 × ...× y(c)inn ).

• |n(x) is interpreted by ∃y(yn = x).

According to [6] we obtain:

Theorem 7. The full theory of A is decidable.

4 The existential theory of the structure Aa

Let G be a finite abelian group, and a : Z∞ → G a recursive epimorphism of groups. Consider La to
be the language {+; min; C; {|n}n∈N; {Pg}g∈G, {δc}c∈Z∞), where +, min, C, δc and |n are as given
in section 1. Each Pg is a unary predicate. We are interested in the existential theory of the structure

Aa = (Z∞; +; min; C; {|n}n∈N; {Pg}g∈G, {δc}c∈Z∞),

where +, min, C, δc and |n are interpreted as in section 1 and

Pg(x) ⇐⇒ a(x) = g.

Since |G : Ker(a)| = |Im(a)|, we have that the kernel of a has a finite index in G.

Lemma 5. Let H be a subgroup of Z∞ of finite index. Then there are i1, ..., ik ∈ Z and ni1 , ..., nik ∈ N
such that:

H = {x ∈ Z : (x)ij ∈ nijZ}.
Proof. Since Z∞ is an abelian group, we can define the corresponding quotient group Z∞/H which is
finite (and abelian) of order [Z∞ : H] = m. On the other hand, H as a subgroup of direct sum is of
a form

⊕
i∈Z niZ (since any subgroup of Z is of the form nZ for some n ∈ Z). Let IH be the set of

all i such that ni 6= 1 in the direct sum of H. Consider ai ∈ Z∞ such that (ai)i = 1 and (ai)j = 0 for
all integers j 6= i. Then ai +H are distinct cosets for all i ∈ IH . Since H is of finite index in Z∞, we
have only finitely many distinct cosets of H in Z∞. Thus IH is a bounded set, i.e., IH = {i1, ..., ik}.
Therefore, for the corresponding ni1 , ..., nik ∈ N we have
• ∏j nij = m,
• Z∞/H ∼= Zni1 ⊕ · · · ⊕ Znik and
• H = {x ∈ Z : (x)ij ∈ nijZ}.

Theorem 8. The existential theory of Aa is decidable.

Proof. First observe that it is enough to have in La only one predicate of the form Pg, and concretely
Pe, where e is the identity element of G. Next we show that the predicate Pe is definable in L by an open
formula. Indeed, by repeating the arguments in Section 2 we can determine IH as defined in Lemma 5.
Next consider the constant cH which corresponds to the element in Z∞ satisfying (cAa)ij = nij for
every ij ∈ IH and 0 everywhere else. Then

Pe(x) ⇐⇒ |cHx.
Thus we deduce the decidability of the existential theory of Aa from Theorem 7.

Using Lemma 5 and similar arguments as in Theorem 8 we can extend the decidability result in
the following sense: let F be the set of all subgroups H of Z∞ of finite index in Z∞ and let F ′ ⊆ F .
Consider the structure AF ′ = (Z∞; +; min; C; {|n}n∈N; {PH}H∈F ′), where +, min, C and |n are
interpreted as usual and PH(x) ⇐⇒ x ∈ H.
Corollary 1. The existential theory of AF ′ is decidable.
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5 Properties of A
We would like to say few words on some properties of A from the model theoretical point of view. We
start with the following theorem of Shelah (see [2]).

Theorem 9. Let T be a complete theory. Then T is unstable if and only if there is a model M of
T , with universe M , an infinite X ⊂ Mn and a formula ϕ(x̄, ȳ) (x̄ = (x1, ..., xn), ȳ = (y1, ..., yn))
defining total ordering on X.

By its nature, the function min induces an ordering. Therefore we obtain

Proposition 1. Let T be a theory of any structure S of the form (Z∞,min, S1, S2, S3), where S1 is a
set of relations, S2 a set of functions and S3 a set of constants (some Si might be an empty set). Then
T is unstable.

Proof. Consider ϕ(x, y) to be min(x, y) = x. Let M be the given structure (Z∞,min, S1, S2, S3) and
define X = {ai : i ∈ N}, where ai ∈ Z∞ such that (ai)0 = i and for all j 6= 0 (ai)j = 0. Then it is easy
to check that X is infinite subset of Z∞ and that ϕ defines a total ordering on X.

Corollary 2. Th(A) is unstable.

Another notion that is worth to consider is the independence property. Namely,

Definition 1. Let T be a complete theory. We say that a formula ϕ(x̄, y) (x̄ = (x1, ..., xm)) satisfies
IP (independence property) in T if and only if in every model M of T there is for each n ∈ N a family
b0, ...bn−1 such that, for all subsets X of {0, ..., n− 1} there is (ā) ∈ |M |m

M |= ϕ(ā, bi) ⇐⇒ i ∈ X.
T is said to satisfy IP if there is a formula which satisfies IP in T.

Proposition 2. Let T be a complete theory as given in the statement of Proposition 1. Then T satisfies
IP.

Proof. We start by giving an equivalent definition of IP which can be found in [9]. Fix a formula ϕ(x̄, ȳ)
and denote the power set of n = {0, ..., n− 1} by P(n). Let In be the axiom

(∃x̄i)i∈n, (∃ȳW )W∈P(n)[
∧

i∈W
ϕ(x̄i, ȳW ) ∧

∧

i 6∈W
¬ϕ(x̄i, ȳW )].

In order to prove that T satisfies IP, it is enough to prove for some ϕ(x̄, ȳ) that T ∪ {In : n ∈ N} is
consistent. Consider ϕ(x̄, ȳ) be a formula just in two variables, i.e., x̄ = x, ȳ = y, with

ϕ(x, y) : min(x, y) = x.

We claim that the structure S, as given in the statement of Proposition 1, is a model of T∪{In : n ∈ N}.
Indeed, fix n ∈ N and for every i ∈ n and W ∈ P(n), define
• ai ∈ Z∞ such that (ai)i = 1 and (ai)j = 0 for all integers j 6= i,
• bW ∈ Z∞ such that bW =

∑
i∈W ai.

Observe that if i ∈W then (min(ai, bW ))i = 1 = (ai)i and for all j 6= i (min(ai, bW ))j = 0 = (ai)j .
While if i 6∈W then (min(ai, bW ))i = 0 6= (ai)i. Thus

S |=
∧

i∈W
ϕ(ai, bW ) ∧

∧

i 6∈W
¬ϕ(ai, bW )

Corollary 3. Th(A) satisfies IP.

Thus another proof of Corollary 2 can be obtained by combining Corollary 3 and the following

Proposition 3. ([8]) Let T be a complete theory. Then if T satisfies IP, T is unstable.

Lemma 6. Let B any structure with universe Z∞ and let the language of B contain the function (or
the graph of the function) min with interpretation given in section 1. Then the theory of B satisfies
IP, therefore it is unstable.
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Abstract. The paper analyzes the use of semantic networks for representation of
pronominal information for machine translation purposes. It discuss semantics,
grammar features and some general principles and related problems for formal
representations of pronouns in semantic networks. The formal representations of
pronouns for two languages in the frameworks of Universal Networking Lan-
guage (UNL) are analyzed with respect to linguistic motivation used for encod-
ings. Finally, more general conclusions about formal representations of pronom-
inal information for multilingual applications are drawn.
Keywords: Natural Language Processing, Computational Linguistics, Knowl-
edge Representation, Semantic Networks, Machine Translation.

1 Introduction

Pronouns exist in all European languages and they share similar semantics and grammar
features. As a knowledge representation task, they have been represented using mostly
syntactic formal theories. At the same time, the semantic networks were successfully
used to represent both lexical and grammar information withmultilingual application
Some of them like DATR language for lexical knowledge representation [4], WordNet
[5] and Universal Networking Language (UNL) [11] have multilingual applications.

As for example DATR, there are programming applications made for lots of lan-
guages [3, 7, 8] which suggest various approaches and techniques that can be success-
fully used for multilingual application in machine translation. Further, we are going to
analyze semantic and grammar features of pronouns and to userelated approaches for
UNL formal multilingual representations.

2 The semantics and grammar features of pronouns

Pronouns are usually analyzed with respect to their semantics, grammar features, func-
tions and usage. The semantics of pronouns is connected to their roles to substitute,
determine, relate and agree both with other words in the sentence or within the whole
text. Formally, pronouns are usually represented with syntactic theories (as for English
language). However, for some other languages the roles are realized by using subse-
quent grammar features of person, number, and gender (for some languages also case,
definiteness, etc.). The related grammar features can be used for formal representations
of pronouns by offering morpho-syntactic formal interpretation.
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Moreover, the related grammar features are universal for all types of pronouns and
are used for successful multilingual machine translation applications. In suggested ap-
proach they are used to present both grammar and lexical information by means of
special linking hierarchical mechanism.

3 The Universal Networking Language

In the UNL approach, information conveyed by natural language is represented as a
hypergraph composed of a set of directed binary labeled links (referred to as ”relations”)
between nodes or hypernodes (the ”Universal Words”(UWs)), which stand for concepts.
UWs can also be annotated with ”attributes” representing context information [11].

Universal Words (UWs) represent universal concepts and correspond to the nodes
to be interlinked by ”relations” or modified by ”attributes”in a UNL graph. They can
be associated to natural language open lexical categories (noun, verb, adjective and ad-
verb). Additionally, UWs are organized in a hierarchy (the UNL Ontology), are defined
in the UNL Knowledge Base and exemplified in the UNL Example Base, which are the
lexical databases for UNL. As language-independent semantic units, UWs are equiva-
lent to the sets of synonyms of a given language, approachingthe concept of ”synset”
used by the WordNet.

Attributes are arcs linking a node onto itself. In opposition to relations, they cor-
respond to one-place predicates, i.e., function that take asingle argument. In UNL,
attributes have been normally used to represent information conveyed by natural lan-
guage grammatical categories (such as tense, mood, aspect,number, etc). Attributes are
annotations made to nodes or hypernodes of a UNL hypergraph.They denote the cir-
cumstances under which these nodes (or hypernodes) are used. Attributes may convey
three different kinds of information: (i) The information on the role of the node in the
UNL graph, (ii) The information conveyed by bound morphemesand closed classes,
such as affixes (gender, number, tense, aspect, mood, voice,etc), determiners (articles
and demonstratives), etc., (iii) The information on the (external) context of the utter-
ance. Attributes represent information that cannot be conveyed by UWs and relations.

Relations, are labeled arcs connecting a node to another node in a UNL graph.
They correspond to two-place semantic predicates holding between two UWs. In UNL,
relations have been normally used to represent semantic cases or thematic roles (such
as agent, object, instrument, etc.) between UWs.

UNL-NL Grammars are sets of rules for translating UNL expressions into nat-
ural language (NL) sentences and vice-versa. They are normally unidirectional, i.e.,
the enconversion grammar (NL-to-UNL) or deconversion grammar (UNL-to-NL), even
though they share the same basic syntax.

In the UNL Grammar there are two basic types of rules: (i) Transformation rules
- used to generate natural language sentences out of UNL graphs and vice-versa and
(ii) Disambiguation rules - used to improve the performanceof transformation rules by
constraining their applicability.

The UNL offers universal language-independent and open-source platform for mul-
tilingual applications [2]. The UNL application for English language is available but
some applications for other languages like Russian [1] and Bulgarian [9, 6] are avail-
able as well.
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3.1 Representing pronouns in UNL

The UNL offers various approaches to lexical knowledge representation including for-
mal grammar rules, presentation of pronouns grammar features of person, number and
gender, development of inflectional features (like for caseand definiteness for some
languages), etc.

Thus, UNL lexical knowledge representation scheme allows two types of transfor-
mation inflectional rules: (i) A-rules (affixation rules) apply over isolated word forms
(as to generate possible inflections) and (ii) L-rules (linear rules) apply over lists of
word forms (as to provide transformations in the surface structure). Affixation rules are
used for adding morphemes to a given base form. They are used for generating inflec-
tions or derivations. There are two types of A-rules: (i) simple A-rules involve a single
action (such as prefixation, suffixation, infixation and replacement), and (ii) complex
A-rules involve more than one action (such as circumfixation).

There are four types of simple A-rules: (i) prefixation, for adding morphemes at
the beginning of a base form, (ii) suffixation, for adding morphemes at the end of a
base form, (iii) infixation, for adding morphemes to the middle of the base form, (iv)
replacement, for changing the base form.

Further, we are going to analyze pronuns representation in the lexical database or
UNL dictionary for English and Bulgarian by comparing examples mostly of personal,
possessive, and reflexive pronouns.

The English pronouns formal representation uses mostly rules for syntactic trans-
formations. Thus, the UNL dictionary uses grammar feature of person to link different
types of pronouns by means of synonymic hierarchical lexical relations. It relates per-
sonal pronoun (for subject)I to personal pronoun (for object)me and to possessive
adjectivemy and to possessive pronounmine and reflexive pronounmyself .

Fig. 1. The English possessive pronounmine in UNL representation.

Fig. 1 shows UNL dictionary entry for possessive pronounmine which uses hi-
erarchical synonymic definition by relating grammar information like type of pronoun
and grammar feature of person. It presents syntactic information through LEX=R and
POS=SPR which are used by transformation grammar rules.
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Fig. 2 presents UNL dictionary entry for reflexive pronounmyself which includes
same types of information structured the same way.

Fig. 2. The English reflexive pronounmyself in UNL representation.

At the same time, there are languages like Bulgarian which present syntactic infor-
mation for definiteness by using inflection. For that, pronouns are presented additionally
by applying inflectional rules.

The formal representation of Bulgarian pronouns is a part ofinflectional morphol-
ogy application [9, 10] aimed to develop UNL grammar and lexical resources for sev-
eral European languages. Thus, it uses some universal principles and offers interpreta-
tion of inflectional morphology which uses A-rules. Fig. 3 shows UNL dictionary entry
for Bulgarian possessive pronounmoj.

Fig. 3. The Bulgarian possessive pronounmoj in UNL representation.

It presents both lexical and grammar information. The grammar information is given
by both syntactic and inflectional rules. The inflectional rules allow generation of all
pronominal inflected forms and offer a sound alternations account mostly by the use
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of A-rules. They are defined without the use of hierarchical inflectional representation.
The transformation syntactic rules use specification POS=SPR to relate Bulgarian and
English lexical entries for the same pronoun.

The sound alternations and the irregularity are interpreted within the definition of
the main inflectional rule. The information about inflectionis given through the specifier
PAR=M165 which assign related inflectional type consistingof inflectional grammar
rules (given at the Appendix).

The UNL application, also, represents a web-based intelligent information and knowl-
edge management system which allows different types of semantic search with respect
to various search criteria.

4 Conclusion

The formal UNL representations of English and Bulgarian pronouns use common for-
mal framework based on interpretation of both lexical (synonymic hierarchical repre-
sentation) and grammar features (like person, gender or definiteness) to relate pronouns
for both languages. Additionally, they relate syntactic information by using common
specifiers (like POS=SPR) to relate transformation syntactic rules through linking. The
application is open for further improvement and development by introducing additional
grammar rules and enlarging database.
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The d-distance anticoloring Problem

S. Zucker

Department of Computer Science, Sapir Academic College, Israel

Abstract. Given an edge weighted graphG and positive integers x,y and d,
the d-distance anticoloring problem asks about the existence of a partial
vertex-coloring of G, with x vertices colored black and y white, such that
each path between a black and a white vertex has cost at least d. We sug-
gest a polynomial algorithm for solving this problem on weighted trees.
We also present a sketch of an algorithm for solving this problem on
chordal graphs.

1 Introduction

The d-distance anticoloring problem is a new problem, defined as follows. Given
an undirected graph G with a cost function C : E(G) → {1, 2, 3, . . .}, positive
integers x, y and d > 1, determine whether there exists a partial vertex-coloring
ofG such that x vertices are colored black and y vertices in white (with all other
vertices left uncolored), such that there is no path P , with |P | < d, between any
black and white vertex. Recall that |P | = ∑

e∈P C(e).
This problem is in fact a generalization of the black-and-white coloring prob-

lem [10], in which d = 2. The NP-completeness of the d-distance anticoloring
problem is derived from that of the black-and-white coloring problem, proved
by Hansen et al. [8].

Prison safety can be considered as a motivation for this problem. A given
prison detains prisoners from two different mafias. It is essentially important
to keep the different prisoners in distanced cells from each other. When prison-
ers inhabit cells too close to each other riots break out. Obviously, prison cells
correspond to nodes of the graph, and the two mafias to the two colors.

Hansen et al. [8] presented a polynomial algorithm for the original anticol-
oring problem in the case where G is a tree. In [10], there is an algorithm for
that problem in the case where G is a chordal graph.

In this paper, we give an O(n3)-algorithm for the d-distance anticoloring
problem on trees. We also present a sketch of an algorithm for the case where G
is chordal.

Section 2 presents formally the problem and states the main theorems. Sec-
tion 3 gives a reduction which helps us solve the main problem. The rest of that
section presents the algorithm of the new problem. Section 4 describes briefly a
solution for the problem on chordal graphs.
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2 Main Results

Let T be a tree with n vertices and let d be an integer. The attributes of a d-
distance anticoloring of T are given by a pair (x, y), in which x is the number
of black vertices and y the number of white vertices, with x and y satisfying
the requirements of the problem. Thus, by having an array containing the max-
imal y for each value of x, we identify the attributes of all possible d-distance
anticolorings. Such a pair is non-dominated if there exists no feasible d-distance
anticoloring with x black and y′ > y white vertices. Our algorithm solves si-
multaneously the d-distance anticoloring problem for all pairs (x, y).

Problem 1.
Input: A rooted n-vertex tree T with a cost function C : E(T )→ {1, 2, 3, . . .}

and an integer d > 1.
Output: An array dSOL which, for each 0 ≤ x ≤ n, gives the maximal y

such that there exists a d−distance anticoloring of T , with x black and y white
vertices.

Theorem 1. Problem 1 is solved in time O(n3).

Note that this theorem gives a solution for all possible d-distance anticol-
orings. In fact, in order to find if there exists a d-distance anticoloring for a
given (x, y), simply check if the algorithm returns a pair (x′, y′) with x′ ≥ x and
y′ ≥ y.

Problem 2.
Input: A rooted n-vertex chordal graph G and an integer d > 1.
Output: An array dSOL which, for each 0 ≤ x ≤ n, gives the maximal y

such that there exists a d−distance anticoloring of G, with x black and y white
vertices.

Theorem 2. Problem 2 can be solved in polynomial time.

3 Proof of Theorem 1

3.1 A reduction of the Problem

We assume that the input tree T is rooted. For each vertex v, denote by Tv the
subtree rooted at v.

To each vertex v of T we attach two arrays v.B and v.W and a three di-
mensional array v.U – corresponding to feasible d-distance anticolorings of Tv
in which v is black, white or uncolored, respectively. Thus, v.B (v.W , respec-
tively) contains for each value x the maximal possible y, assuming that v is col-
ored black (white, respectively). Considering the array v.U , we need to record
some more data. We define v.U [1] to contain for each value x the maximal pos-
sible y, assuming that v is uncolored. The minimal distance of v from a black
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(white, respectively) vertex v̂ ∈ Tv is save in v.U [2] (v.U [3], respectively). Note
that there is no need to record such data in v.B and v.W . For convenience, we
assume in the following that these three arrays are saved in a common variable,
named v.BWU.

We now show how an instance of Problem 1 can be reduced to an instance of
the following Problem 3. For a given tree T = (V,E), we create a new tree T ′ =
(V ′, E′), with V ′ = V ∪ Ve and E′ = E ∪ Ee, where Ve = {v′1, v′2, . . . , v′c−1|e =
(u, v) ∈ E(T ), C(e) = c > 1}, and Ee = {(u′, v′1), (v′1, v′2), . . . , (v′c−1, v′)|e =
(u, v) ∈ E(T ), C(e) = c > 1}. Meaning, for each edge (u, v) ∈ E(T ) with
C(u, v) = c > 1, we add in T ′ new vertices v′1, v′2, . . . , v′c−1 and connect them
with c unweighted edges (u′, v′1), (v

′
1, v
′
2), . . . , (v

′
c−1, v

′). Obviously, T ′ is a tree
and for each (u, v) ∈ E(T ) and (u′, v′) ∈ E(T ′) we have that C(u, v) is equal to
the cost of the path between u′ and v′. We define each of the new vertices to be
left uncolored in T ′, i.e., if Φ is the coloring function, then Φ(vi) = uncolored
for each 1 ≤ i ≤ c − 1. Note that by definition, if (u, v) = e ∈ E(T ) such
that C(u, v) = c and Φ(u′) = black (white, respectively), where u′ ∈ V (T ′),
then all the vertices v′1, v′2, . . . , v′c−1, v ∈ V (T ′) cannot be colored white (black,
respectively).

Therefore, we can replace Problem 1 by the following

Problem 3.
Input: A rooted n-vertex tree T ′ = (V ′, E′), an integer d > 1 and a partial

function Φ : X → {black,white,uncolored}, where X ⊂ V ′
Output: .
The table root(T ′).BWU which, for each α ∈ {black,white,

uncolored} and 0 ≤ x ≤ n, provides the maximal y such that there exists a
d-distance anticoloring of T ′ with root(T ′) colored α, each v ∈ X colored Φ(v)
and with x black and y white vertices.

Theorem 3. Problem 3 is solved in time O(n3).

The correctness of Theorem 1 is derived from the above reduction and from the
correctness of Theorem 3.

3.2 The Algorithm

The complete proof of Theorem 3 is omitted from this paper. We only give here
the algorithm itself with some explanation.

The algorithm implements some dynamic programming techniques. We be-
gin with initializing the lists BWU for each leaf. Then we call a recursive algo-
rithm to find these lists for the internal vertices of the tree (see Algorithm 1).
Eventually, we combine the pairs (x, y) of the three arrays root(T ).B, root(T ).W
and root(T ).U to a single list, and use a simple procedure, named contract,
to delete all dominated pairs (as well as repeated occurrences of pairs). This
procedure gets a list and uses the bucket-sort algorithm (cf. [4]) to delete from
it the dominated pairs, such that eventually we have that each list contains
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at most n pairs. The algorithm returns the table dSOL, containing all non-
dominated pairs for the root, for which there exists a d-distance anticoloring
of the tree.

Algorithm 1 below separates the tree into smaller parts and works recur-
sively on each of them. In fact, the recursion is used only in order to force the
calculation to be performed from the leaves to the root of the tree. We deal with
the subtrees rooted at each child of a vertex separately and finally merge their
results. In general, after the tables for the roots of two subtrees T and T ′, with
a common root but otherwise disjoint sets of vertices, have been generated, the
algorithm needs to generate the arrays for T ′′ = T ∪ T ′. This is done by Algo-
rithm 3.

recAlg(T, r)
Input: A tree T with a root r
Output: r.BWU

if r is a leaf
return r.BWU

r1, r2, . . . , rδ ← all children of r
for i← 1 to δ
ri.BWU ← recAlg(T, ri)
listi← extension(T, ri.BWU,r) // list for the subtree Tri , adding r as root

for i← 2 to δ // find the lists for the tree rooted at r
BWU1 ←merge(T ,BWU1,BWUi)

r.BWU← BWU1

return r.BWU

Algorithm 1: Generate List for the root of a tree

Algorithm 2 makes the lists for the subtree T ′, created from the subtree T by
adding the only outer edge of T ’s root. The calculation of the array root(T ′).BWU
is divided into three parts, depending on the color of r′ =root(T ′). Recall that
the list r′.B contains the pairs of the solution of the problem for the case r′ is
black. Therefore, in order to compute such a pair, we have to make sure that the
distance from a white vertex is at least d. This check is performed for each pair
in r.U . The same occurs for r′.W . In the third case, where r′ =root(T ′) is uncol-
ored, we have to record in r′.U [2] and r′.U [3] the minimal distance from a black
and a white vertex, respectively. Recall that the maximal distance we record is
d. We use the procedure increaseDistance(d′) to increase a distance d′ in
case d′ < d. Otherwise, it is not changed. Note that the computation of r′.U is
also divided into three parts, depending on the color of r.

Two subtrees T, T ′ of an n-vertex tree, having the same root, are merged by
Algorithm 3. This algorithm gets two lists of pairs, each of size at most n, and
outputs the pairwise sums of the pairs in the lists (and sometimes subtracts 1
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extension(T, r.BWU,r′)
Input: A tree T , the lists r.BWU, where r = root(T ), and the

vertex r′ =father(r)
Output: r′.BWU – the lists for r′ = root(T ′), where T ′ is composed of T

and a new root r′, whose only child is r

initialize r′.B, r′.W and r′.U to empty lists
(xbi , y

b
i )← r.B[i] // the i-th pair of r.B

(xwi , y
w
i )← r.W [i] // the i-th pair of r.W

(xui , y
u
i )← r.U [1][i] // the i-th pair of r.U [1]

r′.B ← {(xbi + 1, ybi )|1 ≤ i ≤ n} ∪ {(xui + 1, yui ) : r.U [3][i] ≥ d− 1, 1 ≤ i ≤ n}
// check that the distance from a white vertex is at least d

r′.W ← {(xwi , ywi + 1)|1 ≤ i ≤ n} ∪ {(xui , yui + 1) : r.U [2][i] ≥ d− 1, 1 ≤ i ≤ n}
k ← 1
for i = 1 to n // compute r′.U
r′.U [1][k]← (xbi , y

b
i )

r′.U [2][k]← 1//distance from a black vertex is 1, since r is black
r′.U [3][k]← d//distance from a white vertex must be at least d
k ← k + 1
r′.U [1][k]← (xwi , y

w
i )

r′.U [2][k]← d//distance from a black vertex is at least d
r′.U [3][k]← 1//distance from a white vertex must be 1 since r is white
k ← k + 1
r′.U [1][k]← (xui , y

u
i )

r′.U [2][k]←increaseDistance(r.U [2][i])//distance from a black vertex
r′.U [3][k]← increaseDistance(r.U [3][i])//distance from a white vertex
k ← k + 1

return r′.BWU //the three calculated arrays

Algorithm 2: Add a new root to a given subtree

from the result). The algorithm computes separately the lists root(T ′′).B, root(T ′′).W
and root(T ′′).U . When computing the distance of root(T ′′) from a black and
a white vertex in T ′′, we take the minimum distance saved for root(T ) and
root(T ′).

3.3 Time Complexity

Obviously, time for the extension algorithm is linear. The time of Algorithm 3
takes O(n2). This is performed for each vertex of the tree, leading to O(n3)
runtime.
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merge(T ′′, r.BWU,r′.BWU)
Input: A tree T ′′, the lists r.BWU and r′.BWU, where r = root(T ),

r′ = root(T ′), r′′ = root(T ′′) and T ′′ = T ∪ T ′
Output: r′′.BWU – the lists for r′′ = root(T ′′)

k ← 1
for i = 1 to n //compute r′′.B

for j = 1 to n
(x, y)← r.B[i] //the i-th pair in r.B
(x′, y′)← r′.B[j]
r′′.B[k]← (x+ x′ − 1, y + y′)
k ← k + 1

for i = 1 to n //compute r′′.W
for j = 1 to n

(x, y)← r.W [i] //the i-th pair in r.W
(x′, y′)← r′.W [j]
r′′.W [k]← (x+ x′, y + y′ − 1)
k ← k + 1

for i = 1 to n //compute r′′.U
for j = 1 to n

(x, y)← r.U [1][i] //the i-th pair in r.U [1]
(x′, y′)← r′.U [1][j]
r′′.U [1][k]← (x+ x′, y + y′)
r′′.U [2][k]←min{r.U [2][i], r′.U [2][j]}//compute minimal distances
r′′.U [3][k]←min{r.U [3][i], r′.U [3][j]}
k ← k + 1

return r′′.BWU

Algorithm 3: Add a new root to a given subtree
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4 Proof of Theorem 2

In this section we describe briefly an algorithm which is given a chordal graphG
(here the graph has no weight on its edges), and finds all pairs (x, y) such that
there exists a d-distance anticoloring of G with x black and y white vertices.

4.1 Main Idea

Let G be a chordal graph and T a clique tree of G, constructed as in [2]. Note
that there is a correspondence between subtrees of T and certain subgraphs
of G, whereby for each subtree T ′ there exists a corresponding subgraph G′,
induced by K1 ∪ . . . ∪Kt, where V (T ′) = {K1,K2, . . . ,Kt}.

Before describing the algorithm, let us first present

Definition 4 [2] Let G = (V,E) be a chordal graph. The clique graph of G is
denoted by C(G) = (VC , EC , µ), with µ : EC → N, and given by:

1. Its vertex set VC is the set {K1,K2, . . . ,Km} of all maximal cliques in G.
2. EC = {(Ki,Kj) : Ki,Kj ∈ VC , Ki ∩ Kj 6= ∅}.
3. µ(Ki,Kj) = |Ki ∩Kj |, (Ki,Kj) ∈ EC .

Recall that, by [6], a chordal graph contains at most |V | maximal cliques,
and therefore |VC | ≤ |V |.

Definition 5 LetG = (V,E) be a chordal graph andC(G) its clique graph. A clique
tree of G is a maximum weighted spanning tree of C(G).

Blair et al. [2] present a linear time algorithm for finding a clique tree of a
chordal graph.

In general, an algorithm which solves the d-distance anticoloring problem
on chordal graphs should perform the following steps: First, take a chordal
graph G and compute its clique tree T (see Definition 5). Then, perform a sim-
ilar algorithm to that of the algorithm from Section 3.2 on the clique tree T
(described bellow).

Each solution of a clique tree T implies a corresponding d-distance anticol-
oring for the corresponding chordal graph G. Meaning, each pair (x, y) we find
for the clique tree T , implies a d-distance anticoloring of G with x black and y
white vertices.

Note that the coloring of the clique tree T need not satisfy the d-distance
anticoloring properties, but only that of the 2-distance anticoloring. We allow
this since the coloring of T is performed only in order to find the solution for
the original graph G.

Similarly to Section 3, in our algorithm each vertex of the tree is attached
with three lists, depending on its color, black, white or uncolored. Each list of
each vertex contains pairs (x, y) saying that, the graph corresponding to the
subtree rooted at that vertex, has a d-distance anticoloring with x black and y
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white vertices. Here we use the same definitions for the lists of a vertex v as in
Section 3, v.B, v.W, v.U [1], v.U [2] and v.U [3]. Similarly to Section 3, these lists
are computed in a post-order form, from the leaves of the tree to its root, using
two aid procedures: merge and extension.

4.2 A sketch of the Algorithm

Similarly to [10], note that the clique tree T is both vertex- and edge-weighted,
where the weight functions ν : V (T )→ N and µ : E(T )→ N are given by

ν(K) = |K| , K ∈ V (T ),
µ(K1,K2) = |K1 ∩K2| , (K1,K2) ∈ E(T ).

(1)

As in Section 3, our main algorithm uses a dynamic programming tech-
niques to computes the lists for the vertices of the clique tree, from the leaves to
the root of the tree. The main algorithm, which is very similar to the algorithm
for trees, and is omitted from this paper, invokes Algorithm 4 and 5, which
comes instead of Algorithms 2 and 3, respectively. These algorithms need to
maintain three lists for each vertex K, named K.B,K.W and K.U , where for
each pair in K.U [1], we record in K.U [2] (K.U [3], respectively) the distance of
K in the coloring represented by K.U [1] from a black (white, respectively) ver-
tex.

Algorithm 4 is similar to Algorithm 2. It is given a clique tree T and the lists
for r =root(T ), and finds the corresponding lists for a new root r′, for r′ =father(r).

In contrast to Algorithm 2, it records for each pair (x, y) belonging to the lists
of a vertex K, the furthest colored vertex. This data is saved in lastColored,
which helps us track the distance we have from a black and a white vertices.
These distances are saved in r.U [2] and r.U [3], respectively.

Thus, in case where r is uncolored, it depends on the distance r.U [2] (r.U [3],
respectively) whether the new root r′ can be colored black (white, respectively).

If r′ is also left uncolored, we need to update its distances.
Recall that a clique tree is a maximal spanning tree of the clique graph of G,

called C(G). Therefore, there might be some edges in C(G) which are not in T .
By the definition of the clique graph [2], there is an edge (r′,K) in the clique
graph if and only if r′ ∩K 6= ∅. In case where there is an edge between r′ and
the last colored vertex K in the clique graph C(G), the distance of r′ from K is
equal to the distance of r from K (see [1],[2],[6],[9]).

Algorithm 5 below is given lists for two subtrees having a common root,
and finds the lists for the root of the subtree obtained by merging these two
subtrees. For example, for each (x1, y1) ∈ r1.B and (x2, y2) ∈ r2.B, the algo-
rithm appends to r.B the new pair (x1 + x2 − size, y1, y2), where size is the
number of colored vertices in the unified root. Obviously, the colored vertices
of r ⊆ G are exactly the colored vertices of r1 ∩ r2 ⊆ G. This data needs to be
saved in order to find the coloring for G (finding the coloring itself is omitted
from this paper).

Similarly to Algorithm 4, we record here the data for the lastColored
variable. For each (x1, y1) ∈ r1.U and (x2, y2) ∈ r2.U , the algorithm appends to
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CTextension(T, r.BWU,r′)
Input: A clique tree T , the lists r.BWU, where r = root(T ), and r′ =father(r)
Output: r′.BWU – the lists for r′ = root(T ′), where T ′ = T ∪ {r′}

initialize r′.B, r′.W and r′.U to empty lists
for each (x, y) ∈ r.B

(x′, y′)← (x+ ν(r′)− µ(r, r′), y))
(x′, y′).lastColored← r′ and append(r′.B, (x′, y′)) // add a new pair to r′.B
(x′, y′)← (x− µ(r, r′), y − µ(r, r′)) // find a pair for r′.U
(x′, y′).lastColored← r and append(r′.U [1], (x′, y′)) // add a new pair to r′.U
r′.U [2]← 1 // distance from a black vertex is 1

for each (x, y) ∈ r.W
(x′, y′)← (x, y + ν(r′)− µ(r, r′))
(x′, y′).lastColored← r′ and append(r′.W, (x′, y′)) // add a new pair to r′.W
(x′, y′)← (x− µ(r, r′), y − µ(r, r′)) // find a pair for r′.U
(x′, y′).lastColored← r and append(r′.U [1], (x′, y′)) // add a new pair to r′.U
r′.U [3]← 1 // distance from a white vertex is 1

for each (x, y) ∈ r.U // first check if r′ can be colored
if r.U [2] ≥ d− 1 // distance from a black vertex

(x′, y′)← (x− µ(r, r′), y + ν(r′)− µ(r, r′))
(x′, y′).lastColored← r′ and append(r′.W, (x′, y′))

if r.U [3] ≥ d− 1 // distance from a white vertex
(x′, y′)← (x+ ν(r′)− µ(r, r′), y − µ(r, r′))
(x′, y′).lastColored← r′ and append(r′.B, (x′, y′))

(x′, y′)← (x− µ(r, r′), y − µ(r, r′)) // find a pair for r′.U
(x′, y′).lastColored← (x, y).lastColored
append(r′.U [1], (x′, y′)
if the clique graph C(G) contains an edge between r′ and (x, y).lastColored
r′.U [2]← r.U [2] and r′.U [3]← r.U [3] // distances are not increased

else //no edge means the distances are increased
r′.U [2]← r.U [2] + 1 and r′.U [3]← r.U [3] + 1

contract(r′.B), contract(r′.W ) and contract(r′.U)
return r′.BWU //the three calculated arrays

Algorithm 4: Add a new root to a given subtree

r.U the new pair (x1 + x2, y1 + y2). Here we need to update the distances r.U [1]
and r.U [2]. We simply choose the minimal distance between the two given ones.
The value of lastColored will also be the value of the closest colored vertex
between the two merged subtrees.

The reduction from a chordal graph to its clique tree and the full algorithm
are to be detailed in the full version of the paper.
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CTmerge(G, r1.B, r2.B, r1.W, r2.W )
Input: ri.B, ri.W – the lists for the roots ri, i = 1, 2, of the two subtrees
Output: r.B, r.W – The lists for the unified root r

r.B, r.W, r.U ← empty lists
for each (x1, y1) ∈ r1.B

for each (x2, y2) ∈ r2.B
size← |(x1, y1).colored ∪ (x2, y2).colored| // number of colored vertices
(x′, y′)← (x1 + x2 − size, y1 + y2)
(x′, y′). lastColored← r
append(r.B, (x′, y′))
r.B.tail.colored← (x1, y1).colored∩(x2, y2).colored

for each (x1, y1) ∈ r1.W
for each (x2, y2) ∈ r2.W
size← |(x1, y1).colored ∪ (x2, y2).colored|
(x′, y′)← (x1 + x2, y1 + y2 − size)
(x′, y′). lastColored← r
append(r.W, (x′, y′))
r.W.tail.colored← (x1, y1).colored∩(x2, y2).colored

for each (x1, y1) ∈ r1.U [1]
for each (x2, y2) ∈ r2.U [1]

(x′, y′)← (x1 + x2, y1 + y2)
r.U [1]←min {r1.U [1], r2.U [1]} // minimal distance from a black vertex
r.U [2]←min {r1.U [2], r2.U [2]} // minimal distance from a white vertex
(x′, y′).lastColored← the closest colored vertex
append(r.W, (x′, y′))

contract(r.B), contract(r.W ) and contract(r.U ) // delete dominated pairs
return r.B, r.W, r.U

Algorithm 5: Merge two subtrees with a common root.

4.3 Runtime of the Algorithm

The construction of a clique graph takes linear time (cf. [2]). Finding a clique
tree is done by Prim’s algorithm for finding a minimal spanning tree of a graph
in O(|EC | lg |VC |) time, where GC = (VC , EC) is the clique graph. The proce-
dure contract has a linear runtime.

The algorithm calls Algorithm 4 exactly once for each vertex, and Algo-
rithm 5 exactly d times for each vertex with d children in the clique tree. Thus,
it calls both algorithms O(n) times.

Obviously, the runtime of Algorithm 4 is O(n2).
Each of the double loops in Algorithm 5 is performed over O(n2) indexes.

Each computation of size in the loops takes O(n) time. Therefore, the total
runtime of Algorithm 5 is O(n3).

Thus, the total running time of our algorithm is O(n4).
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