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The 6th AISB Symposium on Computing and Philosophy:
The Scandal of Computation - What is Computation?

What is computation? Society builds and uses millions of computers each year
so at first sight the answer seems trivial. A computer is merely a general
purpose, typically electronic device, that can be programmed to carry out a
finite set of arithmetic or logical operations. These days they announce their
ubiquity to the world in phones, desktop devices, washing machines, even lawn
mowers.

Historically, however, the etymology of the word (from the OED) informs
us that the notion of computation was identified with the action of humans who
make calculations, often with the aid of calculating machines. In the 1940s this
definition was refined with that of an “effective method” (a procedure that
reduces the solution of problems to a series of rote steps which is bound to give
the correct answer in finite time for all possible inputs), to yield the notion of
the algorithm an effective method for calculating the values of a function and
the notion of the effective calculability of functions with an effective method
(algorithmic solution). In this way, the notion of computation came to be
identified with the actions [steps] carried out by [automated] computers to
produce definite outputs [in finite time]. This notion frames computation in
terms of an agent, which raises the questions of what computation is per se -
merely the dynamics of information flow? And in this scenario, how can
computational data be meaningful? How can meaningful data acquire truth-
values?

For a long time our ideas about computations (or about the underlying
computational models) were more or less rigid, fixed, established in the middle
of the twentieth century. In the centre there was the model of a classical Turing
machine, with its scenario of a finite computation defining a fixed mapping
from the inputs to the outputs. The computations of Turing machines served as
a means for defining the complexity of computations, the notion of the
universality of computations, and the notion of computability (historically, the
lastly mentioned three notions should have been listed in a reversed order).
Nevertheless, with the advent of modern computing technologies, networking,
and advances in physics and biology, has emerged the ideas that computation is
a far broader, far more common, and more complex phenomenon than that
modelled by Turing machines. It has been increasingly more difficult to see
newly emerging models of computations through the optics of Turing machine
computations. Examples include biologically inspired models—such as neural
nets, DNA computing, self-assembled structures, molecular computers,
cognitive computing, brain computing, swarm computing, etc., or physically
inspired models, such as quantum computing, relativistic computers, hyper-
computers, and, last but not least, “technologically enabled” models, with the
prominent example of the Internet, but also various (also mobile) networks.

In order to further explore these and related questions, the papers in this
Symposium cover key related issues including, but not limited to:



Computationalism and Neural Systems; Models of Computation; Natural
Computing; Computation as Knowledge Generating Processes; Computational
Complexity Theory; Quantum Computing; Trivialization Arguments; Natural
Computation; Dynamical Systems Theory; Computation and Pragmatics;
Dynamics of Information; Interactive Computation; Intentional and Functional
Concepts; Hypercomputers; Pancomputationalism; Digital Systems; Type and
Token; Computational Universe; Special Relativity; Turing Machines;
Stochastic Diffusion Search; Monte-Carlo Tree Search; Computational
Platform; Game-Playing; Observer-Relativity; Phenomena and Noumena.

On behalf of the Organising Committee of this Sixth AISB Computing and
Philosophy Symposium, we would like to thank all the members of the
Programme Committee for their generous support, and for the excellent work in
refereeing submissions. We hope that participants will find the event
stimulating and enjoyable.
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Rethinking Computations !

Jifi Wiedermann and Jan van Leeuwen

Abstract. Unlike the classical view of computations that
considers them as processes transforming information, we
will consider computations as processes generating knowledge.
We present arguments supporting this view of computations.
These arguments are based on the past and present trends in
the use of information technologies, where a steadily growing
emphasis on knowledge generation and exploitation is clearly
visible. The view of computations—as—knowledge—generators
naturally extends to non-man-made systems such as living
organisms, brains, social networks and the Universe, and to
non-Turing computations. If accepted, this epistemological
view will lead to an important shift in our understanding of
computations.

1 Introduction

1.1 An attempt to describe the status quo Computation
is not what it used to be. Until relatively recent times — almost
until the first half of the twentieth century — computation was
an activity ascribed largely to humans making calculations,
with or without the help of mechanical calculators. Notions of
effective computability only gradually developed in the early
20th century.

By introducing his model of an a-machine (short for “auto-
matic machine”) Turing has changed this view forever. All of
a sudden, humans no longer were the only subject doing com-
putations: the idea of “computational machinery” was born.
Turing’s idea [18] of computation machines was so simple, yet
so profound and influential that until now it has more or less
fixed our ideas about computations and about the underlying
computational models. J. Copeland [8] captured it concisely
when he wrote that “to compute is to execute an algorithm”.

Nevertheless, with the advent of modern computing tech-
nologies, networking, and advances in physics and biology,
the idea emerged that computation is a far broader, far more
common, and more complex phenomenon than that modeled
by Turing machines. It has been increasingly more difficult
to see newly emerging models of computations through the
optics of Turing machine computations (cf. [23]). Examples
include biologically inspired models — such as neural nets,
DNA computing, self-assembled structures, molecular com-
puters, cognitive computing, brain computing, swarm com-
puting, amorphous computing, etc., or physically inspired
models, such as quantum computing, relativistic computers,

1 This work was partially supported by RVO 67985807 and the GA
CR grant No. P202/10/1333.

2 Institute of Computer Science of AS CR, Prague, Czech Republic,
email: jiri.wiedermann@cs.cas.cz and Center for Philosophy of
Computer Science, Utrecht University, the Netherlands, email:
J.vanLeeuwen1@uu.nl
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hyper-computers, and, last but not least, “technologically en-
abled” models, with the prominent example of the Internet,
but also various (also mobile) networks.

Have these new computing technologies changed our views
on what is computation? Unfortunately, there no single, gen-
erally agreed upon view of computing. We briefly illustrate
this by inspecting the recent opinions of some prominent fel-
low computer scientists, physicists, and philosophers on the
subject.

Not surprisingly, it appears that the majority of them
agrees that computation is a process.The most radical in this
opinion seems to be D. Frailey [14], saying: “Computation in
its broadest sense, to me, is anything that happens (as op-
posed to things that are static). If so, then the principles of
computation are, in fact, the principles of processes.”

Then there are researchers who see computations basically
as information processing. For instance, P.S. Rosenbloom
[15] defines computation in terms of information transforma-
tion. R. Bajcsy [3] claims that computation is a transforma-
tion/function applied to information.

Other scientists add more conditions for a process to be
a computation. For instance, according to L. Fortnow [13],
“Computation is about process, about the transitions made
from one state of the machine to another. Computation is not
about the input and the output, point A and point B, but the
journey.” P.J. Denning [9] sees computation as a sequence
of transitions: “A computation is an information process in
which the transitions from one element of the sequence to the
next are controlled by a representation.” J.S. Conery [7] also
states that “Computation is symbol manipulation. Computa-
tion is a discrete process, a sequence of distinct transitions.
Philosopher J. Searle [16] agrees by saying that “on the stan-
dard textbook definition, computation is defined syntactically
in terms of symbol manipulation.”

Next, there are scholars requiring that there must be a re-
lation between the computation and some formal model of
computation. According to A.V. Aho [1], “Mathematical ab-
stractions called models of computation are at the heart of
computation and computational thinking. Computation is a
process that is defined in terms of an underlying model.” J.
Searle [2] adds a further requirement: the process must be
physically realizable: “Computation does not name a machine
process. It mnames an abstract mathematical process that we
have found ways to implement in machines.” On the other
hand, physicist D. Deutsch [10] maintains that computation
is a physical process: “A computation is a physical process in
which physical objects like computers, or slide rules or brains
are used to discover, or to demonstrate or to harness proper-
ties of abstract objects — like numbers and equations.”



Finally, H. Zenil [26] has placed programmability at the
center of the discussion and definition of computation. B.
Cantwell Smith [17], on the other hand, believes that com-
putation is not be captured adequately by anything formal.
He argues that three key criteria are crucial, namely empiri-
cal, conceptual, and cognitively adequacy.

1.2 The inadequacies of the current approaches Unfor-
tunately, it appears that each of the previous definitions falls
short in some aspect of computation that intuitively seems
to be important. For instance, definitions seeing a computa-
tion as an arbitrary process will also include objects that are
generally not considered as computers. From such a stance
it follows that anything, (e.g., a rock, a river) can be viewed
as instantiating any computation. Similar objections hold for
seeing computation-as-information-processing. Namely, infor-
mation processing is the change (processing) and communi-
cation of information, and hence any change in the Universe
can be seen as a computation.

These notions of computing are restricted by the require-
ment that transitions (changes of information) are controlled
by some finite mechanism, defined by the “underlying model
of computation”. This leads to a somewhat circular definition,
since computation then is whatever the model of computa-
tion, or real computers do. Moreover, insisting on the under-
lying models excludes brains (and other devices operating on
unknown principles) from doing computations. Computation-
as-symbol manipulation neglects analog computing, or non-
Turing computing, such as (abstract) computing with reals,
or computing by ruler and compass.

Insisting on computation being a physical process pulls the
notion of computation down to a concrete level which might
be miles away from a reasonable abstraction level (think, e.g.,
of theorem proving). Last but not least, considering issues of
programmability moves the focus from general computation
to so-called uniform computations, avoiding the larger class
of non-uniform computations, e.g. by circuits, the Internet,
mobile computing, amorphous computing, etc.

1.3 The way out There is one thing that all the previous
definitions of computation have in common which seems to
get little attention sa far. This is the fact that they all tend
to express computation as what the underlying hardware is
doing, or, in other words, HOW the process of computation is
realized. This leads to little insight because what the hardware
does is performing operations upon data; this forces us to see
as computation whatever meaningless operations with data.
All our experience with computation points in other direc-
tion: we are primarily interested in WHAT the computation
does for us, i.e., for the designers, users, observers. What a
computation does is expressed by the design of a computer
system (or, possibly, by the software of the underlying sys-
tem, if it is programmable). Knowing how a computation does
what it does is less interesting — again, all our experience says
that what the computation does can be implemented in many
equivalent ways on a different hardware. So what is it what
the computation does?

Our answer is simple: computation generates knowledge. It
generates knowledge over the domain for which the underlying
computational system was designed or evolved, or in which
the system itself has evolved.

That being said, one question springs immediately into

one’s mind: what is knowledge, and what does it mean to
generate it? The notion of knowledge is, similarly as compu-
tation, another notoriously elusive notion. Nevertheless, this
makes our thesis that computation generates knowledge ro-
bust, in a sense. We will work with the following definition of
knowledge (cf. Wikipedia [25]).

Knowledge is a familiarity with someone or something,
which can include facts, information, descriptions, skills, or
behavior acquired through experience or education. It can re-
fer to the theoretical or practical understanding of a subject. It
can be implicit (as with practical skill or expertise) or explicit
(as with the theoretical understanding of a subject); it can be
more or less formal or systematic.

As we shall later see in the examples of various computa-
tional systems, this definition will suit our needs. Obviously,
knowledge according to our definition is observer—dependent
and so is computation seen as a process generating knowledge.
This is another difference with the approach computation-
as-information-processing which tends to be an observer—
independent notion and hence, too general as explained in
Section 1.2.

What are the advantages of our definition? First, it allows
a clear distinction of what is computation from what it is not,
based on the ability of computation to produce knowledge. For
instance, according to this definition, a rock (cf. [6]) computes
if only an observer can give plausible reasons what knowledge
is produced and that this production is caused by the pro-
cesses occurring within that rock. This definition also allows
to assign the computational ability to the brains, and possi-
bly to other known and not-yet known gadgets that clearly
produce knowledge. Second, the definition admits classifica-
tion of computations based on the kind of knowledge that
the underlying processes utilize and produce. Third, the in-
dependence of the definition on the underlying computational
mechanisms is welcomed since it covers a host of known and
not yet known instances of computing. Last but not least,
our definition supports thinking on computation in high level
abstract terms related to knowledge. In the case of artificial
computing systems which are constructed by humans this is
closely related to their design methodology that starts at the
high level of abstract specifications. It is interesting from a
philosophical perspective as well.

1.4 Contents In Section 2 we present our main thesis — com-
putation as a process of knowledge generation — and support it
by examples of contemporary, non-man-made and non-Turing
computational systems seen as knowledge generating systems.
Finally, Section 3 contains the conclusions.

2 Computation—as—knowledge—generation

The aim of this section is to provide evidence supporting our
main thesis:

Thesis: Computation is the process of knowledge generation.

To this end we will survey a number of computational sys-
tems from the viewpoint of their ability to utilize and produce
knowledge. We list the systems in the form of a table. With
each system we will also specify the underlying knowledge do-
main over which the system generates knowledge and the type
of generated knowledge. The entries in the table are supposed
to be self-explanatory.



Computational system

Underlying knowledge domain

What knowledge is produced

Contemporary computing systems

1 Acceptors Formal languages Membership

2 Recognizers Formal languages Membership function

3  Translators Functions, relations Function value

4 Scientific computing Mathematics Solutions

5 Theorem provers Logic Proofs

6 Operating systems Computer’s devices and peripheries Management of computer’s own ac-

tivities

7 Database and information systems Relations over structured finite do- Answers to formalized queries
mains

8  Control systems Selected domains of human activity =~ Monitoring, control

9  Search engines Relations over unstructured poten- Answers to queries in a natural lan-
tially unbounded domains guage

10 Artificial cognitive systems Real world, science Conjectures, explanations
Natural computing systems

11 Living systems, cells Real world Life, behavior, intelligence

12 Brain, Mind Knowable world Knowledge of the world

13 Social networks Knowledge of the world Knowledge of the world

14 The Universe The Universe, physics Living systems

Non-Turing computing systems
15 Compass and ruler Euclidean geometry FEuclidean constructions

16 BSS machine

17 Oracles Aset ACY*

Theory of real numbers

Values of real functions
Characteristic function of A

Vertically, the table is split into three parts dealing with
contemporary, natural, and non-Turing computing systems,
respectively. In its first part, the systems in the table are
listed roughly in the chronological order as they appeared in
the timeline of history of modern computing.

In the sequel we will occasionally use the term “wisdom”
in its basic philosophical meaning: the use of knowledge.

There also is a deeper reason why the contemporary sys-
tems in the table are ordered the way they are. Note that the
items 1 to 5 all deal with an abstract, formal knowledge re-
lated to formal domains of formal languages or mathematical
or logical theories. So is the nature of the generated knowl-
edge. The underlying systems are endowed by wisdom embed-
ded into their design by their creators.

Systems from 6 to 8 still deal with formalized knowledge,
but this time the knowledge is related to selected segments of
the real world. The formalization of knowledge as well as the
way it is processed, has been embedded into the design of the
underlying systems.

The man-machine interface in all previous cases was formal-
ized and restricted to selected segments of human activities.

Finally, systems 9 and 10 differ from all previous systems
because they deal with potentially unbounded amounts of
knowledge, delivered to systems in unstructured, “raw” form.
This knowledge is related to the real world and is either ac-
quired by the system’s own means (e.g., by system’s sensory-
motor activities) or it has the form of knowledge already ac-
quired by other means (e.g., they contain knowledge in writ-
ten form produced by people). They communicate with their
users in more or less formalized language approaching (or even
being equal to) a natural language. Systems in 10 are designed
to discover implicit relations among data and make them ex-
plicit, or to produce “intelligent” behavior. The wisdom they

possess is not given to them once for all times by their cre-
ators — their wisdom is subject of change and evolution by
mechanisms they possess. These mechanisms alone can also
be subjects of evolution.

Thus, we see that the nature of the underlying systems
with respect to their ability to collect, accumulate and ex-
ploit, demonstrate or generate knowledge grows along several
dimensions. These dimensions reflect the shift in the formal-
ization level of knowledge processed/produced by the systems,
in the way the systems interact with their environment, in
their learning ability, in the utilization of the acquired knowl-
edge for their own purposes, etc. Nevertheless, we are not
going to follow this line of thinking.

Consideration of the systems under the heading natural
computing systems shows that our thesis also extends to in-
stances that are not man-made. Nonetheless, intuitively they
should also be regarded as computations. In [11], it is argued
that knowledge generation is inherent to natural (as opposed
to artificial) computing systems. From our stance, this view
is naturally subsumed by our general thesis.

Item 11 in the table are living systems. All of them are
interactive systems — they glean information from their en-
vironment and turn it into knowledge that they demonstrate
by their behavior and survival in their environment. In many
cases interaction also means communication among the con-
species. Communication among computing systems is possible
thanks to the property of compositionality obeyed by comput-
ing: (a representation of) knowledge produced by one compu-
tation can be processed by an other computation.

In [5] it is argued that the notions of communication and
computation are conceptually quite close. This can be seen as
consequence of our thesis, when we view communication as a
process of knowledge passing among the interacting agents.



Interaction combined with communication leads to the emer-
gence of social networks (item 13).

Including brains (or minds) among the computational sys-
tems is a natural consequence of our definition of what is
computation. Classifying the Universe (item 14) as a compu-
tational system is also natural w.r.t. our definition: it is un-
deniable that, at least at some places, the Universe produces
knowledge. At some places, life will evolve and we are back at
item 11. It seems that the Universe is the terminal stage in
the development of computing systems producing knowledge,
indeed.

Now, as an extreme case, perhaps as an attempt to falsify
the thesis, consider non-Turing computations, i.e., computa-
tions that cannot be realized adequately by Turing machines.

Item no. 15 — computations by (idealized) compass and
ruler allowing the construction of geometrical figures with in-
finite precision — needs no further explanation. Item no. 16
deals with computations over reals. The corresponding model
of computation — BSS machine — is the model by Blum, Shub
and Smale [4] intended to describe computations of rational
functions over reals. Finally, item no. 17 considers oracles in
the spirit of Turing’s original proposal from [19].

The last three computational systems all have in common
is that they are not realizable in classical physics. This is be-
cause the first two models compute with real numbers, and
the last model could deliver classically non-computable infor-
mation. Yet the thesis classifies the respective processes as
computations because physical realization is not a condition
for our thesis to hold. This is in a good agreement with “prac-
tice” — in geometry, mathematics and computability theory it
is useful to think about the respective processes as of compu-
tational processes. All three examples offer good arguments
for not requiring in the thesis that the computation must be
physically realizable.

The thesis as stated before — that computation is a process
of knowledge generation — is quite general. However, in a
forthcoming paper we show that one can go into more details
and state conditions that are necessary for a computation
to provably generate knowledge. These conditions will require
that knowledge generated by a computation can be inferred
within the knowledge domain underlying the computation,
similarly as there must be an evidence that the knowledge at
hand is generated by the generating process, indeed. Under
this approach, the process generating knowledge becomes a
parameter in the overall scheme.

Finally, let us show that our definition of computing has
more potential than its application to computing itself. For
instance, in analytic philosophy a problem emerged whether
computing is a mnatural kind, rather than a cultural kind.
It seems that computing systems operating autonomously
within the real world and generating knowledge about it, have
to internally create a model of this world (cf. [24]) (simi-
lar to the mind). The grouping of (the representations of)
the objects within such models, and the respective observer-
independent knowledge derived within these models, probably
is a natural kind. An other use of our definition can simplify
the often discussed question in cognitive science of what cog-
nition is, if not computation (cf. [20]). If we see cognition as
the ability to collect, accumulate and exploit, demonstrate or
generate knowledge than this definition equals our definition
of computation in its most developed form.

3 Conclusion

We have defined computation as an epistemological process
generating knowledge. Using examples examples of contempo-
rary, non-man-made and non-Turing computational systems
we showed that computation performed by such systems can
be seen as knowledge generating processes. The approach lib-
erates the notion of computing from its dependence on the un-
derlying computational model. In contrast to the majority of
the previous approaches focusing on the procedural aspects of
computing, our approach concentrates on what is computed.

Let us remind the recent idea of M. Vardi [22] that compu-
tation is a universal enabler of science, supporting both theory
and experimentation. According to our thesis, computation is
the engine of science, for it creates knowledge.

We believe that all the above mentioned facts warrant the
new view of computation. If accepted, our definition of com-
putation will change the way we think about computation.
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What is a Digital State?

Vincent C. Miiller’

Abstract. There is much discussion about whether the human
mind is a computer, whether the human brain could be emulated
on a computer, and whether at all physical entities are computers
(pancomputationalism). These discussions, and others, require
criteria for what is digital.

I propose that a state is digital if and only if it is a token of a
type that serves a particular function — typically a
representational function for the system. This proposal is made
on a syntactic level, assuming three levels of description
(physical, syntactic, semantic). It suggests that being digital is a
matter of discovery or rather a matter of how we wish to
describe the world, if a functional description can be assumed.
Given the criterion provided and the necessary empirical
research, we should be in a position to decide on a given system
(e.g. the human brain) whether it is a digital system and can thus
be reproduced in a different digital system (since digital systems
allow multiple realization).

1. MOTIVATIONS: THE COMPUTATION-
ALIST PROGRAM, ARTIFICIAL INTELLIGENCE,
PANCOMPUTATIONALISM

Given that the ontology of digital states is hardly an established
philosophical problem, it will be useful to briefly motivate its
discussion. A clarification as to what constitutes a digital state is
necessary primarily in the context where digital states are part of
a certain kind of digital systems, namely digital computers.
There is a significant confusion over which objects in the world
are computers because there is no agreement on the criteria;
Shagrir calls this the “problem of physical computation” (1,
394ff). For example, on the one hand there are the proponents of
a computational representational theory of mind (CRM or
“computationalism”) who believe that the human mind is a
functional ~ computational = mechanism  operating  over
representations. These representational abilities are then to be
explained naturalistically, either as a result of information-
theoretical processes (2, 3), or as the result of biological function
in a “teleosemantics” (4, 5).

On the other hand, the opponents of computationalism divide
into two camps: those who think that some natural mechanisms
may be computers, but the human mind is not one of these, and
those who think that all systems can be interpreted as computers
and so the human mind is just a computer like everything else:
“every natural process is computation in a computing universe”
(6, 10) — this position is now often called
“pancomputationalism” (see 7). Finally, the question to what
extent artificial intelligence (AI) is possible, requires an
explanation what kinds of machines computers are and what they
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can do in principle — given that digital computers are currently
the main kind of mechanism that is used for Al

So, if the brain is a computer, could we perhaps reproduce
the brain on different hardware? If we would scan the whole
brain of a human and run it on a (different) Turing machine,
would it produce intelligence? (And all the other cognitive
features of humans?) If we could emulate the brain on different
hardware it would show the same external behavior or output as
does the emulation of earlier software or hardware, e.g. of a
WWII ‘Enigma’ machine or of programs that ran on some of the
first computers, like the ‘“Manchester Mark I”.

This might be a possibility if certain conditions are met, in
particular: “Computability: brain activity is Turing-computable”
(8) and “At present there is no convincing empirical evidence for
uncomputability in the brain, although there is no shortage of
claims for it.” (9).

Several further problems for a computational theory of the
mind would benefit from a resolution of what constitutes a
digital state. Within the context of the discussion of the
computationalism mental processes are traditionally understood
as information processing through computational operations over
representations. ls representation a necessary feature of
computing? If yes, perhaps something can be called a digital
state only on presupposing mental processes in the system, so
there is a threat of a circle here (unless we are looking at a
feedback circle). Another is the problem of “grounding” for
computational systems: “How can the meanings of the
meaningless symbol tokens, manipulated solely on the basis of
their (arbitrary) shapes, be grounded in anything but other
meaningless symbols?” (10, 335). We have argued in recent
papers (11, 12) that a nonconceptual phenomenal content should
be at the base of such grounding. If it were to turn out that such
content is necessary but is analogue and cannot be present in
purely digital systems, this would show that human cognition is
not purely digital — and that Al on purely digital computers is
impossible. In separate work, we argue that nonconceptual
content is precisely non-digital content.

I will argue in the following that being a digital state is to be
a state of a type or category, but that we should not conclude
from this that being a digital state is “description-dependent”. In
particular, a state can be digital if it fulfills a particular function
in a system of which it is a part — e.g. a representational function.

2. BASIC CHARACTERISTICS

In a first approximation, being digital means being in a discrete
state, a state that is strictly separated from another, not on a
continuum. Prime examples of digital states are the states of a
digital speedometer or watch (with numbers as opposed to an
analog hand moving over a dial), the digital (binary) states in a
conventional computer, the states of a warning light, or the states
in a game of chess. Some digital states are binary, they have only
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two possible states, but some have many more discrete states,
such as the 10 numbers of a digital counter or the 26 letters of
the standard English alphabet.

2.1. Multiple Realization

Goodman had pointed out in his early theory of representation
that digital “marks” (physical entities) are “differentiated”, as he
called it, precisely if they can have an exact replica: one can
write the same letter “A” twice, since “A” is differentiated from
any other letter. Analog marks, in contrast, are “dense”, meaning
that for any pair of similar but non-identical marks, there is
space for another mark in between (13, cf. 14). So, the states of
an analog speedometer with a hand moving in analogy to the
speed of the vehicle are continuous, just as the speed it
represents, and for any two places where the hand can be, there
is a third in between.

As we already pointed out with reference to Goodman, it is
characteristic of a digital mark that it can be realized several
times. So, one can write the same word twice, even if one cannot
make exactly the same mark on paper twice. John Haugeland
usefully explains this phenomenon with games: chess is a digital
game because we can reproduce an earlier position precisely; we
can even resume the same game with different pieces. Billiards,
on the other hand, is analogue, because we can reproduce an
earlier position only to a certain degree of measured precision,
and if we were to reproduce the same position with different
physical objects, it would not be the same position (15, 57,
earlier in 16). The possibility of multiple realization is a result of
digital states being discrete: Since a white bishop in chess can be
clearly on field C3, we can move it back to C3, or replace it with
a different bishop; it does not matter that it is not identical to the
earlier one, provided it is clearly a white bishop on C3.

2.2. Discrete vs. Continuous

But which of the two characteristics is crucial for an analog
state, the analogy to the represented, or the continuous
movement?

This question becomes relevant in the case of analogous
representations that proceed in steps, e.g. a clock the hands of
which jump from one discrete state to another. Zenon Pylyshyn
argues that the underlying process is analog, and this is what
matters: “an analog watch does not cease to be analog even if its
hands move in discrete steps” (17, 200, 18, 332 agrees). James
Blachowicz also thinks that being on a continuum is sufficient
for being analog, taking the view that “differentiated
representations may also be analog — as long as they remain
serial”, his example is a slide rule with “clicks” for positions
(19, 71). (Note how these authors assume a functional
description, an issue to which we shall return later.)

These views ultimately fail to differentiate between analogue
and digital representations. Note that the very same underlying
mechanism could give a signal to a hand to move one step and to
a digit to go one up (this is actually how clocks are controlled in
centralized systems, e. g. at railway stations). In any case, some
classic examples of digital states are clearly in a series, indeed a
series of infinitely many steps: the series of the natural numbers.
These two points rule out Blachowicz’ proposal to take being
serial as a criterion. Pylyshyn, on the other hand, would
presumably say that the underlying mechanism is already digital,
so the clock is digital in this case — but surely there are systems

where a digital signal is converted into an analogue one (the
speedometer in most modern cars) and where an analogue signal
is converted into a digital one (an analogue central clock that
controls several digital clocks), so we should then say that the
system has digital and analog parts. I conclude that the first
crucial feature of a digital state is indeed that of being a discrete
state — not excluding that of being in a series, even in a series
that is analogue to what is represented.

3. EVERYTHING IS ANALOGUE - AND
DIGITAL, TOO?

A given blob of ink on a piece of paper might be in a particular
digital state but it has several analogue properties, too, such as a
color, a shape, a history, a value, etc. In fact, all digital states we
have seen so far are states of physical entities, and thus have
analogue properties as well. (For our purposes, we can leave
aside the question whether abstract objects can be digital.) Being
digital is a property of certain physical entities that are also
analogue — though they might not be analogue representations.
But of which entities? Negroponte puts it nicely: “A bit has no
color, size or weight, ... It is a state of being: on or off, true or
false, up or down, in or out, black or white.” (20, 14) But, which
of the black things are in the state of being of a bit? What
determines whether something is a bit?

It may seem that we can just define what counts as digital as
we please, so everything is digital. Say, for example, the two of
us agree that if I light a fire on a particular hill that means “the
King is out of town”. Is the hill henceforth in a binary digital
state? Is anything not in any number of digital states, then?

For a given physical thing (say, my desk lamp), there are
descriptions as continuous (where is the light, what is its shape,
what its color?) and as digital (is it on/off?), so a natural
response is to say that being a digital state is relative to a
particular description: Under one description the light is digital,
under another it is not, so we have at least a “relativity of
descriptions” (21, 29).

This consequence is very tempting for digital computation
and its algorithmic procedures. Alan Turing already seems to
have already gone in this direction: “The digital computers [...]
may be classified amongst the ‘discrete state machines’, these
are the machines which move by sudden jumps or clicks from
one quite definite state to another. [...] Strictly speaking there
are no such machines. Everything really moves continuously.
But there are many kinds of machine, which can profitably be
thought of as being discrete state machines.” (22, 439).

John Searle takes it one step further: “The electrical state
transitions are intrinsic to the machine, but the computation is in
the eye of the beholder.” (23, 64). Oron Shagrir concurs: “... to
be a computer is not a matter of fact or discovery, but a matter of
perspective” (1, 393), and about algorithms: “... whether a
process is algorithmic depends on the way we describe the
process.” ... processes are not really step-satisfaction
[algorithmic]. It is simply useful to describe them this way.”
“Whether a system is digital depends not only on its natural
properties, but chiefly on the context in which it is described.”
(18, 321, 331, 335).

It now seems that not only do we have a relativity of
descriptions, but that a description dependence of facts: it would
then be constitutive of being a digital state that its existence is



dependent on contingent social interests, namely the interest in a
particular feature that makes a digital state. To illustrate this with
a classical example: Being ‘digital’ is more like the word
‘constellation’ than the word ‘star’. What is part of a stellar
constellation depends on what we make part of it. What is a star
depends on the world and is a matter of astronomic discovery
(cf. 21, 18, 28, 24)

4. CLARIFICATION I: TYPE/TOKEN

Understanding the true nature of relativity here requires some
further clarifications. Haugeland defines as follows: “A digital
system is a set of positive and reliable techniques (methods,
devices) for producing and reidentifying tokens, or
configurations of tokens, from some prespecified set of types ...
A positive technique is one that can succeed absolutely, totally,
and without qualification; ... Many techniques are positive and
reliable. Shooting a basketball at the basket is a positive method
(for it getting through), for it can succeed absolutely and without
qualification;” (15, 53f). Demopoulos thus calls being a digital
mechanism of a certain type being a member of an “equivalence
class” (25). Harnad talks about “symbol tokens” — but not of
types (10, 1.2). The characteristic of “multiple realization” (see
above 2.1) is crucial, so there must be a “positive technique” to
produce perfect realizations that are clearly of this digital state.
Multiple realization, however, this is not a feature of certain
types, it is a feature of types, quite generally. For example, a
transistor can be in a voltage state that is clearly of type “on” or
“off”, but it can also be on the borderline between the two — it
just so happens that our computing machines are made with
systems that do not usually get stuck in intermediate states.
Every digital state is also on a continuum: the digital
speedometer might change quickly from one number to another,
but it does have intermediate states — just that these are not states
of numbers, not states of these types, of these descriptions. Being
of a digital state is thus not a statistical question of whether “all
or none” states occur often, since what counts as “all” depends
on the type. Just looking at the physical distribution will not tell
us anything.

What is crucial here, therefore, is that a digital state is of a
type. If it is of a type, then there can be multiple perfect
realizations of it: No matter how many borderline cases a type
happens to have (some have many, some have none), there is
always the possibility of clear cases, and that is what is needed
for being a digital state; we need to fulfill the implied semantic
normativity of the “token of a type”. A digital type can be vague,
it just needs possible clear cases. So, we require in a first
instance that a digital state is a state that is a token of a type.
What we need to see now is which tokens of a type are the
digital states.

S. CLARIFICATION II: LEVELS OF
DESCRIPTION

In a next step, it is helpful to differentiate at least three levels of
description of a proposed candidate for being in digital or digital
computational states: (a) physical, (b) syntactic and (c) semantic
levels — something only very few people do, despite the tradition
of functionalism (26, 57, 27, 402f, cf. 28) (29).

The physical level (a) is that of the physical ‘realization’ of
the computation — this is presumably what Searle had in mind
with his “electrical state transitions” (above).

That physical state is in (b) a particular digital state on the
syntactic level (a binary state, or a number, a letter, a word). It is
at this level that a particular mathematical function is computed,
it is fully specified by specifying it on this level.

(c) That digital state in turn may represent something else,
e.g. a truth value, a time, or a color, let us call this the semantic
level. What is represented at this level may, again, have
representational functions on several levels (the color can
represent a political opinion, etc.).

A digital computer works because it is constructed in such a
fashion that its physical states cause other physical states in a
systematic way, and these physical states are also digital states
on the syntactic level. (The physical states need not be of the
same physical type, they can be voltages and magnetic fields, for
example.) The semantic level is not necessarily present and is
not necessary for the digital system or digital mechanism.
Contrary to popular belief, a computer does not require semantic
content to function, (e.g. 30, 31, 1414ff) and (15, 66, 32, 385).

Given this clarification of levels, we can re-evaluate the
understanding of digital states. The semantic level allows for a
true relativity of facts, not just of descriptions: The same
computer following the same algorithm can be said to compute
different things. This is hardly surprising. For example, it may
well be that what a computer does with the same binary
sequence is to add two numbers or to change one letter to
another. Whether we want to regard the binary sequence as the
one or the other will depend on the context. So, these syntactic
binary states can have many different contents, on a semantic
level (just like “2 + 2 = 4” can add apples or pears). The
semantic level, however, is irrelevant to the specification of the
digital states, which reside on the syntactic level. — Contrary to
popular belief, relativity on the semantic level does not show that
there is a relativity of facts on the syntactic level. (Note that I am
not thereby claiming that “digital state” is a natural kind, i.e.
roughly a kind where belonging to the extension is determined
wholly by criteria that are themselves natural kinds [recursively],
that is, their existence is independent of any conceptual system
that has a label for them.)

Remember that the digital states in a system often represent
other digital states (e.g. the binary states represent numbers),
which relates to the discussion over whether our mental
computation is computation over material symbols, as is writing
down a mathematical proof. (Do I think in words?)

6. CLARIFICATION III: A DIGITAL STATE
IS A TOKEN OF A FUNCTIONAL TYPE

It is useful to note that not all systems that have digital states are
digital systems. We can, for example, consider the male and
female humans entering and leaving a building as digital states,
even as a binary input and output, but in a typical building these
humans do not constitute a digital system because a relevant
causal interaction is missing. In the typical digital system, there
will thus be a digital mechanism, i.e. a causal system with a
purpose, with parts that have functions. Digital mechanisms in
this sense may be artifacts (computing machines) or natural
objects (perhaps the human nervous system). However, it seems

13



14

clear that not all digital states are parts of computational
systems: the words in this paper are digital states, but their
function is not computational.

If being of a type was the criterion for being digital, then
everything would be in any number of digital states, depending
on how it is described. However, what we really should say is
that something is digital because that is its particular function.
My desk lamp is always in a digital state, because being on/off is
part of its function. The first letter of this sentence is in the
digital state of being a “T” because that is its function — it is not
an accidental orientation of ink or black pixels. The sun, on the
other hand, is not in a digital state at present, though it can be
shining or not shining at some place.

We make artifacts where some physical states cause other
physical states such that these are physical states of the same set
of types, e.g. binary states. (Note that one machine might
produce binary states in several different physical ways, e.g. as
voltage levels and as magnetic fields.) If someone would fail to
recognize that my laptop computer has binary digital states, they
would have failed to recognize the proper (non-accidental)
function of these states for the purpose of the whole system —
namely what it was made for. The fact that a logic gate in my
laptop is a binary state depends on whether it 4as that function
and is not description dependent. (And the fact that it computes
is crucial to its function, but not to that of, say, my shaving brush
— s0 pancomputationalism seems misleading here.)

I conclude that we should say a state is digital if and only if
it is a token of a type that serves a particular function.

So, the function is that determines whether something is a
token of a type or not. The normativity of having or fulfilling a
function generates the normativity of being of a type. The type
has the function, being of the type allows to fulfill the function.
(Even though we would prefer to design digital systems such that
they have very few borderline cases and almost only clear cases,
this is not a criterion for being a digital system.)

6.1. Which Function?

At this point, it is clear that the description dependence of being
digital depends on that of having a function. Functions are a very
large issue, let me just indicate why one might think that there
may be some facts here that are not description dependent.

In the case of an artifact, we assume a functional description.
If the oil-warning light on a car dashboard is off, is it in a digital
state? Yes, if its function is to indicate that nothing is wrong with
the oil level. (It may serve all sorts of other accidental functions
for certain people, of course.) But if the light has no electricity
(the ignition is off), or if it was put there as a decorative item,
then the lamp is not in a digital state “off”. It would still be off,
but this state would not be digital, would not be a token of the
same functional kind.

In the case of a natural object, the allocation of proper
function is dependent on teleological and normative description
of systems (33, esp. 2.2) — a problematic but commonplace
notion. The function of a human’s legs seems to be locomotion
(and kicking balls), but we are not tempted to say that the leg is
in digital states, while perhaps the muscle cells are — with respect
to their function. Whether or not the legs are digital, they can be
simulated (to an arbitrary degree of precision) on digital systems

— only that the simulation will not walk, it will just “walk in the
simulation”.

The description of an artifact in terms of function is to say
that something is a means to an end, it serves the function to
achieve that end — a function that can be served more or less
well. (Note that serving a function does not mean being used for
that function; there may well be no agent that can properly be
said to be using the artifact, e.g. if it is part of a large and
complex system.)

The dependence of being a digital type on having a proper
function can be illustrated by looking at a digital information
channel. Even if that channel is already defined as digital, it is
not clear which parts are relevant and carry a function. For
example, in computer security, there is the question which
aspects of the information are used to convey information,
searching for possible “covert channels”, for example in the time
delays between signals (see 34). These time delays can be used
to convey information, similar to the delays in Morse code. So,
given a time sequence of digital signals, it is still not clear which
digital signals are present, unless function is specified, e.g. by
stating whether particular time delays are significant or not.

6.2. Too many Functions, too Many Types

At this point, we need to see whether the account so far is
sufficient to identify the digital states. A little reflection will
reveal that it captures the standard samples of digital states, such
as the states inside a digital computing system, or the states of a
digital clock or indicator. However, it is very hard to see how the
account as stated can be prevented from incorporating all too
many states that are, intuitively, not digital states. For example,
it will not only include the oil indicator lamp on my dashboard,
but any lamp. After all, whatever the proper function of a
particular lamp may be (such as to shed light on a desk), it
fulfills that function by being “on” and does not fulfill it when
“off”. So, all lamps are in digital states. But so are all hats:
Whatever the proper function of a particular hat may be (such as
to shade the head), it fulfills that function by being “on the head”
and does not fulfill it when “off the head”. Wherever we look,
we seem to find functionally determined clearly discrete tokens
of types — but the flood is too hard to stem with just the sloppy
notion of “function” that we used so far.

One diagnosis of the situation is the following: What we
explained so far is really not digital type, but type in general.

The notion of function is really necessary for any type/token
distinction. Take the word “tree”. Which sounds or graphical
shapes are tokens of that type? This is not just determined by
some particular sound or graphical pattern but by whether a
given sound or shape serves the function of being of that type.
What is more, the type is functionally individuated: Which
words are of the type “tree”? Those that serve the function of
talking about trees.

So, the notion of function is not characteristic of digital types
only, but of types quite generally. Of course, one might want to
say that all types are digital, but it will become clear presently
that this would constitute a deviation from current usage.



7. WHICH FUNCTIONAL TYPES ARE THE
DIGITAL ONES?

We will discuss briefly some proposals for restricting the
functional types to the desired digital ones. Each of these
proposals contains a grain of truth that will be used in the final
theory.

7.1. Computational

Since computational systems is what we are interested in, it
seems natural to say that digital states are those that serve a
computational function in a computational system. On this
proposal, the notion of computation would be explained first, in
formal, mathematical terms, and being digital is dependent on
that explanation.

It so happens that all digital states can be part of a digital
computational system, but do not have to be. It is irrelevant for
its being digital whether a single warning light is or is not part of
a computational system; it is still accurate to call it a digital
representation. A digital clock can be just the output system of a
purely analog time-keeping device. It appears that the class of
digital non-computational states is not empty, so we cannot use
computation to distinguish the digital types from the others.
(And it follows from our previous discussion of digital vs.
discontinuous that these are cases of digital states.) Having said
that, it is a virtue of this proposal that it stresses the formal,
syntactic, nature of computing — a feature that we will use
presently.

7.2. In the System

In specifying the function of a state, one is often required to take
recourse to the system of which it is a part, in particular to the
digital system. This is clearly the case in conventional digital
computers, so could this not provide a narrowing down of the
right functional types?

In the case of conventional computing machines this
proposal would work just like the one to start with “computing”—
so there is clearly some unity here. However, if we allow
systems to cover other systems that include the digital clock or
warning light, how are we then going to limit the notion of
“system” in the necessary way? It appears that a “system” will
suffer from just the same defect as the “function” itself: anything
is a system if it has some function or other. So, yes, all digital
states are states in a system — but so are too many other states.

7.3. Representational

Perhaps we really have two notions here, the discrete states in
general, and those discrete states that are representational, which
we could call “digital”?

This has two disadvantages: It explains one obscure notion
with an even more obscure one (“representation”). More
importantly, it restricts digital states to those that represent,
which is just what we should not do. It is precisely characteristic
of the digital states in our prime example, the binary digital
computer, that they do not represent. Just being of the state is
what allows the system to perform its operations. The basic units
have no meaning or representation — though they can be so
interpreted, if desired, and in various ways, as we indicated

above. So, we should not assume that all digital states are
representational, but we must keep in mind that many are.

7.4. Pre-Defined

In at least some digital systems, notably in binary computers, the
set of digital types is an explicitly pre-defined finite set. Is this
the characteristic feature?

Is this necessary, however, in order to make a digital system,
or a system with digital states? And how are they pre-defined?
The proposal appears unnecessarily narrow, because it excludes
digital states in systems that are not formally constructed. It
would show a priori, for example, that the human brain does not
have digital states (except if a creator pre-defined them).

7.5. Syntactical

The peculiar distinction of those types that are digital is that they
are so devoid of content; it really does not matter at all how they
are realized, what properties they have, provided that they are
generally recognizable as being of the particular type. This
aspect is probably best described by saying that digital types are
syntactic types. A token of a syntactic type thus only contributes
its being of that type to a larger syntactic system, nothing else. In
particular, it cannot be said to have a meaning. In this sense,
binary code is syntactic, and so are letters of an alphabet.
Already words or lexemes are not syntactical, since they are
semantically defined. Of course, lamps or hats are not syntactic
items, so it appears that the requirement of syntactic definition of
the type does our job to narrow down the many functional types.

8. WHICH STATES ARE DIGITAL?

In the case of the human nervous system, there are the questions
whether it is a digital system on the level of mental functions,
and whether it is a digital system on the level of cell properties
and interactions. Many neuroscientists think of the latter in
digital computational terms. [Piccinini now argues that “spikes”
in neural activity do not constitute digital states. (35-37)]
Computationalists think that representational function makes the
mental level a digital computational system as well. Reproducing
it in an Al computer system would thus yield mental properties.
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The ‘simple-minded’ metaphor: Why the brain is not a
computer, via a defence of Searle

Dr Yasemin J. Erden’

Abstract. This paper offers a defence of Searle’s argument that
computation is observer relative. In so doing it will show why
observer relativity is a necessary requirement for all applications
of concepts to objects. A consequence of this account will be to
critique the metaphor of brain as digital computer, and highlight
why metaphors of this sort lack epistemic content. This paper
offers a defence of Searle’s original account of computation, by
presenting a Kantian position on the necessary unity of
consciousness in relation to objects and concepts.

1 INTRODUCTION

In 1990 Searle gave his Presidential Address to the APA. In this
talk he attempts to answer the controversial question: ‘Is the
Brain a Digital Computer?” [1]. Unsurprisingly, his answer
(which was of course negative) is widely disputed [2-3], and the
debate rages on. This paper takes up the baton by challenging
both the parameters of the question, and the assumptions upon
which it relies. I will take Searle’s critique as the starting point
for this paper, but in so doing I will go on to offer further
philosophical grounding, via Kant, for the arguments at the heart
of the matter.

The central tenet of the paper will thus be twofold. First will
be to show why the analogy between brain and computer is little
more than a poorly constructed, yet highly creative and seductive
metaphor. Second will be to extend Searle’s defence of the
observer standpoint with regards computation, by showing why
it is impossible to identify any such idea of computation without
the identifiers. Were there to be no metaphor-writing, question-
posing, interpretative beings, who can identify patterns and
systems, there could not be any judgements of any sort, whether
about computation or anything else.

2 ‘THE BRAIN AS
METAPHOR

COMPUTER’ AS

The idea of the brain as computer permeates modern thinking,
culture, science and theory. My wish is not to engage directly
with the content of that debate, but rather to show why the
metaphor is problematic. To this end, Searle’s reply to the
question of whether the operations of the brain can be simulated
on a digital computer is useful. He accepts, as do I, that such
operations can indeed be simulated, but by this he accepts no
more than he would when accepting that weather systems too,
can be simulated. The relation is comparative. In both cases the
simulations stand in place of the events that we either believe or
predict have happened or could happen (whether they are likely
or not).

! St Mary’s University College, London, UK
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In this way, simulations function in a manner akin to
metaphors, where words, ideas, concepts, and images stand in
place not of actual happenings in their entirety, but as we predict
or understand them to be. What is different is that we expect a
simulation to have a higher degree of accuracy than a metaphor,
which by its very nature is sometimes taken to have little content
beyond its literary or creative powers. In actual fact, metaphors
pervade our language, and offer us the tools for understanding
the world in ways that would otherwise be inaccessible to us. As
I explain elsewhere [4], metaphors offer a method of comparison
by which we may view new aspects or insights.

The metaphor is developed by wus, and used in our
understanding, and is thereby recognised as additional
information, rather than as information about the intrinsic
properties of an object or concept. So, if I claim to wander lonely
as a cloud, 1 do in fact make a make a comment about my
passage through time and space. This does not commit me to any
position regarding the putatively intrinsic qualities of either
myself or of clouds, where any such attempt would require focus
on supposed internal properties of myself or of clouds,
independent of external conditions, or even just as separate from
the metaphor. The metaphor exists in the shared space now
created between these otherwise disparate concepts or objects.

In a similar vein, Searle notes that the identification of a
process as computational ‘does not identify an intrinsic feature
of the physics, it is essentially an observer relative
characterization,” adding that ‘nothing is intrinsically a digital
computer solely in virtue of its physical properties’ [1]. Thus to
recognise that something is functioning as something, is to use
the as in just this sort of comparative or metaphorical sense. This
works in practical terms too, since in using my hand as a plate,
is to do little more than recognise that in eating food from it, it is
now functioning in a similar way as a plate in such
circumstances. In this, as in other such observations, the
comparison between them is relative to my having observed the
relation. The reason this does not engender any danger of a
multiplicity of inaccessible first-person subjective experiences of
the world, is that when I utter such comparisons (e.g. about the
loneliness of clouds), it would be easy enough for others to
understand what I mean by this. Or at least, to imaginatively
engage with what I might mean. For similar reasons the
accusation of relativity can be avoided, but I will come to this
later.

Searle’s comment that ‘we could not discover objects in
nature which were functioning as chairs, except relative to some
agents who regarded them or used them as chairs’ [1] is
instructive at this juncture. As too is Kant’s [5, B137/138]
explanation that,

The first pure knowledge of understanding, then, upon
which all the rest of its employment is based, and
which also at the same time is completely independent
of all conditions of sensible intuition, is the principle
of the original synthetic unity of apperception. Thus
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the mere form of outer sensible intuition, space, is not
yet [by itself] knowledge; it supplies only the manifold
of a priori intuition for a possible knowledge. To
know anything in space (for instance, a line), I must
draw it, and thus synthetically bring into being a
determinate combination of the given manifold, so that
the unity of this act is at the same time the unity of
consciousness (as in the concept of a line); and it is
through this unity of consciousness that an object (a
determinate space) is first known. The synthetic unity
of consciousness is, therefore, an objective condition
of all knowledge. It is not merely a condition that I
myself require in knowing an object, but is a condition
under which every intuition must stand in order fo
become an object for me. For otherwise, in the absence
of this synthesis, the manifold would not be united in
one consciousness.

It is the observer who is active in both the drawing of the line,
and in the recognition of it as such, and this is a condition for
any knowledge we can have of lines. Without this experience
there can be no line to which to refer. Without any human
experience, there is no knowledge of /ines (whether as concept,
or as represented in space) in any way that we could make sense
of. Searle makes a similar point when he notes that
‘Computational states are not discovered within the physics, they
are assigned to the physics’ [1], and that ‘There is no way you
could discover that something is intrinsically a digital computer
because the characterization of it as a digital computer is always
relative to an observer who assigns a syntactical interpretation to
the purely physical features of the system’ [1].

The example offered by Searle, of the impossibility of an
‘unknown sentence’ in ones head, is key in this. As he rightly
points out, a sentence requires active construction, use, and
recognition. Rather like the drawing of a line. Repetition can
certainly embed sentences within our languages, such that they
require little apparent thought in their uttering (for example,
‘how are you?’ can elicit a ‘fine, thanks, how are you?’ with
minimal genuine consideration to the question), but this shows
little more than the habitual aspects of language use. Even if it
sometimes seems otherwise, sentences are created, not found.
This is true also for patterns, which, if not created, are identified
as such by observers:

the only sense in which the specification of the pattern
by itself provides a causal explanation is that if you
know that a certain pattern exists in a system you
know that some cause or other is responsible for the
pattern. So you can, for example, predict later stages
from earlier stages [1].

What tricks us into confusing how the relation lies, is the
meaning of the words,

We are blinded to this difference by the fact that the
same sentence, “I see a car coming toward me”, can be
used to record both the visual intentionality and the
output of the computational model of vision. But this
should not obscure from us the fact that the visual
experience is a concrete event and is produced in the
brain by specific electro-chemical Dbiological

processes. To confuse these events and processes with
formal symbol manipulation is to confuse the reality
with the model.

Thus the question with which Searle has engaged is not
simply to be refuted. It needs to be discarded as ‘ill defined’.
Kant [5, A244/B302] once again proves instrumental here:

So long as the definition of possibility, existence, and
necessity is sought solely in pure understanding, they
cannot be explained save through an obvious
tautology. For to substitute the logical possibility of
the concept (namely, that the concept does not
contradict itself) for the transcendental possibility of
things (namely, that an object corresponds to the
concept) can deceive and leave satisfied only the
simple-minded.

3 THE NECESSARY CONTINGENCY OF
OBSERVER AND OBJECT

Key to Searle’s account of computation is the claim that ‘syntax
is essentially an observer relative notion’. As he notes, ‘The
ascription of syntactical properties is always relative to an agent
or observer who treats certain physical phenomena as
syntactical’ [1]. Furthermore,

The multiple realizability of computationally
equivalent processes in different physical media was
not just a sign that the processes were abstract, but that
they were not intrinsic to the system at all. They
depended on an interpretation from outside. We were
looking for some facts of the matter which would
make brain processes computational; but given the
way we have defined computation, there never could
be any such facts of the matter. We can't, on the one
hand, say that anything is a digital computer if we can
assign a syntax to it and then suppose there is a factual
question intrinsic to its physical operation whether or
not a natural system such as the brain is a digital
computer. [1]

This idea of the requirement of interpretation from outside is
one that I will focus on here. The first point to note is that the
definition of computation can only be applied to systems that we
recognise as computational. While this insubstantial statement is
not in itself controversial, disagreements hinge on the value of
this term recognition, or its cousin observation. Opponents of
Searle sometimes take his claim about the contingency of
observation to be naive. Endicott [6, p. 104], for instance, rejects
Searle’s account of computation as too simplistic. In its place he
claims that ‘a system is a genuine computational device when
there is a correspondence between its physical states and its
formal states such that the causal structure of the physical system
is isomorphic to the formal structure of the computational
operations’ [6, p. 104]. His refutation of Searle seems to hinge
on a seemingly Platonic account of computation, whereby the
system or computation has an identity as a thing-in-itself, which
we then discover. As already noted above, this is problematic for
a number of reasons.



For a start, Searle’s claim is in fact far more complex than
that, and points to the very core of the meaning that we
understand by a term such as computation. The Platonic identity
is flawed precisely because the expectation is that meaning is
there to be found, rather than determined. For instance, where we
recognise the pattern of some migrating bird formation as akin to
a ‘v’ shape, we are not saying that there are shapes in the world
that are ‘v’, which await our discovery. Instead, the comparison,
or the metaphor, is drawn between the formation of birds in
flight, and the letter ‘v’ that we use in language. It is clear that v-
ness (where v is a symbol) is not somehow inherent to what it is
to migrate, but rather that in our interpretative understanding of
the world, we make sense of what we understand based on what
we have already learned. Kant’s [5, A258/B313-314] account of
phenomena and noumena is useful here:

When, therefore, we say that the senses represent
objects as they appear, and the understanding objects
as they are, the latter statement is to be taken, not in
the transcendental, but in the merely empirical
meaning of the terms, namely as meaning that the
objects must be represented as objects of experience,
that is, as appearances in  thoroughgoing
interconnection with one another, and not as they may
be apart from their relation to possible experience (and
consequently to any senses), as objects of the pure
understanding. Such objects of pure understanding will
always remain unknown to us; we can never even
know whether such a transcendental or exceptional
knowledge is possible under any conditions—at least
not if it is to be the same kind of knowledge as that
which stands under our ordinary categories.

It does not seem fair to attribute to Searle a position from
which is offered an irrefutable definition of computation. By
which I mean his point seems not to be centred on a declaration
of what computation is but only to show what it isn’z, i.e. an
independently and objectively verifiable system that exists
independent from our system of its interpretation as such. The
added criticism offered by Endicott [6, p. 107] that there are
‘multiply realised types within the domain of physical or natural
science’, which are not observer relative, is also refutable. Once
again, the way in which we understand such systems to operate
requires that we understand there to be a system as such. There is
no noumenal objective reality about there being a system, and
even if there were, we would know nothing about it. There is no
way in which we can remove ourselves, and our interpretation of
things, including our understanding of systems, such that we can
know that a system simply is, in any objective sense of that term.
Thus, simply claiming that there are these systems, which are
somehow separate to our interpretation of them as such, makes
no sense at all. If, for example, we recognise the system of
flowers and bees and pollination, where do we recognise the
system to lie? Do we recognise the system from the viewpoint of
the flower, or that of the bee, or of the two as a combined
system?

Yet none of this need engender accusations of relativism or
anti-realism. The question of how anything can be thought to
have an objective quality (such as mass, identity shape) is
answered by Kant [5, B276-277] when he notes that it is only by
means of ‘outer experience’ that ‘inner experience’ is possible.

Rejecting claims of foundational Cartesian subjectivity, he notes
[5, B277] that while ‘the representation’ / am may include the
‘existence of a subject’ (emphasis added) it includes no
‘knowledge of that subject, and therefore also no empirical
knowledge, that is, no experience of it’. To which he adds:

For this we require, in addition to the thought of
something existing, also intuition, and in this case
inner intuition, in respect of which, that is, of time, the
subject must be determined. But in order so to
determine it, outer objects are quite indispensable; and
it therefore follows that inner experience is itself
possible only mediately, and only through outer
experience.

Elsewhere he expands on the point with respect to our
understanding [5, A820/B848]:

The holding of a thing to be true is an occurrence in
our understanding which, though it may rest on
objective grounds, also requires subjective causes in
the mind of the individual who makes the judgment. If
the judgment is valid for everyone, provided only he is
in possession of reason, its ground is objectively
sufficient, and the holding of it to be true is entitled
conviction...

The touchstone whereby we decide whether
our holding a thing to be true is conviction or mere
persuasion is therefore external, namely, the possibility
of communicating it and of finding it to be valid for all
human reason.

To put this another way, if there is nothing about which your
judgements are, then there is no particular reason to make one
judgement over another [7]. Were there to be no objective
grounds, explains McDowell [8, p. 67], all we would be left with
would be a ‘frictionless spinning in the void’. Another highly
instructive metaphor, but not one which anyone would likely
demand we take to be true in any apparent objective sense.

4 CONCLUSION

This paper sought to add further weight to Searle’s arguments
regarding the necessary relation between observer and
computation. It has not spent much time engaging with the
standard objections (of which there are many), since the ideas
offered from Kant, cited throughout, should hopefully
circumvent some of these more typical objections. A failure to
recognise the metaphorical nature of the term computation is
itself indicative of a broader failure to recognise how language
of this sort relies on context for meaning (as I discuss elsewhere
[9]). The origins of the term computation as applied to humans,
and its later application to machines should have given some
indication of this fluency of meaning, and employment of
metaphor. Where this has failed, perhaps Kant will prove
instructive. Especially since it should by now be clear that the
very possibility of my recognition of this as such relies on my
skills for recognising metaphors, systems and patterns, and in
offering judgements and interpretations that (hopefully) may be
agreeable to others who recognise the same. It is interesting
therefore that Copeland is dismissive of this, when he notes:

19



20

‘Searle is telling us no more than that if the brain is a computer,
then it is so only in the sense in which all other computers are
computers. This is hardly interesting’ [9]. I disagree entirely. It is
precisely because he does show the limitations of such an
interesting metaphor that Searle’s ideas are themselves most
interesting indeed.
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Kinds and Limits of Computation

John Preston

Abstract. | focus on conceptual questions about how far the
notion of computation extends, and whether there are
importantly different kinds of computation. After specifying
what ‘computation’ originally meant (a kind of intentional
activity), and noting that Alan Turing modified that concept to
give us the basic modern sense of ‘computation’, | argue that
computation isn’t a natural kind. The many things now called
‘computation’ can be divided into kinds in various ways, for
most of which the reason why they count as computation is
clear. When it comes to ‘hypercomputers’, though, whether they
still count as computational should probably depend on whether
their deliverances are checkable.

1 INTRODUCTION

There are various different sorts of questions about what kinds of
computation there are, and what their limits might be. Notably,
computer scientists ask some such questions, which tend to be of
a technical kind. Some of these are questions of a mathematical
nature, such as: Are all functions computable? If not, which
kinds are computable, and which aren’t? Which kinds of
machines can compute which kinds of functions? (see, e.g., [1]).
Others are technical questions of a physical nature, such as: How
much energy must be expended to perform a particular
computation? How quickly might it be performed? How small
might the computing device be? How efficient might it be? How
much information-storage capacity might it have (see [2], [3])?

The questions | have in mind today aren’t these technical
ones but rather they are conceptual questions, in particular the
questions: How far does the concept of computation extend?
That is, how far can we (e.g., computer scientists,
mathematicians) legitimately extend the concept? Does doing so
invoke importantly different kinds of computation? If so, how
are those kinds related to one another? How do they constitute
different kinds? Is there only one concept of computation, or are
there different such concepts?

2 CONDITIONS ON APPLYING THE
ORIGINAL NOTION OF COMPUTATION

Four important features of the strict and literal application of the
notion of computation in its original mathematical sense (and
cognate notions such as computing, computer, etc.) are (a) that
inputs should be supplied to, and outputs delivered by, an
identifiable system or process; there must be, as it were
something that’s doing the computing (b) that there should be
some function (that is, some mathematical function) whose
inputs are supplied and whose outputs are yielded by the system
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or process in question, (c) that the system or process in question
deliver those outputs as the result of rule-governed symbolic
manipulations (by computing them, as it were, not merely by
causing them in some way or other), and (d) that the results of
the operation are humanly checkable, that is, that we can, at least
in principle, come to have confidence that the process in
question has generated the correct results. Feature (d) is an
important part of this original conception, and takes its place
there because ‘to compute’ is a success-verb (see section 5,
below), and success in mathematics is determined by proof.

I will argue that at least two of these four features are being
relaxed by something that now counts, or something that some
computer scientists would now like to count, as a computer.

3 HUMAN (CORE) COMPUTATION AS AN
INTENTIONAL KIND

What humans do when they compute functions is what | shall
call computing in the core sense. On my (non-computationalist)
view, this is something that humans occasionally do, but digital
electronic computers never literally do. If one had to specify
what kind of activity computing in this core sense is, the answer
would be that it’s an intentional kind. That is, this kind of
computation is an activity in which humans engage when they
have an aim in mind (the computation of a particular function),
and take their mathematical manipulations to be directed at this
aim. Unsurprisingly (since they were made for one another) his
kind of computation exhibits all four features of the strict and
literal application of the notion, since the ‘system’ is the person
plus any aides-memoires they are using, they are trying to
compute a particular function, they arrive at its solution by
moving from symbols to others symbols in a rule-guided way
(whether mentally or on paper), and we can check the results of
their activity.

4 TURING-STYLE COMPUTATION

The notions of computing or computation, and computations,
though, have changed, and are no longer this same intentional
kind. This change was initiated by Alan Turing. In his famous
paper on the Entscheidungsproblem ([4]), Turing stipulated that
the operations of his ‘computing machines’, and thus of all those
machines we now think of as based on ‘Turing-machines’ can be
broken down into elementary steps such as: scanning a square on
a machine-tape, registering the contents of that square, erasing
the symbol in the square, writing another such symbol, etc..
Turing’s paper thus involves the idea that the sequence of states
in a computation can be put into correspondence with the
elementary pre-arithmetical operations of a human ‘computer’
(that is, a human being who is computing in the core sense). |
will call this ‘Turing-style’ computation.
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Because computing machines are causal processors rather
than rule-followers (in the original sense of that phrase),
following Turing already involves relaxing feature (c) in my
specification of the core sense of computation. Whether we
should say (as the advert for this conference has it) that Turing
‘refined’ the concept of computation, or rather that his work had
the effect of redefining it, the crucial thing is that he changed the
concept (or, if you wish, created another concept of
computation) in such a way that made computer science
possible. And there can be no objection to his having done so,
except insofar as we confuse ourselves if we think of
‘computing’ as a single kind of activity that people engage in
(occasionally and ponderously) and that digital electronic
computers engage in (most of the time, and very swiftly). The
reasons I think this would be a confusion aren’t crucial here (See
[5]), but the point | want to make is that the notions of
computing and computation, which used to pick out a single
intentional kind, now pick out kinds of a different kind. What |
will argue is that the current dispute about the possibility of
‘hypercomputers’ suggests that we have a choice, a choice
between conceiving of computation as a purely functional kind
(where ‘function’ no longer refers to mathematical functions, of
course), and rejecting the very idea of hypercomputers because
we can’t quite reconcile ourselves to thinking of computation in
this very ‘thin’ way, and we still want to insist on another
important feature of the original conception.

5 COMPUTATION ISN’T A NATURAL KIND

Computationalists tend to treat the notion of computation as a
natural kind concept. As a result, when they ask themselves
about the limits of computation they try to specify what all such
phenomena really have in common. Thus they often feel forced
to look to physics for their account of computation, since physics
is, as it were, the science of what every kind of computational
system or process would have to have in common.

I don’t think we should think that computation is a natural
kind at all. One reason why computational kinds can’t be natural
kinds is that the concepts of computing and computation have a
normative dimension: to ‘compute (a function) incorrectly’ is,
strictly speaking, unsuccessfully to compute it, that is, not to
compute it (just as to add two numbers together incorrectly isn’t
really to add them at all). The verbs in question here are success-
verbs (like the verb ‘to know’, where one can’t know that p
unless p is the case). Natural kinds (like lemons, tigers, gold,
planetary systems, etc.) can of course be subject to a distinction
between what’s typical or normal for that kind (tigers are four-
legged, lemons are sour, planets move in ellipses) and what’s
atypical or abnormal. But the kinds in question aren’t themselves
normative. This is easy to see in the planetary systems example:
if we found such a system whose objects weren’t related to one
another in roughly the way that Kepler’s laws specify, we could
still count it as a planetary system. It wouldn’t fail to count as
such just because it was misbehaving, as it were. Kepler’s laws
are putative natural laws, not norms.

6‘BEYOND’TURING-STYLECOMPUTATION?

When one looks at the literature on computation today, one
finds a large array of things called ‘computation’. (And the first

thing to say is that Turing himself envisaged several of them).
Some of them (but only some of them) are in some way
supposed to ‘go beyond’ the now ordinary Turing-style of
computation. Here’s a list | managed to generate from my own
collection of books and articles on computer science:

Bio-molecular computation (including Biological computation,
Evolutionary computation, Genetic algorithms, Molecular
computation, Peptide computation, DNA computation)

Neural Computation (incl. parallel computation)

Computation by Dynamical Systems

Quantum Computation
Hypercomputation

Why should we think that all the phenomena covered by these
terms are cases of computation? The answer is different in
different cases. There are different ways of dividing this totality
into kinds, but if one divides it into the kinds most significant to
my purposes here, one finds that members of the first group
(computation by biomolecular, neural, and dynamical systems)
count as computation for one reason, whereas
‘hypercomputation’, if it counts as computation, does so for a
different reason. (Quantum computation seems to be something
of a hybrid).

7 NON-STANDARD TURING-STYLE
COMPUTERS

I’ve already said that I think there’s now more than one kind
of computation (the Turing-style kind, which we use everyday,
and the old-fashioned one). So I’'m committed to there being two
kinds of computation. Nevertheless, all the different things that
count as machine-computation (Turing-style and other) might
count as such for a single reason. Machine-computation itself
could still be a single kind.

In fact, I think this isn’t quite the case. That is, | think almost
all of them count as computation in the post-Turing sense
because machine-computation still exhibits features (a), (b), and
(d) from our original conception.

Members of the first group (‘biomolecular’ computation
(e.g., peptide computation, DNA computation, molecular
computation)) count as computers performing computations
because, roughly, they all involve systems or processes which,
when supplied with inputs, can reliably generate the same
outputs as those of our everyday computers. (And those
everyday computers count as computers because, when supplied
with inputs, they can reliably generate outputs of the same kind
as us). So these count as computers because they don 't really go
beyond Turing-style computation. They involve no further
relaxation of the conditions on computation, although they do
feature unusual, non-standard systems performing the
computations. That is, when one reads papers on computing
using DNA, for example (like [6], [7]), what one finds amazing
and impressive is that anyone could arrange a process like that in

such a way that a search-problem gets solved.



8 REALLY BEYOND TURING-STYLE
COMPUTATION: HYPERCOMPUTATION

The envisaged devices in the final group, though,
‘hypercomputers’, can’t count as performing computations for
the same reason as these non-standard Turing-style computers
do, since by definition they compute functions beyond those that
Turing-machines are capable of computing. This means that we
can’t think of their operations as being such that they all can be
put into correspondence with the elementary pre-arithmetical
operations of a human ‘computer’ (that is, a human being who is
computing in the core sense). Turing dramatised this in his
famous paper on ordinal numbers ([8]) by calling the devices in
question ‘oracles’, thereby bringing out what I would like to call
their inscrutability. He said of these oracles that they’re not
machines (i.e., not Turing-machines), although when combined
with a machine they yield what he calls an ‘0-machine’ (oracle-
machine), and that they work in an ‘unspecified’ way ([9],
p-156). He didn’t call these oracles ‘computers’ and there’s no
evidence that he thought of them as computational. What he says
about them amply reflects the fact that he named them ‘oracles
we have, and are supposed to have, no idea how they work.

We could count these hypercomputers, o-machines (if we
had any) as computers merely because conditions (a) and (b) of
my specification of the core sense of computation still hold good
for them. That is, there’s a system doing the processing, a
function is being computed, and the system (inscrutably but)
consistently delivers what we take to be the solution to the
computation in question. This would be to think of computation
in purely practical, functional terms.

It’s notable, though, that computer scientists are strongly
divided about this way of thinking. In one corner, some
advocates of hypercomputation like Jack Copeland ([10], [11],
[12], [213]) advertising o-machines as one kind of
hypercomputer, speculate on what computation might be like
when we actually devise such a thing. Others, less concerned
with o-machines specifically, want to insist on the possibility of
hypercomputers even if these aren’t what Turing had in mind
([14], [15], [16], [17], [18]). In the other corner, though,
traditionalists such as Martin Davis and Andrew Hodges ([19],
[20], [21]) vigorously resist the idea that o-machines are a
forgotten kind of machine that Turing envisaged, or even that
there could be such a thing as hypercomputation at all. For them,
the idea of the 0-machine merely plays a role in Turing’s paper.
Its role there is to show that if we had a device that could solve
any given number-theoretic problem, we could easily form a
question about it that isn’t number-theoretic, and thus which this
machine couldn’t itself decide. On this view, the idea of an o-
machine is merely a ‘what if...?°, and in no way to be taken
seriously as a kind of machine that Turing was proposing or
envisaging.

When | said that the system delivers what we take to be the
solution to the computation in question, my phrase ‘what we take
to be the solution to the computation’ conceals an important
issue, since it’s not clear to me whether we could check the
results of the hypercomputer’s operation. If, as I’ve suggested,
checkability is a still a core feature of our conception of
computation, the concept of a hypercomputer may well be a
contradiction in terms.

There are two scenarios to consider here. If we can somehow
check the results of the hypercomputer’s operation, conditions

(a), (b), and (d) are still in place, it’s just that the Turing-style
conception of what’s involved in those conditions has been
revised. | suppose this would mean that elementary human
arithmetical operations aren’t the only ones that are involved in
our computations. The idea might be that we have, in addition to
these, a kind of mental process which is inscrutable by us, and
yet whose deliverances we take to be reliable, perhaps what
some people refer to as mathematical ‘intuition” (this is an old-
fashioned version of the view which | take Kurt Godel and
Roger Penrose to champion). Humans would, pace Turing, be
able to compute more than Turing-machines can.

I have to say that I can’t make sense of this possibility, since
I think that any such faculty that humans have could only be the
source of suggestions (intuitions) not a source of knowledge.
Without the possibility of our being able to check the results of
the alleged hypercomputation, it seems to me that the process in
question should not really count as computation. So if there are
‘computations’ that can be carried out by hypothetical machines
but which would be deeply impossible for humans to carry out or
check, we can still ask computer scientists ‘Why do you call that
process “computation”, and why should we call it that?”. To rely
here merely on the practical criterion of functionality: the
machine delivers the goods, and we rely on them, or to rely
merely on the fact that the machine’s other operations are
computations, would not be enough. Mathematics may contain
intuition and speculation, but neither of these should be part of
what we mean by the term computation.

So if we take seriously the four features of computation that
I’ve suggested, and I think we still do, our sense that these are
still computations ought to be fading out. They may be processes
which will deliver outputs, but unless we have some way of
knowing that (or at least some good evidence that) their outputs
are the correct results of what would be computations, calling
the processes ‘computational’ is at most a misleading honorific,
not a serious classification of their nature.

However, if, as I’ve suggested, computation isn’t a natural
kind, the question ‘Would o-machines (or other hypercomputers)
be computers?” ultimately calls not for a discovery, but for a
decision. Various factors may enter into that decision, but if the
notion of computation is to retain its connection with
mathematics, we should not allow its feature (d) to be quietly
dropped. We may now be at the point in the stretching of our
original concept where we’re legitimately undecided between
thinking that we’re making merely another alteration to the
concept of computation, and thinking that we’ve switched to (or
are forging) another concept. I can’t see that there is any fact of
the matter to be captured here. For that to be the case, the
concept of computation would have to be a natural kind concept,
and it isn’t. This emphatically doesn 't mean that | think there are
no factual issues between Copeland, Siegelmann, et al. on the
one hand, and Davis, Hodges et al. on the other. Neither does it
mean that the decision will be arbitrary (various sorts of
considerations might be adduced on either side). All I want to
suggest is that on the question ‘Are these machines still doing
computations?” a genuine decision would be called for, we can’t
somehow look to nature itself for the answer.

9. CONCLUSION:
COMPUTATION?

THE ‘SCANDAL’ OF
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Immanuel Kant considered it a scandal in philosophy that we
must accept the existence of things outside ourselves merely ‘on
trust’, without proof (see the Preface to the 2™ edition of his
Critique of Pure Reason (translated as [22]). While Martin
Heidegger isn’t a philosopher I normally have much time for, he
got it right when he commented thus on Kant’s supposed
‘scandal’: ‘“The “scandal of philosophy” is not that this proof has
yet to be given, but that such proofs are expected and attempted
again and again’ ([23], p.249).

If one takes the view I recommend here, there is no ‘scandal
of computation’, or even ‘scandal of hypercomputation’. These
turn out to be like other philosophical scandals. However, many
people like scandals, or the idea of scandals, so I won’t be
surprised to find a strong tendency to cling on to the idea that
there is such a thing surrounding these notions.
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Abstract Platforms of Computation

Matthew C. Spencer! and Etienne B. Roesch and Slawomir J. Nasuto?
Thomas Tanay and J. Mark Bishop?

Abstract. Computational formalisms have been pushing the bound-
aries of the field of computing for the last 80 years and much debate
has surrounded what computing entails; what it is, and what it is not.
This paper seeks to explore the boundaries of the ideas of computa-
tion and provide a framework for enabling a constructive discussion
of computational ideas. First, a review of computing is given, ranging
from Turing Machines to interactive computing. Then, a variety of
natural physical systems are considered for their computational qual-
ities. From this exploration, a framework is presented under which all
dynamical systems can be considered as instances of the class of ab-
stract computational platforms. An abstract computational platform
is defined by both its intrinsic dynamics and how it allows computa-
tion that is meaningful to an external agent through the configuration
of constraints upon those dynamics. It is asserted that a platform’s
computational expressiveness is directly related to the freedom with
which constraints can be placed. Finally, the requirements for a for-
mal constraint description language are considered and it is proposed
that Abstract State Machines may provide a reasonable basis for such
a language.

1 INTRODUCTION

Over the last 80 years, computing has developed considerably, but
there is still much debate about what “computing” is. When Alan
Turing broached the field in the 1930’s, he provided a very pre-
cise understanding of computing machines and computable prob-
lems. However, as variations on Turing’s original mechanisms have
been explored, the original definitions have become less appropri-
ate and modern computational praxis now bares little resemblance
to the original conception. The gap between practice and theory in
computer science has been noted in other works [8, 6, 5, 16] which
have strived to provide broad reviews of the field and suggest mod-
ern approaches to the discourse of computing. This discourse will
be further explored here with an aim to provide a unified frame-
work for defining computation and positioning popular computing
formalisms.

There appear to be two central issues within the computing com-
munity: computational expressiveness and the scope of what can be
called computation. The former issue is a discussion about the scope
of problems that can be addressed with different computational for-
malisms, beginning with classical Turing Machines [23] and dis-
cussing other, more advanced concepts [12, 24, 6, 15, 16, 9]. The
latter issue accepts the varying scopes of computational expressive-
ness and the proliferation of computational paradigms and explores
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the boundaries of what computation might be [S]. Both of these is-
sues will be explored here to help establish the depth and breadth of
the proposed framework.

Finally, if there were a unified framework of computation, a for-
mal abstract language for describing programs would be valuable.
Modern programming languages are largely platform dependent but
a number of abstract formalisms [19, 11, 14, 10] might provide pos-
sibilities for platform-agnostic program descriptions. Such program
descriptions will be considered here.

The following paper will first review computational paradigms,
starting with Turing Machines. This discussion will address notions
of super-Turing Machine expressiveness with a specific discussion
on modern views on interaction. Interactive computing discusses
concurrent partially coupled systems which, when shifted to the con-
tinuous time domain, begin to resemble natural physical systems.
To differentiate computation from physical processes, a constructive
view on the boundaries of computation will be explored. From these
previous ideas, a framework of abstract computational layers will
be proposed. Notionally, this framework will encompass the breadth
of computational paradigms. Finally, the requirements of an abstract
program description language for this framework will be discussed.

2 CLASSICAL COMPUTING
2.1 Functions and algorithms

A class of functions, called “effectively computable functions”, con-
tains those functions that can be worked out through finite sequences
of simple mechanistic operations. Prior to the 1930s, such sequences
(known as algorithms), lacked a formal definition and it was poorly
understood which functions were effective and which were not. In the
1930s, both Alonzo Church and Alan Turing approached this prob-
lem whilst addressing the Entsheidungsproblem. Aiming to introduce
a formal description of algorithms, Church produced the A-calculus
and went on to show the unsolvability of the Entsheidungsproblem
[3]. Simultaneously, Turing approached this same problem, but from
a different angle. Taking seriously the notion of sequences of me-
chanical operations, Turing formalised algorithms with his “abstract
machines” (which are now commonly known as Turing Machines
(TMs)) and went on to provide what is generally accepted to be a
more convincing proof of Church’s result [23]. Ultimately, Turing
Machines and the A-calculus are equivalent formalisms for repre-
senting the class of effectively computable functions, a point which
is embodied in the Church-Turing Thesis (CTT).

When initially conceptualized, the CTT described this class of ef-
fective functions and the algorithms used to solve them. These al-
gorithms necessarily had the very particular property that they pro-
cessed mechanically, from some input to some output through a fi-
nite sequence of simple, ordered operations. By “mechanistic pro-
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cessing”, it was understood that the sequences were carried out de-
terministically, and that no insight or agency could interfere in the
processing. By “simple operations”, it was understood that each op-
eration in the algorithm’s description was trivially performed by a
human mathematician. It was on this basis that Turing conceived of
his machines.

2.2 Turing machines

Turing’s abstract machine involved a tape (a bidirectional, arbitrary
length, linear string of symbols), a read/write head pointing to a loca-
tion on the tape, a set of possible configurations in which the machine
could exist, and a table of instructions that could move the head, read
and write the tape, and change the configuration of the machine. The
machine would proceed mechanically, looking up an instruction in
the table using the current configuration and the input symbol on the
tape. Then, this instruction would be executed, potentially resulting
in modifying the symbol on the tape, changing the machine’s config-
uration, or shifting the tape one step to the left or right. The machine
then proceeded to look-up the next operation from the table and so
on until the machine would finally halt. Between the instructions in
the table and the set of available configurations, each machine could
embody a single algorithm. To execute the algorithm, the input was
provided on the tape and the machine processed until halting. Once
the machine had terminated, the tape would contain the output of the
algorithm. While termination was not an absolute necessity (specif-
ically in the case of computing numbers to arbitrary precision), the
full answer could not be known unless the machine halted.

For the sake of the topic of this paper, the Turing Machine can be
thought of as machine providing a certain intrinsic and determinis-
tic dynamics. These dynamics are predicated on the ability to exe-
cute a small set of elementary operations, specifically, reading and
writing tape symbols, moving the tape, reading the current config-
uration, and changing the configuration. If any of these operations
were non-trivial for the executor, a Turing Machine would not, on
its own, provide a satisfactory formal representation of an algorithm.
Turing Machines are, by their very conception, abstract entities. They
were not designed to be actually implemented, and yet, if each of the
elementary operations is appropriately simple, implementation as a
physical machine could be done by embedding the TM design in a
physical form.

Further to the intrinsic dynamics of TMs, they provide a flexible
approach to customizing the constraints on those dynamics through
the set of configurations and the writing of the instruction table. It
is through this customization that the general class of TMs can in-
stantiate a TM for a specific algorithm. However, there are natu-
ral limitations intrinsic to the TM formalism which cannot be over-
come through this customization (further discussed in Section 2.3).
These limitations were not an oversight, but were necessary for for-
mally representing effectively computable functions. However, mod-
ern digital computers do not exclusively describe this class of func-
tions.

Later in his career, Turing considered several extensions to the TM
concept. An important extension was that of the Universal Turing
Machine (UTM) — a Turing Machine capable of simulating any other
Turing Machine. From this idea, universal computers (for computing
more than a single function) were devised, ultimately resulting in
modern computers. However, since modern computers have a finite
memory, it is argued that they are strictly less powerful than UTMs,
which may have a tape of arbitrary length. Nonetheless, it has been
argued [5] that modern computers can be (and regularly are) used

for more than the computation of functions, and are therefore more
expressive than UTMs. These views will be discussed in Section 3.1.

Other extensions that Turing considered were those that incorpo-
rated non-mechanical components into the machine’s structure; in
other words, including non-trivial operations. Two such components
that are popularly discussed are so-called “oracles” and human users.
In Oracle Machines, the TM is able to consult an all-knowing oracle,
which is capable of delivering a non-trivial answer in finite time,
and while such Oracles do not exist in practice, they do serve to
describe an abstract computing paradigm of consulting an outside
expert. Such consultation is also represented in Turing” Choice Ma-
chines, in which the TM might pause occasionally to query a human
user for additional input. In both of these cases, the TM architecture
has been extended to include non-mechanical components and would
not be what Turing considered to be “automatic machines” or “purely
mechanical”.

2.3 Restrictions of Church-Turing formalisms

While Turing Machines provide a robust and formal description of
algorithms, they feature a number restrictions which define the space
of their applicability. However, owing to these in-built restrictions,
other, more computationally expressive paradigms can be imagined.
One of the central restrictions to the TM paradigm is the notion of
operating on a finite alphabet of symbols. Since the alphabet is finite,
it cannot represent all real numbers or other continuous concepts.
This has implications for certain types of scientific computing where
arbitrary precision is desirable. This also has implications for consid-
ering TMs as capable of intelligence, owing to limited and inflexible
nature of the alphabet. Further, TMs receive input and emit output
encoded by the same alphabet, reducing the types of functions that
can be implemented (such as are found in the broader set of bijective
mappings).

To consider other restrictions, one must take a larger view of the
TM as a computational machine embedded within an environment
containing at least one other agent. This other agent, the user of the
TM, is implicit in the TM’s definition since the input has to arrive
on the tape from somewhere and the output must be requested for
some purpose that is not the TM’s own. In this wider view, other
restrictions become clear, namely the temporal insensitivity and the
synchronicity of the input and output. In other words, once the user
has provided input to the TM, they must wait some time for the TM
to complete its operation before it delivers output; additional input
cannot be supplied as the TM operates. Also, the input and output
must be specified in the same alphabet. Furthermore, for every in-
put there is guaranteed to be a single output, so concepts including
multi-input/multi-output or streaming interaction with the environ-
ment cannot be modelled. Finally, a TM lacks memory that persists
between inputs, which prevents it from modelling a learning system.

3 HYPER-COMPUTABILITY

It is from the class of effectively computable functions, which the no-
tion of “computability” takes its generally understood meaning. If a
function is effectively computable, it is computable and has an asso-
ciated algorithm for computing it. Likewise, it also has a Turing Ma-
chine or A-calculus representation. Similarly, if it is not computable,
none of these other representations apply.

The formal definition of “computable” is generally taken to be
“that which is computable by a Turing Machine”. Thus, any machine
formalism that is more expressive or capable than a Turing Machine



is generally called a “hyper-computer” and is capable of “hyper-
computation”, though perhaps adhering to the term “super-Turing”
is clearer. One example is the Zeno-machine, which performs each
subsequent operation in half the time of the previous one, appealing
to the Zeno paradox to perform an infinite number of operations in
a finite span of time. Likewise, most hyper-computers include the
notion of infinity into their construction (infinite length alphabet, in-
finite speed, infinite knowledge, etc) [15] and as such, are unsuitable
models for practical computing or investigating artificial intelligence
or human cognition [16]. However, two types of hyper-computing are
notable for their practical importance: machines that are capable of
continuous/analog information manipulation and machines that in-
corporate real-time interaction with their environments.

In the first case, the TM’s finite alphabet of discrete symbols pre-
vents it from computing problems that require the infinite precision
of real numbers. Specifically, if all numbers must be represented us-
ing a finite length string of symbols from a finite length alphabet, the
range of numerical values is at most a countable. For instance, while
a single symbol, such as 7, can represent an irrational number, a finite
alphabet of symbols might not have symbols to represent the values
of e or i and, if it does, then the inter-symbol relationships would re-
quire a look-up table since infinite precision calculations would take
infinitely long to complete. Thus, exact quantities cannot always be
defined or manipulated. Since most empirical measurements involve
such quantities, digital computers are forced to approximate the real
numbers instead. Aside from the purely pragmatic desire to process
on real numbers, digital computers restrict precision when modelling
continuous dynamical systems, which is problematic when consider-
ing the sensitivity of chaotic dynamics. Also as computers are used
to investigate intelligence which is arguably embedded in a continu-
ous physical space, their inability to deal with real numbers limits the
extent of this field of research. However, while the processing of real
numbers is a clearly practical and desirable capability for computers
to have, it is unlikely that it will ever be realized on digital computers
(in which higher precision entails greater space requirements).

On the other hand, interactive computation has been a mainstay
of the software industry for decades; and while it is ubiquitous, it
has only been widely recognized as a super-Turing paradigm within
the last ten years. By now, it is quite clear that many features of
a TM (synchronous input-output, the unified alphabet, and neces-
sity of termination, to name a few) do not describe systems like au-
tonomous robots, word processors, operating systems, or the internet
[26, 12, 6, 5, 16]. For each of these systems, the time-sensitive input
is streamed to the machine as the machine works, and the machine’s
output at any given time is potentially a product of its entire history
of operation. Similarly, there is no single ultimate output that these
machines produce, but rather they are expected to continuously op-
erate, remaining responsive to the environment.

The internet represents another form of interaction, in which the
environment does not simply provide operational input to the ma-
chine, but may also alter the machine’s very construction at any time.
Whether or not these alterations enhance or reduce the machine’s ca-
pability, they may fundamentally change how the machine will be
able to respond to future input, including gaining the capacity to op-
erate on a newer or larger alphabet [12].

What makes interactive computing more expressive than TM-
equivalent paradigms is that interactive computing can express more
than functions. Granted, interactive computing may not be able to
express all functions, but the ones that are TM-computable exist as
a special case where the input-output relationships of the interactive
machine are restricted to the TM definition. Essentially, this general-
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izes the purpose of the machine from computing functions to gener-
ally performing a wider set of tasks [6, 5].

3.1 Interaction as hyper-computation

There are many types of the interaction that can be considered, but
not all of them entail a system with super-TM capability. For in-
stance, a TM itself defines interaction between the tape and tape-
head. In the weakest sense, “interaction” merely suggests the pres-
ence of more than one non-independent entity in a system. However,
under specific stronger notions of interaction, the restrictions on the
Turing Machine formalism are relaxed and super-TM expressiveness
ensues. This stronger form of interaction is minimally defined by the
following two characteristics:

Definition 1. Coupling: Current output of an interactive computer
affects its future input.

Definition 2. Persistence: Current output of an interactive computer
is affected by more than current input.

Without these two characteristics added to the current capabilities
of a TM, the interactive machine would have no more expressiveness
than repeated calls to a TM. However, with these two characteristics,
the machine is capable of modifying its environment in a meaningful
way, partially affecting its own future input and therefore making
decisions based on potentially all of the input it has ever received.
While the first characteristic could be considered a property of the
machine’s environment (rather than of the machine itself), it can be
argued that this property provides a type of sensorimotor coupling
within the machine, thus making the machine not just reactive, but
active and proactive as well. It could also be argued that a TM might
have this property in the reactive sense, but without Persistence, lacks
the capability for a long-term action strategy.

It is easy to show at this point that TMs are a special case of this
type of interactive computers where the environment is ambivalent
about the machine’s output and the machine is completely amnesiac.
Thus, interactive computers form a proper superset of Turing Ma-
chines and are therefore more expressive [24].

There may remain some question, however, about whether these
interactive machines are “automatic” in Turing’s sense of the word.
The initial TM was automatic in the sense that once the input was fi-
nalized on the tape, the machine would deterministically produce the
output such that each subsequent configuration of the machine (and
tape) was entirely determined by the previous configuration. It has
been argued that if the machine had paused to query an outside source
for input (from a human or an all-knowing oracle, for instance), then
the machine would not have been purely mechanical. It could be ar-
gued that since interaction with the environment forms a crucial part
of an interactive computer’s function, that an interactive computer is
not purely mechanical. However, there is no reason to suspect that,
given the current configuration of an interactive computer and the
value of the current input from the environment, that the subsequent
operation of the computer would not be entirely deterministic (until
the next input arrived). In fact, given a sequence of input symbols
from the environment, S, if S were fed to two identical interactive
computers that are initially in the same state, both computers ought
to produce identical streams of output. While this example neglects
the organic role of the environment (namely neglecting the first prin-
ciple above), it shows that interactive computers may be automatic
machines. The key to this argument lies in the distinction that the en-
vironment, while a part of the interaction, is not a part of the machine
with which it interacts.
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3.2 Models of interactive computing
3.2.1 Persistent Turing Machines

A common model of interactive computing that expresses the prop-
erties of Coupling and Persistence is the Persistent Turing Machine
(PTM) [7]. The PTM formalisms builds from the standard TM by
altering the input-output mechanics and by incorporating internal
memory. This is done by giving the PTM three tapes: one for read-
only input, one for write-only output, and an internal, read/write tape
for working memory. The PTM functions at two time scales: dur-
ing each macro-step, the environment synchronously provides input
on the input tape and consumes output from the output tape, while
the PTM produces the appropriate output for the given input over
a sequence of micro-steps. Thus, while the above two properties of
interaction have been added to the TM construction, the input and
output are still completely synchronous. However, because the in-
ternal tape is persistent across macro-steps, identical input may not
always produce the same output.

3.2.2 Interactive Machines

A similar construct has also been investigated by Van Leeuwen and
Wiedermann [13], referred to as “Interactive Machines” (IMs). While
IMs possess both Coupling and Persistence, it also has a weaker
input-output relationship, defined as the “interactiveness” property,
which states:

Definition 3. Interactiveness: Any time an IM receives a non-null
input symbol from the environment, it must provide a non-null output
symbol to the environment some finite time later, and vice versa.

Thus, rather than have synchronous input and output, such that
input and output can be described in pairs, IMs have asynchronous
input and output, such that any number of inputs can be fed to the
automaton so long as some output is given some time later. While
automata that have interactiveness may have their inputs and outputs
interleaved, there is not even the stipulation that there be a one-to-
one input-output relationship. This weaker input-output relationship
positions PTMs as a special case of IMs. Further, unlike PTMs, IMs
do not operate at multiple time scales, though blank symbols are de-
fined for both input and output which may allow the simulation of
multiple time scales.

3.2.3 Lineages of automata

Another model of interactive computing, Site Machines [24], rep-
resent the notion of a physical machine, such as a desktop com-
puter. Aside from interacting with the machine through its conven-
tional channels of input and output (such as a keyboard and monitor),
one might also alter the machine’s physical construction (by adding
more memory or a new communication interface). These interactions
may serve to augment the machine’s capabilities, or to diminish them
(such as enacting physical harm on the machine’s components), but
either way they have important ramifications for the future of the ma-
chine’s conventional operation. This same concept can be extended
to the Internet as a whole, where new components are regularly added
and removed, not simply changing the computational power, but fun-
damentally altering the machine architecture.

Site or Internet Machines can, at any time, be conceived as com-
plex, multi-dimensional w-transducers (automatons that process an
infinite input streams into infinite output streams). Then, at specific

times when physical modifications occur, these transducers can be re-
placed by other ones with other capabilities. Thus, Site and Internet
machines are appropriately represented as sequences or lineages of
w-transducers, and ultimately, the complexity of the input stream is
only limited by the complexity of the most complex transducer. Since
the set of situations in which the input stream evolves its alphabet
of symbols as time progresses cannot be modelled by a Turing Ma-
chine, lineages of automata present a strictly more expressive class
of machines [25]. The notion of lineages where preceding transduc-
ers physically construct their successors have been explored and are
referred to as autopoietic automata [27], though their computational
expressiveness derives entirely from the notion of lineages.

4 BOUNDARIES OF COMPUTING

Concurrency is a central notion in interactive computing. In the sim-
plest sense, the environment and the automaton are processing in par-
allel and their behaviour is mutually coupled through the input and
output ports of the automaton. However, as more automata are in-
cluded within the environment, more parallel, semi-enclosed systems
are available for direct or indirect interaction. Further, each automa-
ton itself may be a multi-scale system, with high-level operations
delegating to lower-level components for execution details (such as
is explicitly described by the A-calculus). Thus, this entanglement
of semi-decoupled interactive dynamical systems begins to resem-
ble discrete-time versions of natural physical processes. In fact, any
physical process could be described as an interactive computer, given
the Coupling and Persistence properties of interactive computing.

In fact, a school of thought called pancomputationalism would ar-
gue that all physical processes are intrinsically computing. This idea
suggests that the laws of physics are computational rules which are
processed continuously as time progresses, shifting the current state
of the universe to the next. However, this view devalues the concept
of computation and there might be more constructive ways to discuss
physical systems as computers. To begin this constructive discussion,
it is necessary to understand the boundaries of computing.

In his 1992 book, John Searle paraphrased this notion by saying
“For any object there is some description of that object such that un-
der that description the object is a digital computer” [21] and Jack
Copeland has referred to this as Searle’s Theorem®, for the sake of
argument [4] . Copeland rephrases this statement to clarify it, by say-
ing that any object, e, can be described by mapping its states by some
labelling, L, such that the pair < e, L > is a computer. Both Searle
and Copeland agree that under this definition, e is not intrinsically
computational but that it can be described as such with an appro-
priate selection of L. However, Copeland argues, not just any L is
valid.

In Searle’s initial statement, he went on to say that there existed
a description of a wall such that the wall was implementing a word
processor. Copeland shows that for this to be possible, L must be
time-sensitive and defined after the fact. In other words, a labelling
could be constructed to map the states of an observed history of the
wall to the states of a single observed computation of a word proces-
sor, but both sequences would have to be completely observed first
and the labelling would have to be applied afterwards. This means
that not only could L not be defined before the wall “executed” the
word processor program, once L was defined, it would only apply to
the wall at a specific set of time instances, and would be invalid at

4 Though Searle himself only states the theorem as an absurd logical exten-
sion of some of the contemporary theoretical computational discourse, it
serves as a concise statement of the central problem.



any other time or for any other run of the program. While < e, L >
could be called a computer implementing a word processor in this
case, Copeland argues that L constitutes a “non-standard” descrip-
tion of the wall. Alternatively, he argues that only so-called “honest”
descriptions ought to be valid for < e, L > to form a valid computer.

The crux of Copeland’s argument lies in the dynamics and seman-
tics of e and L. He argues that for the description of a wall to describe
a computer implementing a word processor, L would contain all of
the computational power, in other words, all of the dynamics and se-
mantics of the system; in fact, the wall could be swapped out for any
other object. He argues that an “honest” description of an object re-
quires that the majority (if not all) of the dynamics exist solely within
e. Meanwhile, L provides an arbitrary, time-invariant symbolic rep-
resentation of the states of e while respecting the natural dynamics
of e.

An element necessary to this discussion has merely been implied
thus far: for there to be a semantic description of an object, there
must be a subject doing the describing. If the semantics are not an
intrinsic part of a physical system, then they have to be bestowed
upon that system from somewhere else. This represents an instance
of an epistemic cut [17], where syntactic manipulation of symbols
by a dynamic process (for which the symbols have no meaning) pro-
duces meaningful information or performs a meaningful task for a
subject (by whom the symbols have their meaning bestowed). Even
a common digital computer is not a discrete symbolic machine, but
a severely constrained dynamical system in which states of certain
components are given specific meanings (eg. 5V stored in a flip-flop
may be interpreted as a binary 1, while OV is interpreted as a binary
0). While there is a general question about how to bridge epistemic
cuts in nature [17], it is clear that in the case of practical computa-
tion, the physical system is constrained by human hands and given
meaning by human minds, such that when a human symbol is fed
to the physical system it will produce another human symbol, while
remaining oblivious to the meaning of its action.

In fact, another element of computation that is not discussed by
Searle or Copeland in this context is that of programming or algo-
rithms. While a dynamical process can have its states labelled to ex-
press a single computation (eg. a single pass through an algorithm),
there has been no discussion about how to generalize these dynamics
to multiple computations (ie. an algorithm run multiple times with
different inputs). For a dynamical system to be useful for compu-
tation, it must provide a number of degrees of freedom for placing
custom constraints upon the dynamics. Thus, even if a wall could be
honestly mapped to a computational process, it would still severely
restrict the types of tasks that could be computed. This implies that,
while any physical system might be described as a computer, not
every physical system is a generalized computer, and there will be
limits to that system’s computational expressiveness.

5 PHYSICAL SYSTEMS AS COMPUTERS

A wide variety of physical systems can be described as useful com-
putational platforms; systems that provide intrinsic and predictable
dynamics and a formalized approach to placing constraints on those
dynamics. Several examples of such systems will be explored in this
section, to demonstrate the flexibility of this framework for conceiv-
ing of computation.

First, one could consider the natural physical system of light and
occlusion, whereby opaque objects block light and cast shadows.
When appropriately constrained, this system can provide meaning-
ful computation through the shape and location of shadows. For in-
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Figure 1. Two examples of natural computation. In A, a heated rock
cooling to ambient temperature is used to calculate a geometric curve
approaching an asymptote. In B, a sundial is used to compute time [22].

stance, a sundial positions a labelled face and a gnomon such that the
shadow cast by the gnomon’s edge aligns with the labels on the face
to indicate the time of day (Figure 5). In a sense, a sundial represents
a program for telling time on the platform of the physical system of
occlusion and celestial mechanics.

Similarly, non-opaque obstacles can be placed in the path of a ray
of light (such as a laser) to reflect, refract, and filter the light. Again,
these obstacles will act as constraints on the dynamical system of
optics and could be configured to perform meaningful computation.
For instance, a series of such obstacles could be arranged such that,
depending on the position of the light source, the ray is redirected
to one of two target faces, computing a decision problem where the
light position and the targets have semantic meaning.

A third example might be dropping a ball in the physical system
governed by gravity and collision mechanics. In this system, con-
straints may be physical obstacles which may be placed at various
positions and angles such that a dropped ball may tumble and bounce
along a path depended on the position from which it is released (not
unlike a pinball machine). If a mapping is devised between the ball’s
physical positions and some meaningful states of a computational
process, the physical obstacles could be configured to represent log-
ical conditions or other predicates.

Finally, the physical system could be that of electrical potential
energy, which drives electrons to flow through conductive materials.
Constraints can be placed on this system by redirecting or imped-
ing the current, as is done with wires and resistors. The currents can
also be manipulated with doped semi-conductors, such as transistors
and diodes. Since transistors are the building blocks of transistor-
transistor logic (TTL) which yields logic gates (AND gates, OR
gates, NOT gates, etc) and ultimately flip-flops, there can be no doubt
that the constraints on this system ultimately yield a computational
platform.

6 ABSTRACT COMPUTATIONAL PLATFORMS

The above examples have demonstrated a variety of physical sys-
tems that can provide varying degrees of general computation. The
computational expressiveness of each system relies heavily on the
degrees of freedom for setting constraints on the intrinsic dynam-
ics. The key to computing with each of these dynamical systems is
to place constraints on the dynamics such that the states of the sys-
tem can support an honest semantic mapping. For instance, the con-
straints on electrical potential to produce logic gates are specifically
designed to support the semantic mapping of predicate logic. Dig-
ital computers are so valuable because of the breadth of what can
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be expressed in predicate logic, though even predicate logic has its
limitations.

Observing the above physical systems, some generalization may
be drawn for defining the characteristics of an abstract computa-
tional platform. First, such a platform must have its own intrinsic
dynamics. As in the above examples, these dynamics can be those of
the physical world, but they do not have to be. For instance, the dy-
namics of a Turing Machine are not natural, though they are intrinsic
to the platform and are predictable.

Second, such a platform must provide customization of constraints
on its dynamics (Figure 2). Essentially, this provides a way to “pro-
gram” on the platform, redirecting the dynamics to perform some
meaningful computation. In other words, it is this property of a
computational platform that allows a programmer to map dynamical
states to semantic values and place constraints to process the seman-
tics. In the case of a Turing Machine, this is afforded by the design
of the machine’s configurations and the instruction table.

Figure 2. Abstract platforms of computation. In A, the dynamics of some
flowing system is constrained to manipulate the quantity of fluid on the left
hand side. This quantity is reinterpreted in B, into a real-valued number, and
constrained again through discrete quantization. This discrete number is
represeted in C as an integer value. Ultimately, a simple equation controls
the constraints in A and B to produce the semantic outcome of the equation.

A natural result of these two characteristics is that the dynamics
and the degrees of freedom on customization limit the computational
expressiveness of a platform. For instance, the light-and-occlusion
system might be able to compute more than time of day, but may not
be as expressive as a Turing Machine. Thus, while there may exist
systems with severely limited computational expressiveness (such as
Searle’s wall or a heated rock cooling to the ambient temperature),
even these systems may serve as platforms for some few computa-
tional tasks.

Another result of this definition of a computation platform is that
it naturally gives rise to the concept of layers of abstraction (Figure
3). Each computational platform exists as a single layer of abstraction
and is capable of supporting computation for another layer (eg. a dig-
ital computer supports an operating system which, in turn, supports
a web server). Saying that a computational platform is “computing”
does not stipulate what is being computed. Thus, for every platform,

there requires some observer to remayp its states and place constraints
to establish some semantic meaning of the dynamics before compu-
tation can occur. However, this observer need not be a human, but
could, instead be another machine, or even another computational
layer.

Digital computers represent several, layered, computational plat-
forms before the first line of software is even available. Semi-
conductors are arranged to constrain the natural dynamics of electric-
ity to emulate logic functions. These logic gates are then arranged as
flip-flops which can store one of two stable voltage states. Here, the
first layer reinterprets the flow of electrical current (and the state of
the electrical potential across the circuit) as logical predicates. The
second layer reinterprets the combination of logical predicates into
binary values. While this might appear to represent a system with a
discrete time step and a discrete state space, it is in fact a constrained
continuous system, with each layer of constraints introducing new
semantics on the previous layer. Likewise, while a register of 8 flip-
flops can store up to 8 binary digits and these digits can have numeri-
cal meaning to a human, this semantic meaning is not intrinsic to the
register. This same trend continues upwards through the arithmetic-
logic unit and the instruction pipeline. Thus, at every layer, the states
of the previous layer are remapped with new semantics (eg. voltage
— binary — letters — stories).

observes constrains

observes constrains

NN

Figure 3. Abstract computational platforms can be layered, each
reinterpreting and constraining the states and dynamics of the lower layers.
However, the reinterpretation must be a static mapping and the constraints

must be afforded by the underlying dynamics, such that not all platforms are
suitable for all tasks.

However, computational layers are abstract concepts. While they
have an intrinsic dynamics, those dynamics need not be natural or
even deterministic. Also, for computational platforms to accommo-
date layering, a platform must have some notion of what is required
for another platform to support it. For instance, a Turing Machine’s
dynamics can be described as follows:

1. Look up entry in instruction table for current configuration and

current tape symbol

2. Change configuration, modify tape symbol, move tape depending

on the entry in the table

Also, a Turing Machine provides to the programmer the following
operations:

e Read/write tape

e Move tape left/right
e Read configuration
e Change configuration



For a TM program to run, these operations must be guaranteed by
the platform. For a platform to support a TM, it would have to pro-
vide the ability to change and read the configuration of the machine,
and store and manipulate information that can be represented as a
linear symbol tape of arbitrary length.

7 FORMAL CONSTRAINT LANGUAGE

Under the definition of computers as layers of abstract computational
platforms, programs are described by a collection of specific con-
straints placed upon the dynamics of the underlying platform. To
match the generality of this framework, it would be ideal if there
were a formal, platform independent constraint description language
(CDL) which could be used to describe constraints on any platform
using the elementary operations provided by that platform. Such a
language would have to operate at the natural level of abstraction of
whichever computational platform it is currently targeting, describ-
ing input, output, and all constraints in a natural way for that plat-
form. Further, the language should be flexible to the wide potential
diversity in implementations, including interaction rules.

7.1 Abstract State Machines

Seeking a formalism for modern software, Gurevich et al have cre-
ated Abstract State Machines (ASMs) [8] to be a high-level concep-
tual model which expresses algorithms and other, non-algorithmic
programs at their native level of abstraction. One such ramification
of this idea is that data types and operations may all maintain their
semantic meanings, delegating the implementation details to a lower
layer of abstraction. The abstract layering approach to ASMs natu-
rally fits with the notion of computational layers and thus may pro-
vide the basis of an ideal CDL.

Briefly, an ASM defines the state of the system at any time as
a structure or group (in the abstract algebra sense) which contains
all of the values and potential operations that may be performed on
those values. Then, each step of the ASM transforms the state based
on which of the operations is valid at each step, performing every
valid operation in parallel. To more intuitively grasp the functioning
of an ASM, it can be expressed as a set of conditional assignment
statements. Each step, every statement is evaluated in parallel and,
where the conditions are met, assignments take place to modify the
values stored by the system state. To preserve the level of abstrac-
tion of the procedure, implementation details are often replaced by
semantically named functions, as is regularly done in object-oriented
programming, which become the elementary operations of the pro-
gram. The intuition is that each of these sub-functions might be de-
scribed by an ASM at their native level of abstraction, recursively
expressing more implementation detail.

7.2 Interactive ASMs

While ASMs are not intrinsically interactive, they can include inter-
action through their abstracted function calls. In the ASM literature,
two types of interaction are defined: inter- and intra-step [8, 2]. In
inter-step interaction, input is injected into the state of the computer
between computational steps. This can be viewed as the environment
modifying the state of the computer, an idea that is undesirable in
both ASMs and software engineering. The alternative is for the com-
puter to specifically request and then receive input, deliberately in-
verting the input-output sequence and giving the computer control
of the interaction. In interactive ASMs, all interaction (synchronous
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or asynchronous) is performed through intra-step queries, in which
querying the environment (or another agent in the environment) re-
places the standard output stream of an interactive automaton and
the environment’s response replaces the input stream. This querying
semantics is reminiscent of Turing’s Choice Machines, which could
pause to request further input from a user.

The distinction between inter- and intra-step interaction is one
largely of perception, as it depends on where one draws the bound-
ary between the environment and the embodiment of the computing
agent. For instance, if one considers the sensor buffer of a robot to
be external to a program that the robot is running, then the program
must deliberately fetch any data that is waiting there. However, the
sensor buffer is a physical component of the same robot that is run-
ning the program and, by taking this slightly larger view of the sys-
tem, it might appear that the environment is writing data directly to
the robot’s computational state. While any instance of inter-step in-
teraction can be inverted by shrinking the program definition in some
way to exclude the input ports that are directly coupled with the ex-
ternal environment, this also blurs the line between the automaton
and its surroundings. As ASMs directly discuss levels of abstraction,
this should not necessarily be a problem, as it can be argued, follow-
ing the previous example, that the robot’s physical body occupies a
different abstraction layer from its “mind”. Another way of consider-
ing the coupling is that the robot’s body is a part of the environment
and is interacted with by the robot’s programming.

Ultimately, since the difference between intra- and inter-step inter-
action is largely a matter of perspective, and inter-step interaction can
be performed by an Interactive Machine, there is no reason to suspect
that ASMs cannot be purely mechanical. Thus, the interactiveness of
ASMs is as expressive as that of Van Leeuwen and Wiedermann’s
IMs.

7.3 Continuous Time ASMs

There is, however, one feature of ASMs that bares some considera-
tion for their selection as a formal CDF: the discrete time step. While
continuous values might be adequately represented by the symbolic
abstraction (in the same way as mathematics represents real num-
bers), ASMs operate in discrete time steps. However, one could con-
ceive of a continuous time ASM, in which each parallel operation
occurs in continuous time, though the properties of such a construc-
tion would have to be further explored. If ASMs could be adapted
to model constraints on continuous time, concurrent, interactive dy-
namics, it would likely provide a satisfactory description language
for constraints on any computational platform.

8 CONCLUSION

Computation has evolved greatly since the formulation of the Turing
Machine in 1936. Many computational paradigms have been envi-
sioned that reach beyond the limitations of the original conception,
though, many of these must remain as abstract concepts owing to
their inclusion of concepts of infinity. Other paradigms, which are
represented ubiquitously in operating systems, word processors, and
other embedded or interactive software, also supercede Turing Ma-
chine expressiveness. With the repetitive relaxing of the definition of
computing, some have come to speculate that all of physics is inher-
ently computational. Aiming to reserve the term “computation” for a
special subset of dynamics, this paper has defined computation with
a framework of abstract computational platforms.



32

Computational platforms provide a constructive and unified way
to express the computational nature of any natural or abstract dy-
namical system. It has been argued that any dynamical system can
be described as a computer, but every dynamical system has natu-
ral restrictions to how constraints can be placed upon its dynamics
so as to accomplish meaningful computational tasks. Computation
then exists as these constrained dynamics. Under this description a
wall could not execute a word processor, but a light-occlusion based
system could compute time.

The framework of computational platforms seeks to describe a
computational system as a dynamical system, whose states maybe
acquire semantic meaning and whose dynamics may be constrained
to uphold those semantics. Technically, any dynamical system can
be described as such, but the degree to which the constraints can
be placed are dependent on each system. With less flexibility on the
constraints comes less computational expressiveness.

The final requirement for this approach is to formalize a language
for describing constraints for any arbitrary computational platform.
It has been shown here that perhaps Abstract State Machines could
serve as a useful direction, provided that a continuous time version is
feasible. Further insight might be gained by exploring related mod-
els of concurrent computation, including the Actor Model [10] and
Interaction Nets [11].

Ultimately, this approach aims to incorporate all conventional
computing paradigms, including Turing Machines, Interactive Com-
puting, which have been discussed here, as well as many less con-
ventional paradigms. In particular, this approach seeks to include
distributed computing paradigms (for instance, artificial neural net-
works [20] and Stochastic Diffusion Search [1]), each interacting
with the environment and/or each other. Each of these swarms could
be seen as a computational platform with intrinsic dynamics. While
each swarm agent might be considered as a lower computational
layer, constraints can be described on the swarm as a whole by mod-
ifying the content or protocol of their communications. By allowing
this framework to describe populations of interacting processes, a
bridge might be build to constructively discussing the computational
capacity of the brain.

The work presented here parallels the framework for computating
and information processsing discussed in [18], but with a specific
emphasis on incorporating distributed, continuous, interactive, and
reflective systems. Further, the work presented here views semantic
mappings as crucial for distinguishing computation from other phys-
ical processes.

As much as this approach aims to include all dynamical systems
under the aegis of computing, it also aims to position these systems
such that their computational expressiveness is understood to be lim-
ited. While all physical systems could be said to support computa-
tion, they are not themselves computational nor are they all capable
of expressing the same class of programs. Also, abstract dynamics
can be said to support computation, and their computational capac-
ity can be understood alongside their natural counterparts. With such
broad applicability, hopefully, the framework of computational plat-
forms will help to constructively focus the future discourse of com-
puting.
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Stochastic Diffusion Search applied to Trees:
a Swarm Intelligence heuristic performing Monte-Carlo
Tree Search

Thomas Tanay and J. Mark Bishop'
Matthew C. Spencer and Etienne B. Roesch and Slawomir J. Nasuto?

Abstract. In this paper, we introduce Stochastic Diffusion Search
applied to Trees (SDST), a swarm intelligence heuristic inspired
from Stochastic Diffusion Search able to solve the complex and gen-
eral problem of forward planning. In SDST, each individual agent
processes information concerning a unique action without “aware-
ness” of the way in which actions are being compared and combined.
Yet the dynamics of the entire population of agents lead to a high
level “reasoning” about successions of actions analogous to Monte-
Carlo Tree Search (MCTS). In its functioning, SDST is argued to
introduce a meta-level in the swarm intelligence paradigm.

This result is presented in the context of Abstract Platforms of Com-
putation (APCs), a concept introduced in an accompanying paper in
an attempt to clarify and broaden the notion of computation. In par-
ticular, the concept of APC is used to draw a distinction between
classical sequential algorithmic models of computation and nature-
inspired parallel distributed ones. It is argued that the understand-
ing of (at least human) cognition requires the study of decentralised
emergent systems (fundamentally parallel and distributed), whose
computational properties cannot be reduced to their Turing power.

1 INTRODUCTION

In [12], we introduced the concept of Abstract Platforms of Compu-
tation (APCs) in order to characterise in a unified framework various
computational paradigms and we discussed in this context the com-
putational nature of both abstract and natural dynamical systems. The
concept is defined in terms of intrinsic dynamics and customisation
of constraints on these dynamics in a way that is consistent with other
recent works. For example, [18] defines computation as “the process-
ing of medium-independent vehicles according to rules”, the notion
of medium-independent vehicle being further detailed in the follow-
ing way: “a given computation can be implemented in multiple phys-
ical media (e.g. mechanical, electromechanical, electronic, magnetic,
etc), provided that the media possesses a sufficient number of dimen-
sions of variation (or degrees of freedom) that can be appropriately
accessed and manipulated.”

Although our framework proposed in [12] based on the concept of
APCs agrees in the broad sense with the taxonomy of computation
proposed in [18], we do not believe that cognition is merely a compu-
tational phenomenon (as it is claimed to be in [18]: we may conclude
that cognition is computation in the generic sense) even though the
APC framework admits perfectly viable and a posteriori structurally

1 Goldsmiths, University of London, UK, email: thomas.tanay @ gmail.com
2 University of Reading, UK

isomorphic computational descriptions of cognitivce processes. Thus
ultimately, one of the most important problems in cognitive science
is to determine and characterise the set of dynamical systems that
have the right computational properties to provide such descriptions.
In the case of biological systems, cognition results from the activ-
ity of the brain which is inherently a parallel and distributed sys-
tem. Surprisingly however, current parallel and distributed computa-
tional models (such as neural networks or swarm intelligence heuris-
tics) appear rather limited when facing some complex problems. For
example, artificial neural networks are particularly adapted to solve
pattern recognition problems but they have difficulty in sequentially
processing high arity predicates (they can be conceived as funda-
mentally building learning mappings in complex high dimensional
Euclidean spaces). Consequently, the dominant paradigm in artificial
intelligence has historically been and is still the sequential algorith-
mic one.

In the present paper, we introduce Stochastic Diffusion Search
applied to Trees (SDST), a swarm intelligence heuristic (inherently
parallel and distributed) inspired from Stochastic Diffusion Search
(SDS) and able to solve the complex and general problem of forward
planning in a way analogous to Monte-Carlo Tree Search (MCTS).
Although some previous attempts have been made to apply decen-
tralised methods to forward planning tasks, such methods did not
reach the same degree of generality as SDST. For example Tesauro
developed in 1989 a neural network program playing Backgam-
mon (a finite two-person zero-sum game with imperfect information)
better than any other program (the program called Neurogammon
won the backgammon competition of the First Computer Olympiad).
However, Tesauro explicitly expressed in the introduction of [17] that
“the game of backgammon in particular was selected because of the
predominance of judgement based on static pattern recognition, as
opposed to explicit look-ahead or tree-search computations.”

By presenting SDST, our objective is to extend the applicability
of parallel and distributed models of computation (and in particular
SDS) to solve problems that were historically exclusively addressed
with a sequential algorithmic approach requiring centralised control
and access to the data. Here, it is important to contrast this result with
what constitutes a universality proof°. Indeed, proving that a model
is Turing-equivalent consists in showing that any Turing machine can
be simulated by an instance of this model. But in such a case, there

3 Note that there does not currently exist any such proof for SDS, but for
example neural nets [19] and the rule 110 cellular automaton [6] (which
are parallel and distributed models) are proven to be Turing-equivalent.
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exists an abstract level at which the instance in question can be de-
scribed as implementing a sequential algorithmic APC. On the con-
trary in SDST, the solution to the problem faced is fundamentally
emerging from the decentralised interaction of simple computational
agents, and the functioning of the heuristic fundamentally cannot be
abstracted to the functioning of a sequential algorithm APC (See Ta-
ble 1 for an illustration of the different levels of abstraction). In prac-
tice, as described in section 3, SDST has been “programmed” from
the intrinsic dynamics defining SDS (the alternation of test and diffu-
sion phases in a population of communicating agents) by customising
the test and diffusion protocols.

Table 1: Nature of the APCs in two example implementations of
MCTS: SDST and a hypothetical implementation of classical MCTS
via a cellular automaton (CA).

APC where SDST: Classical MCTS:
MCTS occurs Parallel Distributed Sequential Algorithmic
Underlying Digital computer: Cellular automaton:

APC Sequential Algorithmic Parallel Distributed

For the sake of simplicity and clarity, and because it is the prob-
lem for which it was originally conceived, SDST is presented in the
context of combinatorial games (finite two-person zero-sum games
with perfect information such as Chess). However the discussion is
entirely consistent with any planning task that can be represented as
a tree of sequential decisions.

2 BACKGROUND

The work presented here rests on two pillars: the swarm intelligence
metaheuristic for search and optimisation called Stochastic Diffu-
sion Search (SDS) and the Monte-Carlo based search method for tree
structures called Monte-Carlo Tree Search (MCTS). These two tech-
niques are briefly described in the following subsections.

2.1 Stochastic Diffusion Search (SDS)

SDS is an efficient probabilistic swarm intelligence global search
and optimisation technique that has been applied to diverse problems
such as site selection for wireless networks [20], mobile robot self-
localisation [2], object recognition [11] and text search [3]. Addition-
ally, a hybrid SDS and n-tuple RAM [1] technique has been used to
track facial features in video sequences [11, 8]. Previous analysis of
SDS has investigated its global convergence [13], linear time com-
plexity [17] and resource allocation [14] under a variety of search
conditions.

SDS is based on distributed computation, in which the operations
of simple computational units, or agents are inherently probabilistic.
Agents collectively construct the solution by performing indepen-
dent searches followed by diffusion of information through the pop-
ulation. SDS relies on two principles: partial evaluation of hypothe-
ses and direct communication between agents. The SDS algorithm
is characterised by three phases: Initialisation, Test and Diffusion—
the test and diffusion phases are repeated until a Halting criterion is
reached. During the initialisation phase each agent formulates a hy-
pothesis, i.e. chooses a potential solution in the search space. During
the test phase each agent partially evaluates its hypothesis: agents for
which the partial evaluation is positive become active, and the others

become inactive. During the diffusion phase, agents exchange infor-
mation by direct communication: each inactive agent X contacts an
agent Y at random. If Y is active, X takes its hypothesis, otherwise X
formulates a new hypothesis at random (procedure called passive re-
cruitment). In practice a halting criterion needs to be defined to stop
the algorithm running: the properties of convergence of SDS led to
the definition of two criteria, a weak and a strong version [13].

2.2 Monte-Carlo Tree Search (MCTS)

MCTS “is a recently proposed search method that combines the pre-
cision of tree search with the generality of random sampling” [4].
Since 2006, over 200 papers related to MCTS have been published,
with applications ranging from computer Go to Constraints Satisfac-
tion problems through Reinforcement Learning and Combinatorial
Optimisation. [4] offers a complete survey of the published work on
MCTS (until 2011) and argues that “it has already had a profound im-
pact on Artificial Intelligence (Al) approaches for domains that can
be represented as trees of sequential decisions, particularly games
and planning problems”.

MCTS has originally been developed in the context of com-
puter game playing and finds its roots in B. Abramson’s 1990 paper
Expected-outcome: a general model of static evaluation. In this paper
is introduced the idea to evaluate a game position by playing a great
number of random games from that position, assuming that a good
move must increase the expected outcome of the player®. The sec-
ond decisive step in the development of MCTS was the publication
in 2006 of Kocsis and Szepesvari’s paper Bandit based Monte-Carlo
Planning. In this paper is introduced Upper Confidence bound ap-
plied to Trees (UCT), a method that “applies bandit ideas to guide
Monte-Carlo planning”. The crux in UCT is to choose the moves to
be evaluated at each node of the game-tree according to the informa-
tion already collected during previous evaluations, in order to exploit
more the most promising areas of the tree. Standard MCTS consists
in iteratively building a “search-tree” (the root node of which is the
current position) and is outlined in [5] as a succession of four phases:
Selection, Expansion, Simulation and Backpropagation. In practice,
the four phases are repeated until a given computational budget is
spent (usually the time), at which point a decision is made and a move
is played. The moves to be evaluated are first chosen in the existing
search-tree from the root in a way that balances between exploration
of the available moves and exploitation of the most promising ones
(selection): the policy used to choose the moves during this phase is
called the “tree policy” and this is where [9] introduced the analogy
between a node of the search-tree and a multi-armed bandit. When
a leaf of the search-tree is reached, the rest of the game is played
up to a final state (simulation). The policy used during this phase is
called the “default policy” and can be purely random in the simplest
implementations of MCTS. The first move chosen by the default pol-
icy is then added to the search-tree (expansion). Finally, the statistics
of each node crossed during the selection phase are updated accord-
ing to the outcome of the simulated game (backpropagation). The
way MCTS works is rather intuitive and it is argued in [4] that “the
forward sampling approach is, in some ways, similar to the method
employed by human game players, as the algorithm will focus on
more promising lines of play while occasionally checking apparently
weaker options.” An important property of MCTS is its asymptotic

4 This assumption is not necessarily a good one due to the distinction between
random play and optimal play.



convergence to Minimax, i.e. it is assured to select the best move
available if enough time is given (the convergence to Minimax can
be very long in practice).

3 STOCHASTIC DIFFUSION SEARCH
APPLIED TO TREES (SDST)

The initial motivation for the work on SDST was to extend the ap-
plicability of Stochastic Diffusion Search (SDS) to more complex
search spaces, and combinatorial games were chosen as a first study
case. Then, Monte-Carlo Tree Search (MCTS) came naturally as a
good framework for several reasons. First, MCTS does not rely on
domain knowledge but rather on a large number random game sim-
ulations and the notion of random game simulation fits well with
the concept of partial evaluation in SDS. Second, the strength of
MCTS relies on the tree policy balancing between exploration of the
search space and exploitation of the promising solutions and SDS
is a metaheuristic precisely conceived to solve this “exploration-
exploitation dilemma” in the management of the computational re-
sources. Finally, MCTS has proven very successful in a wide range
of problems—not only game playing—and is still under active study.
Conceptually, the application of SDS to game-tree exploration is
a two step process. First, each node is being attributed a distinct
and independent local population of agents to solve the problem of
move selection on that node. Second, a reallocation policy is used to
move the uncontacted agents toward more interesting regions of the
game-tree—thus leading to the formation of a dynamically moving
metapopulation® of agents.

3.1 First step: use of multiple populations of agents

The first step toward implementing SDST is to use SDS to solve
the “exploration-exploitation dilemma” appearing during the selec-
tion phase of MCTS at each node of the search-tree. An algorithm
detailing this idea is given in Table 2 (in SDS terms).

The operation of this algorithm is illustrated in Figure 2 on the
small game-tree presented in Figure 1. The studied game-tree has
been specifically designed to reveal the ability of the algorithm to
converge to minimax and escape local optima: while a monte-carlo
evaluation of the left and right moves for Max at the first ply would
respectively lead to 50% and 75% chances to win—thus suggesting
that the right move is better—the minimax resolution of the game-
tree actually shows that, if the players play optimally, the left move
leads to a win for Max (whatever Min plays at the second ply, the
right move for Max at the third ply leads to a win) while the right
move leads to a loss (if Min plays his left move at the second ply,
whatever Max plays for the third ply leads to a loss with Min playing
the left move at the fourth ply).

Figure 2 shows that during iterations 1 and 2, most of the agents
in the root node population point toward the right move. Then during
iterations 3 and 4, the selection of Min’s left moves at plies 2 and
4 changes this tendency and at iteration 5 all the agents in the root
node point toward Max’s left move—the best move in the minimax
sense. Figure 2 simply illustrates that, as any other MCTS with a
different tree policy, the algorithm presented here converges to mini-
max (provided that every non-terminal node of the game-tree is being
attributed a population of agents).

5 The term was coined by Levins in [10] to describe the dynamics of inter-
acting populations of social insects.
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Table 2: First application of SDS to game-tree exploration: use of
multiple populations of agents.

Initialisation During the initialisation phase, a local population of
agents is generated for each node of the game-tree up to a fixed depth
D. For each local population, agents’ hypotheses are initialised to a
possible move of the corresponding node.

Test During the test phase, a complete hypothesis is formed for each
agent in the local population corresponding to the root node (later
called root node population). This is done by combining agents from
different local populations in a way analogous to the selection phase in
MCTS: for each agent X in the root node population, an agent Y in the
local population pointed by X’s hypothesis is selected. Then an agent
in the local population pointed by Y’s hypothesis is selected, etc, until
depth D is reached. Once a hypothesis is formulated, a simulation is
run (in the MCTS sense) and the activities of the agents forming the
hypothesis are updated according to the node they belong to (step cor-
responding to the backpropagation in MCTS): if the simulation leads
to a win for Max, the agents in populations corresponding to Max’s
nodes become active and the agents in populations corresponding to
Min’s nodes become inactive (if it leads to a loss, it is the contrary).

Diffusion During the diffusion phase, each local population acts inde-
pendently, i.e. a diffusion phase is undertaken in the sense of Standard
SDS without communication with other local populations.
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Figure 1: Studied game-Tree. The minimax resolution shows that
Max is the winner if he plays optimally.



36

Iteration number O Iteration number 1

/Mn(

Min Min Mn Min Min i Min Min
-1 A U | -1 -1
Iteration number 2 Iteration number 3
/Mn( Min
Min Min Mn Min Min Min Min Min Min Min Min
-1 A B | -1 -1 -1 - -1 4 -1 -1
Iteration number 4 Iteration number 5
Min
Min Min Min Min Min

K|

Figure 2: Illustration of the algorithm presented in Table 2: Evolution of the distribution of the agents in the different nodes of the studied
game-tree (first 5 iterations shown, total number of agents = 175). Each branch has an area proportional to the number of agents in the parent
node population supporting the move corresponding to the child node population.



3.2 Second step: use of a reallocation policy

Although the previously discussed algorithm is shown to solve the
problem of game-tree exploration, it suffers from two main draw-
backs. First, the number of studied nodes in the game-tree and the
number of agents per node need to be fixed manually in a very arti-
ficial way. Second, a uniform repartition of the agents in the initiali-
sation phase rapidly leads to many agents being uncontacted in some
branches (for example, all the agents on the right side of the tree be-
come useless after the fifth iteration in Figure 2).

These drawbacks can be solved with the use of a reallocation policy
where agents are scattered in the tree from the root node and uncon-
tacted agents are backscattered toward parent nodes. SDST uses such
a reallocation policy, defined naturally as described in Table 3.

Table 3: Stochastic Diffusion Search applied to Trees (SDST).

Initialisation During the initialisation phase, all the agents are allocated
to the root node population and their hypotheses are selected randomly
among the available moves.

Test During the test phase, complete hypotheses are formed. For each
agent X in the root node population, an agent Y in the local popula-
tion pointed by X’s hypothesis is selected. Then an agent in the local
population pointed by Y’s hypothesis is selected, etc, until the local
population pointed by the last agent is empty. Once a hypothesis is
formulated, a simulation is run and activities of the agents forming the
hypothesis are updated.

Diffusion For each local population, the diffusion phase is divided in
three subphases:

1. Backscattering: the agents that were not contacted to form a hy-
pothesis go back in the parent node population. In order to preserve
the hypotheses distribution among the different moves in the parent
node population, a backscattered agent chooses its new hypothesis
not randomly but by copying the hypothesis of a chosen agent in
that population.

2. Scattering (by active recruitment): every active agent X selects an-
other agent Y at random; if Y is inactive, it is sent in the local
population pointed by X’s hypothesis. Similarly to the backscatter-
ing subphase, in order to preserve the hypotheses distribution in the
host node population, the scattered agent selects its new hypothesis
not randomly but by copying the hypothesis of a chosen agent in
that population (if there are no agents at all in the host node popu-
lation, then the new hypothesis is chosen randomly).

3. Internal diffusion (by passive recruitment): every inactive agent X
selects another agent Y at random; if Y is active, X takes Y’s hy-
pothesis.

SDST is illustrated in figure 3 on the studied game-tree. As for
the previously discussed algorithm, a majority of agents in the root
node population first points toward the right move (best move in a
purely Monte-Carlo sense) before reorienting toward the left move
(best move in the minimax sense). However, the distribution of the
agents in the entire metapopulation is now dynamically regulated:
most of the agents diffuse in the right part of the game-tree in the
first four iterations, and then diffuse back to the left part of the tree in
the following iterations. Also, only the regions of interest are visited:
for example the entire region after Max’s right move at the first ply
and Min’s right move at the second ply is ignored because the entire
subtree leads to a win for Max (no agent becomes active in Min’s
node population to send inactive agents in this area).

Under normal conditions, an equilibrium between the scattering and
backscattering forces eventually appears, leading to a statistically
stable metapopulation. A very interesting property of SDST is that
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this equilibrium depends on the number of agents used. Asymptoti-
cally if enough agents are used, the equilibrium is equivalent to min-
imax. This is the case of the simulation presented in figure 3: at itera-
tion 12 the metapopulation stabilises in the left part of the game-tree.

4 DISCUSSION

In the previous sections, we have introduced Stochastic Diffusion
Search applied to Trees (SDST), a swarm intelligence heuristic per-
forming forward planning. SDST is very similar to classical Monte-
Carlo Tree Search (MCTYS) algorithms in its functioning, but is con-
ceptually radically different. While classical MCTS requires a cen-
tral processing unit executing the algorithm in a sequential way (with
a permanent and complete access to the data), the problem solv-
ing ability in SDST emerges from the collaboration of homogeneous
agents with limited computational capacities. This distinction can be
expressed differently by saying that classical MCTS and SDST are
implemented on Abstract Platforms of Computation of fundamen-
tally different nature (sequential algorithmic vs. parallel distributed).
Importantly, the facts that classical MCTS could be implemented on
a Turing equivalent decentralised system (such as a cellular automa-
ton), or that SDST is being executed on a digital computer are not
relevant. The concept of APC allows layered levels of abstraction,
and what matters is the nature of the APC at the level at which the
forward planning problem is being solved. This last remark suggests
that the broad notion of computability that emerged in recent works
([12], [18]) needs new tools to be studied and in particular, a charac-
terisation of computational systems in terms of their Turing power is
not sufficient any more.

In addition to the main result, our work introduces a meta-level in
the Swarm Intelligence paradigm: SDST relies on emergence both at
the level of the agents forming local populations and at the level of
the local populations forming a dynamically moving metapopulation.
Individual agents are themselves unable to compare the different
moves available to them, but their interaction leads to the exploita-
tion of the most promising branches at each node of the game-tree.
Similarly, local populations have a weak level of play when taken
independently (branches are chosen without tactical sense), but their
interaction makes a high level of play emerge (SDST is asymptoti-
cally equivalent to Minimax). Interestingly, the concept of metapop-
ulation (a population of populations) exists in biology to refer to the
dynamical coupling that appears between different populations of so-
cial insects [10].

Finally, the work presented here takes on its full meaning only
if one recognises that it might have some interesting insights to pro-
vide about cognition. In fact, SDS has already been proposed as a
model for neural activity: the one-to-one communication makes it a
plausible candidate, and there exists a connectionist spiking neuron
version of SDS called NESTER (for NEural STochastic nEtwoRk)
[16]. Also in SDS, contrary to most of the other swarm intelligence
heuristics®, the meaning is embedded in the entire population instead
of being simply supported by individual agents. This property is due
to the partial evaluation of solutions: in the case of string matching
for example, the position of the solution after convergence is indi-
cated by the formation of a cluster of agents, possibly dynamically
fluctuating (in the case of a partial match, agents will keep explor-
ing the text while the cluster will globally stay on the best match).

6 Ant Colony Optimisation also shares this property
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Figure 3: Illustration of SDST: Evolution of the distribution of the agents in the entire game-tree (iterations 0, 2, 4, 6, 8 and 12 shown, total
number of agents = 100). Each branch has an area proportional to the number of agents in the parent node population supporting the move
corresponding to the child node population.



In the neural model NESTER, this property leads to the synchroni-
sation of the firing of neurons at convergence; “hence in this model
oscillatory behaviour may be a result of, rather than a cause of, the
binding of features belonging to the same object” [16]. In addition
to giving a new theoretical solution to the binding problem [15], the
ability to allocate efficiently and dynamically the cognitive resources
to the search task has been proposed as a model for neural attention

[71.

In their survey [4], Browne et al. concluded that:

“Over the next five to ten years, MCTS is likely to become
more widely used for all kinds of challenging Al problems. We
expect it to be extensively hybridised with other search and op-
timisation algorithms and become a tool of choice for many
researchers. In addition to providing more robust and scalable
algorithms, this will provide further insights into the nature of
search and optimisation in difficult domains, and into how in-
telligent behaviour can arise from simple statistical processes.”

Although it was not conceived for practical Al purposes, we believe
that SDST pertains to the type of hybridised algorithm Browne et al.
had in mind. In particular, by integrating MCTS into the swarm intel-
ligence paradigm, we believe that SDST indeed manage to “provide
further insights (...) into how intelligent behaviour can arise from
simple statistical processes.”
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Toward a Unified View of Computation in Neural
Systems: A Reply to Shagrir and Piccinini

Frank R. Faries®

Abstract. Among those who would call themselves
computationalists about the mind, there is not a clear sense of the
notion of computation most appropriate for neural systems. The
contrasting works of Oron Shagrir and Gualtiero Piccinini are
one illustration of the divide among philosophers. The dispute
turns on an ontological distinction regarding whether or not
computation is an observer-independent phenomenon. This
seems an incommensurable difference. However, if we conceive
of neural computation in a generic sense—that is, as neither
analog nor digital, but sui generis—and fix our concepts
accordingly, these contrasting views are shown to be closer than
they appear.

1 INTRODUCTION

Investigations in cognitive science attempt to bridge the gap
between mental functions and the activities of cells in the brain
that make up their neurobiological underpinnings. What is
needed for this inquiry is an intermediate vocabulary of the
processes occurring below the level of folk psychology and
above the level of neural processes. A well-received view in
cognitive science posits computation as one such process. Yet
even among those who employ this term in explanations of
mentality, there is a division regarding just what is taken to be
meant by computation as it regards the brain. Among
philosophers the term is most frequently invoked in discussions
of computationalism, that is, whether or not computation is
necessary and sufficient for a mind. Yet even among those who
might call themselves computationalists, there is not a clear
sense of the notion of computation most appropriate for neural
systems.

An illustration of this divide lies in the contrasting work of
Oron Shagrir and Gualtiero Piccinini. While there is a great deal
of overlap in the two authors’ positions on computation, they
part ways at a critical point. Each would call himself a
computationalist. Both employ a notion of computation growing
from the tradition of Alonzo Church and Alan Turing [1], and
influenced by Fodor [2]. Both might be willing to admit that “the
brain is a computer”, but they would not agree over what such a
claim amounts to. For Shagrir the brain’s status as a computer is
merely a matter of convention, relevant only to particular
observer’s interests to explain certain semantic tasks. For
Piccinini, however, computation in the brain is an observer-
independent phenomenon individuated entirely without the need
for semantics. Shagrir does not go so far as to agree with John
Searle’s claim that computation “is not discovered within the
physics” [3], but he does concede that whether something is a
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computer is interest-relative. By contrast, Piccinini wishes to
assert that computation is an intrinsic part of reality—something
that happens in certain physical systems regardless of the
interests of the observer. It appears that due to the enormous
chasm between the consequences of the author’s views their
positions would be incommensurable. However, if we fix our
concepts appropriately, as Piccinini does, we might find a way to
span this deep divide, or at least draw the opposing sides more
closely in alignment. Specifically, to reconcile these positions
we must (i) keep a firm grasp on the norms of mechanistic
explanation, of which computational explanation is a sub-
species, (ii) conceive of computation in a generic sense, and (iii)
recognize computation in the brain as neither analog nor digital,
but as a kind all its own.

The remainder of this paper will proceed as follows. In
Section 2 I will provide a précis of Shagrir’s position and
elaborate the pitfalls he wishes to avoid, and his positive claims
about computation. In particular, Shagrir acknowledges the
unique successes of computational modeling and explanation in
the brain, but recognizes that digital computation is unsuited for
explaining cognition. Furthermore, Shagrir’s notion of
computation necessarily involves representation, and he is
skeptical about the prospect of a notion of representation capable
of distinguishing computing from non-computing systems. Thus
he concludes that while physical systems really do implement
certain computations, which computations are the right ones is
up to the interests of the observer. Section 3 offers Piccinini’s
adjustments to computational taxonomy, in particular his generic
sense of computation—of which digital and analog computation
are both sub-species—and his amended notions of information-
processing, as well as further distinctions within the realm of
computing systems. Neural computation, he contends, is neither
digital nor analog, but is itself a unique kind of computation that
is neither continuous nor discrete. Computations are individuated
by appeal to their functional properties, without the need for
external semantic content. Section 4 deploys this amended
taxonomy in Shagrir’s account, and finds favor with his position.
This will show that a weaker form of computationalism satisfies
the requirements of both authors, while avoiding the dangers to
which computational theories can succumb. Section 5 addresses
objections to this new taxonomy, and offers the most charitable
account of Shagrir’s resistance to it. Even on this reading,
however, if neither author will grant that their respective
positions can be unified, | will at least show them to be much
closer in alignment than initially thought. Furthermore, 1 hope to
highlight the common elements of these contrasting views which
underscore the fundamental precepts of a unified view of
computation in neural systems.

2 SHAGRIR ON COMPUTATION



Shagrir [4] attempts to provide a meaningful, principled sense
of computation that is relevant for explaining activity in the
brain. He claims that there are two conditions typically involved
in defining computation. These conditions reflect the classical
sense of computation which Shagrir uses as the foil for his
argument. That is, computation is information-processing, and
formal in the sense espoused by Fodor, who famously holds (as
Shagrir does) that there can be no computation without
representation. These conditions are invoked for the purpose of
establishing a principled definition of computation—one that
marks off systems that truly compute from those that do not.
Shagrir contends that neither of these conditions is adequate to
establish an observer-independent sense of what it means to
compute. The targets in Shagrir’s attack are the concepts of
representation, which he takes to be necessary for computation,
and algorithmicity, one of three constraints composing the
formality condition.

The formality condition is borrowed from the work of Jerry
Fodor [5], and has typically been associated with three features:
mechanicalness, abstractness, and algorithmicity.
Mechanicalness can have two connotations, neither of which is
ultimately helpful in demarcating computing from non-
computing systems. First, mechanicalness can refer to a tradition
in the philosophy of science regarding the concept of a
mechanism. Here mechanisms are taken to mean “a set of
entities and activities organized such that they exhibit the
phenomenon to be explained” [6]. Computational systems are
indeed mechanisms, on this view, but then so are scores of other
physical systems which are not computing systems. The second
kind of mechanicalness simply means a process that is sensitive
only to structure, but not to meaning. The rules of inference are
taken to be a prime example, as they hold regardless of the
content of the axioms being adduced. Again, this second sense of
mechanicalness fares no better than the first, as there are many
physical processes (e.g., digestion) which are formal or structural
in the way described above, yet are not computing anything.

The second feature of the formality condition is abstractness,
or a description of the system strictly in terms of its formal (i.e.,
mathematical, logical, syntactical) characteristics. That is, the
abstractness feature requires that the system be subject to
description that abstracts away from its physical characteristics.
Of course, when talking about physical systems, it is required
that the concrete system implements the abstract description. The
meaning of implementation is by no means clear and
uncontroversial (see [7], [8]). Roughly speaking we can say a
physical system implements an abstract description if there is a
“mirroring” between the states and operations of the physical
system and the states and operations of the abstract description.
Here again, this feature does not amply serve to distinguish
computing from non-computing systems, as there are
mathematical descriptions which non-computing physical
systems implement. The solar system, for example, is subject to
a mathematical description of the movement of its planets, yet
we do not wish to say that the solar system is computing.

Lastly, as Shagrir has insisted in earlier works, “Being
algorithmic is not necessary for being computational” [9].
Shagrir’s uneasiness about algorithms is familiar to defenders of
computationalism. When speaking of the algorithm being
implemented in a physical computing system, the
computationalist desires a sense of algorithm that is not so
permissive as to be vacuous or trivial, but not so restrictive that it

does not capture a relevant or intuitive sense of what it means to
compute. And in any case the algorithmicity constraint, as
Shagrir sees it, is still inadequate. He cites the existence of non-
algorithmic computers to show that the requirement of an
algorithm is insufficient. Ultimately, he concludes that because
each of the three features of the formality condition is itself
insufficient to establish a satisfactory definition of computation,
the condition as a whole is inadequate.

Returning to the first condition, Shagrir describes Fodor and
Pylyshyn’s notion of computation as the processing of
information and necessarily involving representations. In doing
s0, Shagrir plans to attack computation in its classical form.
Computation on this view is digital, or roughly, defined over
discrete variables. Yet as noted above, Shagrir fears that digital
computation in this sense is inappropriate to philosophy of mind,
as it does not mark a clear divide between computing and non-
computing systems. Furthermore computation in the brain is
information processing, which “roughly means that causal
processes in the nervous systems are mappings from one brain
state B;, which represents some feature W,, to another brain
state, B,, which represents W,” [10]. Therefore the processing of
information, on this account, requires representations. However,
as Shagrir admits, the terms “information” and “representation”
are dangerously vague. We want an entity to pick out the
meaningful elements of causal commerce in implementing a
computation, but it is not clear what the ontological commitment
is. In any case there is no sense of either term which draws a
principled division between systems that compute and those that
do not. For this reason, these concepts, so integral to most forms
of computation, do not in fact serve to define the very term to
which they are so frequently attached.

Thus we have a snapshot of the trepidations Shagrir has about
computation. While Shagrir plays down the threat of
pancomputationalism, he stresses the need for a meaningful
sense of computation relevant to philosophy of mind. But what
an odd position to hold! The theoretical space which Shagrir
carves out is strange indeed, as he agrees with Churchland,
Koch, and Sejnowski [11] that “whether something is a
computer depends on whether someone has an interest in the
device’s abstract properties and in interpreting its states as
representing states of something else”. But he will not go so far
as Searle and say the notion of computation is not even capable
of being true or false—computation is still “out in the world”,
and the relationships it describes are very real.

This is in line with Shagrir’s positive account of computation.
To call something a computer is a strategy to explain how a
complex system performs a semantic task. This strategy is
successful when we identify the computational structure of a
system. That structure is identified as a correlation between the
mathematical properties of the target system and mathematical
properties of the objects being represented. This structure is very
real, but the system is only computing when we apply the
computational approach. The success of a computational
explanation lies in explaining how the central nervous system
represents an object in the visual field. As such, the correlation
between properties of the CNS and properties of the object will
account for the explanatory force of the explanation.

All of this makes sense if, like Shagrir, your concept of
computation necessarily involves content and representation. As
he says, “the notion that lies at the heart of computation is
content: computers are systems whose dynamics are individuated
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by the content of the representations over which these dynamics
are defined” [12]. Indeed, if the brain is a computer, it is only
because cerebral activity represents external entities by reflecting
or simulating the formal relations of those entities. Thus, for
Shagrir, the brain is an analog model (AM) computer. This
means it satisfies two conditions associated with AM-computing:
(i) it is engaged in information-processing in that it maps one set
of representations to another, and (ii) its formal relations mirror
the formal relations of what is being represented [13]. All of this
points to what Shagrir sees as the true utility of a computational
approach to the brain: explaining how neural activity tracks the
environment.

But what, precisely, is the meaning of “representation”, as
Shagrir uses it? All we need, it seems, for one entity to represent
another, is simply a mapping, or reliable causal correlation,
between the entities. This correlation will occur at the level of
the formal descriptions of the objects and activities contained
therein.

In summation, Shagrir stresses the need to find a principled
definition for computation adequate to separate computing from
non-computing systems. However, the received views on
computation—as a digital information-processing task requiring
representations, or formal in the sense of being mechanical,
abstract, and algorithmic—are inadequate. Digital computation
simply does not seem appropriate to explain cognition. The most
appropriate sense in which a brain is described as a computer is
analog model computing. On this view, computing in the brain is
an information-processing task that maps one set of
representations to another, and the internal relations of brain
processes have reliable causal correlations to the external
relations of the objects they represent. Individuating
computations requires identifying a semantic task, and thus
computing is an observer-relative phenomenon. However, the
syntactic relationships picked out by computations have truth-
value independent of the interests of observers. Therefore,
describing something as a computer is an explanatory strategy
whose force comes from identifying reliable causal relations
between the formal properties of the target system and the
formal properties of the object being represented.

3PICCININI ON COMPUTATION

In much the same way as Shagrir, Piccinini attempts to provide a
clear account of computation. This concept should do justice to
computer science and the computational theory out of which it
was borne, and should also be appropriate to philosophy of
mind. He believes the mind is a computing system, and attempts
to discern exactly what kind of putative computational process is
appropriate for explaining it. Contrary to Shagrir, however,
Piccinini is concerned about the threat of pancomputationalism.
The fear is “if everything is a computing system, it is unclear
how computation could be interestingly related to inference,
rationality, executing instructions, following rules, or anything
else specific to explaining mental phenomena” [14]. The mind is
no more special in its ability to be described as computing spatial
memory as the wall is in its description as computing a Facebook
status update. But we want to describe some things, accurately,
as computers. Calling a wall a computer in any meaningful sense
scrapes against common sense intuitions about what computers
are, and does not do justice to the field of computational theory,

a robust branch of mathematics, which is certainly not in the
business of giving vacuous descriptions of walls.

Piccinini claims that there is a distinction to be drawn
between those computational descriptions that do not make
reference to the computations of the system, and those that
explain the behavior of a system by appealing to the
computations it performs. This distinction marks the difference
between  computational ~modeling and  computational
explanation. To construct a computational model which
describes the wall as computing therefore satisfies the weak
sense in which a computational description can be given of any
sufficiently complex object, while doing no injustice to
computability theory. Genuine computational explanation,
however, is a special kind of mechanistic explanation, applying
only to systems with special functional properties. That is,
computational explanations gain their explanatory force to the

extent that they identify mechanisms—the functional
organization of a system’s components—underlying the
phenomena.

But the question remains, when genuine computational
explanation appeals to this certain type of activity—
computation—what exactly is it referencing? Piccinini’s most
recent work with Sonya Bahar offers an adjustment to the
taxonomy of computation. This new meaning of “computation”
diverges from classical digital computation and thus eludes the
criticisms leveled by Shagrir. Computation in the brain, on this
new account, is computation in a generic sense; “Computation in
the generic sense is the processing of vehicles (defined as
entities or variables that can change state) in accordance with
rules that are sensitive to certain vehicle properties and,
specifically, to differences between different portions (i.e.,
spatiotemporal parts) of the vehicles” [15]. This definition marks
a change from [16] in which digits, strings, and symbols were
invoked to describe a computing mechanism. However, it does
still satisfy the two conditions set out in that previous work:
computation does not require representation, and computing
systems are mechanisms. Furthermore, some features of this new
account are similar in kind to the features of the previous
account. Namely, computation, in the generic sense: (i) preserves
the objectivity of computation, (ii) requires explanations to say
how computation explains behavior, (iii) accounts for
paradigmatic examples of computing mechanisms, (iv) excludes
paradigmatic examples of non-computing systems, (v) explains
miscomputation, and (vi) provides a taxonomy. The change is in
abandoning the reduction of neural computation to a digital
architecture. This move is motivated by empirical evidence and
by the structural and temporal constraints of the brain. This is
computation in the context of the causal nexus of the brain.
Based on our known facts about the nervous system, this
computation is most likely not (strictly) digital or (strictly)
analog. That is, neural computation is sui generis, complete with
its own mathematical theory. This leaves the ultimate nature of
computation as it happens in the brain an empirical matter, but
one with promise of an answer from computational
neuroscience.

Accompanying this new sense of computation are further
changes in the taxonomy. The first is a clarification of the
relationship between computation, cognition, and information-
processing. If a system is processing information, it is a
computing system, but the converse does not hold. If a system is
computing it need not be processing information. Cognition does



involve the processing of information, in at least three important
senses: non-semantic, natural semantic, and non-natural
semantic. Non-semantic information is merely mutual
information, or statistical dependency, between a transmitter and
a receiver: a stochastic signal. Cognition processes neural signals
which are statistically dependent on other variables. Natural
semantic information is causal correlation between a signal and
its source. Any system that processes mutual information, by
definition, processes natural semantic information, as a statistical
dependency between signal and source is a causal correlation.
Therefore, cognition processes information in this sense. Lastly,
non-natural semantic information refers to internal states that can
represent correctly or incorrectly, or “full-blown” representations
(taken here to mean representations that have the capacity to
misrepresent). At least some cognitive processes (e.g., those
involving language) tend to deal with representations that can
correctly or incorrectly represent external objects. Therefore
cognition involves information in this last sense as well.

Furthermore, information processed by computations is
medium-independent. Information processed by a concrete
computation is a vehicle over which the computation ranges. As
concrete computations and their vehicles are defined
independently of the physical media that implement them, they
are medium-independent. Thus the same computation can be
implemented in various different physical media, provided the
media has sufficient degrees of freedom, and the components of
the mechanism are functionally organized in the right way.

Finally, computations are individuated by their functional
properties, which are “specified by a mechanistic explanation
without appealing to any semantic properties” [17]. This thesis
about computational individuation must not be conflated with
any thesis about computational causation. The only properties of
a computation that are causally relevant are purely formal (or
syntactic), non-semantic properties.

Under this new concept of computation, both digital and
analog computation retain their distinctiveness, and both fall
under the umbrella of generic computation. Each has also taken
on a slightly new meaning. Concrete digital computation
manipulates strings of digits according to rules defined over
those digits. Here ‘digits’ are taken to mean discrete state
variables which can be concatenated and whose type can be
unambiguously distinguished by the computing system. This
definition of digital computation must be distinguished from
three other varieties. Classical digital computation in the
tradition of Fodor and Pylyshyn [18] is defined over language-
like objects, and necessarily involves representations. Digits in
this new digital computation need not represent. It is also distinct
from algorithmic computation, or the requirement that
computations follow an algorithm. But some Turing-computable
computations do not follow algorithms. Lastly, it is distinct from
mere Turing-computable computation, as digital computation
may be Turing-computable or not. In fact, digital computation is
a broader concept of which the above three are all subspecies.
But in this manner paradigmatic examples of digital computers
(e.g., Turing-machines, personal computers) can be properly
taxonomized.

By contrast, the sense of analog computers being defined here
rests on the notion of abstract analog computers put forth by
Pour-El [19]. These systems are distinct from digital computers
in that the variables they manipulate are continuous, and non-
discrete. Admittedly, this is not the only line on which to draw a

digital/analog distinction, as Maley [20] points out. However, as
this account of computation does not involve representations,
Maley’s distinction is orthogonal to our current analysis.

Based on our best scientific evidence, the computation that
occurs in the brain is not digital. Current evidence cites
properties of neural spike trains as the functional elements of
neural computation. Spikes were natural candidates for discrete
elements of computation in the brain due to their “all-or-none”
characteristics (i.e., individual neurons were either firing or not),
yet research shows that spike trains are not actually viable as
strings of digits. Without strings of digits there can be no digital
computation. Thus computation in the brain is not digital
computation.

In fact, current research indicates that “typical neural signals,
such as spike trains, are graded like continuous signals but are
constituted by discrete functional elements (spikes); thus typical
neural signals are neither continuous signals nor strings of
digits” [21]. That is, computation as it occurs in the brain is sui
generis. This view carries with it some consequences.

First, if neural computation is not digital, there is no good
reason to believe that formalisms from digital computability
theory will give exhaustive characterizations of the functionally
relevant properties of neural processes. Second, just because a
digital computer can model a neural computation, that does not
mean it can simulate it. Third, while it is unclear whether a
human brain is more powerful than a Turing machine, if neural
computation is not digital, “the question of whether neural
computation is computable by Turing machines doesn’t even
arise” [22].

Piccinini’s position provides a principled distinction between
computing and non-computing systems, and a sense of
computation appropriate for neural biological systems. However,
this account also attempts to do justice to computer science and
computability theory. As such, computation does not presuppose
representations, and computing systems are mechanisms.
Computation also satisfies the six features listed above.
Computation is objective—it is “out in the world”. It exists
regardless of the interests of the observer. Computational
explanation (as a kind of mechanistic explanation) will say how
a computation explains a particular behavior. This will be done
by uncovering the functionally organized entities and activities
that exhibit the behavior in question. This definition of
computation will contain paradigmatic examples of computing
mechanisms, exclude paradigmatic examples of non-computing
mechanisms, and furthermore, provide an accurate taxonomy in
which to categorize the various sorts of computing mechanisms.
The satisfaction of these requirements rests on the fact that
vehicles over which a computation is defined are medium-
independent, and either discrete or continuous. Therefore,
because the inputs and outputs of a stomach, for example, are not
medium-independent—their activities are not blind to physical
properties of the states and activities of the system—digestion is
not computation. Desktop computers, neural networks, Turing
machines, and abstract analog computers, however, are all
computers, and can be distributed into their more specific
taxonomies accordingly. Lastly, this definition of computation
can explain miscomputations. As computing systems are
mechanisms, explained by the functional arrangement of
activities and entities organized to process medium-independent
vehicles according to rules defined over those vehicles, if the
mechanism malfunctions, a miscomputation occurs. Thus
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Piccinini has drawn a principled, intuitive distinction between
computing and non-computing systems, and has done so without
recourse to content or representations. We shall see below how
the terminological adjustments Piccinini suggests can collapse
the divide between his and Shagrir’s positions, or at least draw
them closer.

4 TOWARD A UNIFIED VIEW

Let us think back to Shagrir’s original objections to computation.
First, he claims, though computation is typically described as
information processing  which necessarily  requires
representations, it is not clear that there is a sense of
“representation” which truly separates computing from non-
computing systems. Observer-independence does not seem to
draw the line in the right place, as some putative non-computing
systems (e.g., planetary systems, stomachs, washing machines)
could plausibly represent  observer-independently, yet
paradigmatic computing systems like desktop computers or
chess computers are obviously operating on symbols whose
content is observer-dependent. Another sense of representation
refers to symbol systems like the kind developed by Newell and
Simon [23]. However, this sense is still insufficient, as analog
computers operating over non-symbolic representations, and
connectionist computing systems operating over representations
with no combinatorial structure can attest.

The question thus arises: “So why keep representations?”
Presumably Shagrir feel he needs representations as his AM-
computing necessarily operates over maps of one set of
representations to another. But what sense of “representation” is
this? It seems that Shagrir only requires a sense of
“representation” strong enough to support the second condition
of AM-computing—that of simulation. By simulation, you will
recall, Shagrir means only a “mirroring” between the relations of
the target system and another. This need not, therefore, be any
strong sense of representation. Indeed, the weak sense of
information posited by Piccinini as a mere stochastic signal
between transmitter and receiver, given the complexity of the
brain, entails natural semantic information, or roughly the
reliable causal correlation that Shagrir seems to be looking for.
This does not seem too weighty a commitment. By dropping the
troubling term “representation”, Shagrir can still get the
“mapping” he desires without worrying about what processes
count as representations in the relevant sense, or determining
which representations are the “right” ones. This seems to be a
reasonable compromise.

But what of Shagrir’s other qualm with computation: the
“formality” condition given by Fodor? Specifically,
algorithmicity in both its weak and strong form is unsuitable for
describing computation in the brain, and in any case is
inadequate; non-algorithmic analog computers and neural
networks show this to be the case. Again, this need not trouble
the new taxonomy. As was shown above, algorithmic
computation is a restricted subcategory of digital computation.
Digital computation, even in its broadest sense, is still
inadequate to capture the functionally relevant properties of
computation in the brain. Therefore, the fact that there are cases
of non-algorithmic digital computing is not troublesome, and
neither are analog computers and neural networks. All are
accommodated under the new taxonomy.

Lastly, what about the interest-relative aspect of computation:
the semantic task which is necessary, on Shagrir’s account, to
individuate computations? On a view of computation that does
not make essential reference to representational content, it is
possible to skirt this semantic view of computational
individuation in favor of a functional view. The confusion comes
in that for most program-controlled computers, external semantic
descriptions are the easiest and most accessible way to gain
understanding, or to program or control them. It may be, in fact,
that many of these computations do in fact have external
semantic properties. However, all of this is consistent with the
claim that computations do not have external semantic content
essentially. Though an external semantic description may be
given of a particular computation, this does not mean that the
computation cannot be individuated without reference to external
semantic content.

Take for example Shagrir’s overly simplified example of the
“brown-cow cell” [24]. Briefly, the cell is a logic gate capable of
having different meanings assigned to the same implementation.
The cell can be described as an AND gate, thus firing when
something is both brown and a cow. Or, with a variation in the
voltage sensitivity of the components, the cell can be described
as an OR gate, thus firing when the object in the visual field is
either brown or a cow. Which computation is the “right” one, it
is argued, will be determined by the semantic task defined by the
computational problem. However, though it may be easier to
decide the computational structure of the cell by appeal to
external contents, it does not follow that it is impossible to
identify the computation without reference to semantic content.
The cell is taken to be a cell in the visual cortex, and thus is
embedded within other entities and activities making up the
whole central nervous system. The functionally relevant aspects
of a computing mechanism can be determined (non-
semantically) by investigating how the inputs and outputs of the
mechanism interact with its context in the environment. In turn
the functions which serve to individuate computations are
interpreted to be wide (but not too wide). This means that in
determining the computational identify of a system, it may be
necessary to determine its function by looking outside the
system. In the case of the brown cow cell, this might require
examining its interactions with other cell populations, and its
place in the greater causal nexus of the central nervous system.
However, none of this requires essential reference to external
semantic contents. Piccinini acknowledges the divergence of
Shagrir’s view from his own here, and attributes the dissidence
to Shagrir’s narrow construal of functional properties. This is a
separate discussion that runs far afield of our project here.
Needless to say, Shagrir offers no principled reason for the
construal of functional properties , and instead clings to a
semantic view of computational individuation. This might be the
biggest bullet Shagrir would have to bite to integrate his position
with Piccinini’s. However, as he offers no overt reason why he
chooses the narrow view of functional properties that he has, it
might be safe to presume he would at least consider dropping it.

In fact, under Piccinini’s new taxonomy, Shagrir seems to get
most of what he wants with little to no cost to his own view. We
finally have a principled distinction between computing and non-
computing systems, and have a generic sense of computation
suitable for philosophy of mind as well as neuroscience. This
principled definition of computation not only accommodates
paradigmatic examples of computing and non-computing



systems, but further categorizes them to an extent unachievable
by digital computation. We have eliminated the term
“representation” and all of its ontological baggage, while still
retaining the reliable causal correlation which caused Shagrir to
invoke it in the first place. Lastly, we have a means of
individuating computations without appeal to their external
semantic properties. Though computations may in fact have
external semantic contents, as Shagrir is quick to assume, we
need not make essential reference to them in order to individuate
computational tasks, or computations themselves. All of this is
achieved at a low cost, and it entails an added benefit: with a
principled distinction between computing and non-computing
systems comes an answer to the threat of pancomputationalism.
Now computation can remain an intrinsic fact about the world,
and only the right kinds of functionally organized systems will
be capable of implementing computations. With this, the
explanatory value of computation is preserved.

5 SHAGRIR’S REPLY

One might argue that the move to this new taxonomy is too
quick, and that it does violence to Shagrir’s theory. Presumably,
Shagrir could object on three separate bases: the removal of
representations, the broadening of functional properties, and the
apparent ad hoc-ness of this new taxonomy. However, even if
we concede to Shagrir on any or all of these counts, it should
still be clear that the chasm separating the positions of Shagrir
and Piccinini is not as wide as it first appeared.

Regarding the first objection, Shagrir might claim that the
notion of computing he finds appropriate for describing the brain
requires representations, and the removal of representations from
a theory of computations simply will not stand. Computation is
being invoked to explain mental processes, and these typically
refer to objects outside of the computing system. Therefore, it is
necessary to espouse a theory of computation which makes
essential reference to the representation of external objects.

Here again the same point will be stressed as above. The
depth of Shagrir’s commitment to representation for analog
model computing need only go so far as to allow for a mirroring
of relations between the brain and the objects the brain
represents. This mirroring need only capture the relevant
external relations, and is characterized as a reliable causal
connection between brain states and states of the world. This
sense of representation is captured in a very weak sense of
information. If the brain processes stochastic signals, then there
exists a statistical dependency of signal transmitters and signal
receivers. This dependency can be seen as a reliable causal
connection, and hence we can claim that neural processes carry
natural semantic information by virtue of the presence of non-
semantic information, in conjunction with the complexity of the
brain. While this may not be entirely satisfactory for Shagrir, it
does appear to offer the same (or only slightly weaker) sense of
representation he requires, only with a different name.

Shagrir’s second objection might be that the move to wide
individuation of functional properties is unwarranted, or carries
consequences which are unappealing. The only problem with
this assessment is that, until this point, Shagrir’s position has not
made it clear what these consequences might be. Wide
functional individuation, whatever its warrant or consequences,
does not appear to be a substantial ontological commitment at
first pass. It merely pays respect to the fact that complex

computing systems are often caught in a complex causal
hierarchy of other mechanisms. Indeed, the mechanist tradition
of Craver [25] might readily admit this. If we wish to develop a
sense of computation relative to neural biological systems, it
might be best to take this fact into account. Otherwise, if Shagrir
is still unwilling to budge on this point, the burden of
explanation is on him as to why.

Finally, Shagrir might simply cry “ad hoc” to these
adjustments, claiming them to be a reaction to the failure of
digital computation in neural systems. However, rather than an
admittance of failure, this new taxonomy seems to embrace the
wealth of evidence neuroscience has brought to bear on neural
systems. It may be that Piccinini pushes the empirical envelope a
bit, but as the computational structure of the brain is ultimately
an empirical question, this does not seem like such a bad idea.
Rather than an ad hoc move, these adjustments reflect a
considered appreciation of the complex structure of the human
mind, and respect the differences between modeling a system,
and really explaining it.

6 CONCLUSION

The preceding was a cogent presentation of the motivations
behind a unified view of computation in the brain. In closing, it
should be mentioned that it is by no means tautological that the
respective positions of Shagrir and Piccinini are extensionally
equivalent. Both authors advance the idea that the computations
a computing system performs are very real, and have truth-
values independent of the interests of observers. Shagrir wants to
say that we do not find computers in the world, but we employ
computational explanation as a means of identifying a
correspondence in the formal relations of a target system and an
object. Piccinini would agree that computational explanation, as
a species of mechanistic explanation, identifies this
correspondence to the extent that it uncovers entities and
activities duly organized so as to exhibit the phenomenon in
question. And all this can be done without the need for
representations. If we recognize neural computation in a generic
sense, as a class of computation all its own, we may yet find the
precise computational structure of the mind. Semantics, it seems,
are more trouble than they are worth. We can still be realists
about computation, avoid semantic content, and do justice to
computation as it is implemented in biological systems
embedded in their environment.
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From Proactive to Interactive Theory of Computation

Marcin J. Schroeder'

Abstract. The paper answers question “What is computation?”
presenting it as a special case of a more general natural process
involving dynamics of interacting information systems. For this
purpose, a more detailed description of the generalization of
Turing machine called symmetric machine outlined in author’s
earlier paper is used as a model for natural computing in which
pro-active character of the machine with differentiated functions
of its components (head and tape) is replaced by symmetric
interaction of functionally equivalent information systems of
hierarchic structure. Turing’s A-machine is a special case of
such S-machine in which only local states of cell’s are changing,
but not instructions on the list. The importance of the interactive
character of computation is analysed in the context of
exclusively interactive processes of mechanics. Causality
involved in physical implementations of Turing machine can be
preserved in its interactive generalization at the higher, collective
level of its structure.

1 INTRODUCTION

The question “What is computation?” presupposes identification
of a more general concept, with computation being its special
instance distinguished by some characteristics. Since the interest
in computation had its main source in the concept of a Turing
machine, it is frequently implicitly assumed that computation is
what such a machine is doing, and the focus is shifted to the
question “What can Turing machine do?”” However, the issues of
computability, or of the possibility to find effective methods of
going beyond it in hyper-computation are not directly related to
our original question, unless we restrict the concept of
computation to the algorithmic description of the recursive
functions defined for natural numbers.

Turing conceived his A-machine as an abstract description
of the process performed by the human computer (non-human
computers did not exist at that time) in simple arithmetical
calculations. His next step was to generalize the work of the
machine in modelling processes of the higher level of generality
corresponding to logical reasoning in mathematics or
manipulation of symbols in a more general context. However,
his theoretical machine and its various technological realizations
were artefacts in the sense that they were designed by humans to
achieve some pre-designed goals. They were based on
procedures derived from the use of language, in particular in the
written form of language.

Universal Turing machine turned out to be surprisingly
powerful in modelling a very wide range of processes performed
by humans. This led to the fallacious conviction that modelling
of the human way of describing reality with the use of language
is equivalent to the modelling of human mind or alternatively to
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modeling of reality. Informal extensions of the Church-Turing
thesis to all possible forms of computation going beyond its
original statement about computability of recursive functions is
an example of such conviction.

Thus, in the search for generalization of the concept of
computation we should try to go beyond the realm of human
artefacts, specifically beyond language. This justifies the choice
of naturalization of computing as a way of generalization. Now
we can formulate our original question in a more specific way. Is
it possible to describe computation as a special instance of a
more general natural process, such that its application in the
realization of our human goals becomes the familiar model of
computation?

The present paper is an attempt to present computation as
such natural process involving dynamics of information. It is not
a surprise that the conceptual framework for this purpose is
based on the concept of information. After all, most frequently
technological realizations of computation in the form of
computers are used not for the purpose of finding values of
recursive functions, but to process information in its diverse
manifestations. Moreover, information became one of the most
fundamental concepts in the description and study of natural
phenomena.

Of course, the concept of information to be used here must
be general enough to prevent re-imposing restriction of
computation to the realm of language or other human artefacts.
Although majority of theses of this article remain valid in several
of the large variety of conceptualizations of information, the
author will be using his own definition of information which
thanks to its generality includes other ways of understanding
information as special instances [1]. In particular, this definition
is putting together as dual manifestations two competing and
formerly considered contradictory concepts of information: more
popular based on the concept of uncertainty or selection and
another based on the concept of structure or form [2,3].

Thus, the concept of information is understood here as an
identification of a variety, which presupposes only categorical
opposition of one and many and nothing else. The variety in this
definition, corresponding to the “many” side of the opposition is
a carrier of information. Its identification is understood as
anything which makes it one, i.e. which moves it into or towards
the other side of the opposition. The preferred word
“identification” (not the simpler, but possibly misleading word
“unity”) indicates that information gives an identity to a variety.
However, this identity is considered an expression of unity or
“oneness”. We could interpret this formulation of the concept of
information as a resolution of the one-many opposition.

There are two basic forms of identification. One consists in
the selection of one out of many in the variety (possibly with a
limited degree of determination described for instance by
probability), the other in a structure binding many into one (with
a variable degree of such binding reflected by decomposability
of the structure). This brings together two manifestations of
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information, the selective and the structural. The two
possibilities are not dividing information into two types, as the
occurrence of one is always accompanied by the other, but not
on the same variety, i.e. not on the same information carrier.

In an earlier paper, the author presented his view on the role
of the dualism between selective and structural manifestations of
information in modelling its dynamic [4]. In order to fit
computation into this model of information dynamic, it was
necessary to reinterpret and generalize Turing machine as a
composition of two fundamentally equivalent interacting
information systems. This symmetric Turing machine was
considered in that context as an example of mechanism in which
information dynamics understood as a natural and universal
phenomenon plays fundamental role comparable to the feed-
back mechanisms or to the biological evolution.

In the present paper, the generalization of Turing machine
outlined earlier serves different purpose. It provides us with a
direction in which the concept of computation can be generalized
in order to go beyond limitations of human artefacts. With the
generalized and re-interpreted symmetric Turing machine we can
attempt not only to answer the questions “What is computation?”
or “How is computation related to other natural phenomena such
as biological evolution?”, but also we can try to find the
limitations of traditional computation and the potential ways to
overcome them.

2 SYMMETRIC TURING MACHINES

When we think about dynamics in terms of natural processes, the
fundamental concept in its formulation is interaction. If we want
to develop a naturalistic description of the information dynamic
involved in computing, it is necessary to generalize computation,
so that we have only mutual interactions. For this reason the
author considered a generalization of Turing machine, called a
symmetric Turing machine, or S-machine in place of the original
A-machine [4]. The generalization considered before was
minimal, in the sense that its only purpose was to fit the
functioning of Turing machine into a dynamical process.
Consequently, the S-machine was more different from the A-
machine because of the re-interpretation, than because of the
actual increase of generality. The description of the S-machine
here is little bit different from the original in earlier paper, but
the differences are of secondary importance.

Instead of the two very different functional systems of the
Turing machine, a reading/writing head and a tape, we have here
two information systems with basically the same structural and
functional characteristics (this is why the machine is called
symmetric). For the purpose of easy comparison with the A-
machine, traditional names of the head and tape will be retained,
although they lose their literal meaning. Both are compound
systems characterized in terms of their components which are in
respective local states, and of configurations of component states
constituting their global states. To maintain as close as possible
similarity with the A-machines, it was assumed that the
components of both systems are numbered by natural numbers
giving the structures of the system a linear, discrete partial
ordering. This assumption is quite restrictive and more general
configurations of components (e.g. with continuous indices in
real numbers or with a partial order) could be considered.
Components of the tape are called cells, of the head are called
instruction list positions (ilp’s). Each of the cells can be in one of

the n states called characters, each of the instruction list
positions in one of the m states called instructions. The
characters and instructions do not have any fundamentally
different features. The distinction is only relative to the internal
structures of the systems. What in the A-machines made the tape
and head functionally different is here generalized into
symmetric interaction in the computing dynamics of
fundamentally similar systems.

S-machine is a two-part system equipped with a dynamical
structure which in each state of the machine allows for an
interaction of one particular cell with one particular instruction
list position (active cell and active list position). Here too, we
have a restriction, as the way these two composite parts interact
could be more general allowing involvement of bigger number
of active components. The choice of the pair of active
components is a state of the S-machine, different from the global
states of compound systems which form the two interacting parts
of the machine, and of course different from the local states.
Outcome of the interaction is a possible local change of the state
of both active components (active cell and active ilp) and
possible change of the state of the machine, i.e. the choice of the
pair of an active cell and active instruction list position. The
changes are described as possible, as in some cases the states
may remain the same.

The three levels of computation dynamics require separate
considerations. At the local level, each step of computation at the
state of the machine (j,k), meaning that j-th cell and k-th ilp are
active, is described by a function (¢’j,i’x) = @yo(cj,ix), Where c;
and c’; belong to the catalogue of n cell states (characters), and ix
with i’y belong to the catalogue of m states of ilp (instructions).
The function @, does not depend explicitly on j and k, but
exclusively on the values of ¢, iy.

The change of the state of machine is another function
(j’.k’) = @y (c;j,ix), which in this case is in principle a compound
function of j and k, but its dependence on j and k may be
eliminated (by defining each j’ as j+s where s is an integer
function of the values of ¢; and i), and then it depends
exclusively on the values of cj, i.

Finally, we have a function (c’,i’) = ®goy(c,i,t) describing
the change of the global states of the two interacting systems
which form the machine after t iterations starting from the global
states ¢ = (¢;: jeJ) and i = (i : ke K).

“Tape” Active cellj
From the catalogue ofn characters
— — " ,J —— ™ - —— o
Other cells “Character Other cells
Local state:

S T
(i) = @qfciiy)

(C'lsi’k) = {D\nc(cj-ik)

{Oiher iips % msr.mqf Other ilp’s
From the catalogue of m insructions
“Head”  Active instruction list position (ilp) k

Global state: (c'[") = Dgep(ci ), € = (g jed), 1= (i keK)
Figure 1. Symmetric Turing Machine

It is obvious, that the S-machine in which the state of each
instruction list position (ilp) remains always the same allowing



identification of ilp’s with respective instructions is a usual A-
machine. If we additionally assume that the local states of the
tape remain unchanged, we get an automaton. The possibility of
the change of instructions, i.e. local states of at least some
instruction list positions makes the S-machine slightly more
general than the A-machine. However, disassociation of the
change of the local state of the tape from the head and describing
it as an interaction between active local components of the
compound systems is just a reinterpretation.

There is a natural question whether the result of every
computation performed by S-machine on the tape can be
computed by an A-machine. However, even if it can, S-machines
open many interesting questions which simply cannot be stated
for A-machines. As a result of computation, both interacting
compound systems evolve. It is interesting (for many reasons)
question whether it is possible to evolve a universal A-machine
from simpler S-machines, and under what conditions it is
possible.

Another, but related question is about the relationship
between the S-machines and super-recursive algorithms
introduced by Mark Burgin [5] or evolutionary computation
considered by Eugene Eberbach [6] and others [7]. Here the
answer is similar to that above. Since evolutionary computation
presupposes the use of universal Turing machine for which a
new type of algorithm with evolutionary characteristics is used,
even if the outcome of computing on the tape can be reproduced,
there is a wide range of problems which cannot be formulated, in
particular, the problems of natural realization of computing in
the biological systems.

3 INTERACTION vs. ACTION - CAUSALITY

S-machines with their dynamic based on interaction give us
generalization going beyond traditional computing. This
generalization can be understood as an interaction of two
information systems, each of hierarchic character with two
levels, the local one in which information has selective
manifestation, and the global one in which information has
structural manifestation.

Interaction is between components of the local level, but its
outcome is exhibited in the evolution of structural manifestation
of information at the global level. This type of process can be
also realized in the form of a biological evolution of populations
(interaction of the population and its environment), or as
mechanisms of the feed-back type [4].

However, there is still a problem whether answering the
question “What is computation?” in terms of the dynamics of
interaction of composite systems is justified. Why is the dynamic
of S-machines based on interaction in place of traditional one-
way action of the head on the tape so important?

The answer to this question requires a broad perspective on
the computing taking into consideration the fact that computing
is performed by some actually existing machine, not by its
theoretical model. The latter is only an interpretation created by
human mind of what is actually happening in the machine. For
instance, we can interpret a sequence of zeros and ones on a tape
as a natural number presented in a binary numerical system, but
without active participation of the human mind the sequence
does not have any meaning beyond structural information in the
form of configuration of the states of cells.

Any numerical interpretation is involving an external entity
(mind) which escapes description of computation. The issue is
similar to the recognition of the difference between a numeral
and corresponding number. Without active participation of
human mind there is no relationship between them. Actually, the
relationship involves not only a conscious mind, but also its
cultural load in the form of the numerical convention. Conscious,
but uneducated mind would not be able to perform
interpretation.

Since it is completely impractical to search for description
of computation which involves as a component human mind
with its all functions, we have to find conceptual framework in
which mind’s interpretative capability is absent, or is simplified
to the degree permitting its modelling. It is natural to expect that
the process of computation is autonomous and can be described
as independent from its interpretation. Interpretation can be
considered at a secondary stage of description.

The fact that computation is after all a fundamentally
physical process is obscured by the old fallacy regarding the
distinction between its digital and analogue forms [4]. In both
types of computing the process is physical, involving a
measurement of a physical system, but the interpretation of the
outcome of the measurement is different. In digital computing
only discrete values are assigned (typically O and 1), while in
analog one the set of values is assumed to be continuous
(interval of real numbers).

Some analogy can be found in the use of a slide rule. Both
addition and multiplication of numbers involve sequential
composition of material intervals of the rulers along a line. If we
use linear scale on rulers, the outcome is the sum of numbers
assigned to intervals. If we use logarithmic scale, the outcome is
the product. Process here is identical, purely physical, the
difference is in interpretation.

This means that computation of any type involves a
physical process, which successively is interpreted. We can
consider this interpretation as a secondary process of assigning
the meaning to the states of the physical system and their
transitions. To avoid problems of the meaning of meaning, we
can use approach proposed by the author [8].

Meaning can be understood as a relationship between two
information  systems which preserves their structural
characteristics (mathematically described as their respective
logics in the form of lattices of closed subsets of appropriate
closure space). In the linguistic context, information system of
some fragment of reality is mapped into the information system
of the language. Typically, the latter system has much smaller
information capacity, allowing more economic handling of
information.

Similar situation is in the case of computing. In the
analogue computing, meaning is simply a process of assigning
real number values to the states of a physical system, not much
different from the usual concept of an observable.

In the case of digital computing, situation is more
complicated. Here, physical measurements have only two values
(or at least discrete and finite) and are performed at the local
level of a cell of the memory or processing unit. Of course, we
have here too some form of meaning relationship, but it is
usually completely ignored. Nobody (except engineers working
on the technological aspects of computer architecture) is usually
interested in the meaning of the fact that some cell of memory
has value 1 or 0.
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Through the composition (typically multiple compositions)
of functions, the meaning is associated with a system of cells
according to the rules called “data structures”. For Turing
machines, typically meaning is an association of a global
structure composed of the local states of cells with a natural
number, more precisely with a numeral. This means, the
meaning of a numeral is a global configuration of local states of
cells.

Numeral can be associated with a natural number, but this
association is outside of our study, because it requires
involvement of human mind. It would be an absurd to claim that
Turing machine itself is capable to associate numeral with a
natural number.

Even if for typical issues of computation the engineering
problem of the meaning of the local states of cells is of
secondary interest, it is necessary to remember that it is the point
where physics of computing is entering the picture. The original
metaphorical image of a Turing machine as a head moving on an
infinite tape and reading and printing characters cannot be
considered literally. Thus, we have to take into account the
physical picture of the world in which interactions play the
fundamental role, as postulated by the third principle of
Newtonian mechanics.

This brings us to the question about the relationship
between the theoretical model of Turing machine and its
physical world implementations. The former is based on logical
relationships, which describe computation as a process only in
the sense of a linear ordering of consecutive steps. This linear
ordering and number of steps play the role of “time”, while
number of cells between the first nonempty character (typically
the first 1) and the last is considered a measure in “spatial”
dimension. However, both expressions are metaphorical.

Physical implementations of Turing machine operate with
the assumption of involvement of causality and one-way actions.
When the head is reading a character, we have one-way action
from the cell to the head, when the head is printing we have
reversed direction of action. Computation becomes a chain of
causal relationships realized through one-way actions.

How can this picture of apparently physical realization of
Turing machine be explained, when physics tells us that we have
only interactions? The question is basically the same as that
about the agreement between mechanical view of the world and
causality.

Our sense of exercising free will makes causal relationship
seemingly very natural. We believe that an apple falls on the
ground, because Earth is acting on it with gravitational force. We
also believe that the Earth is revolving around the Sun. But, it is
not the physical view of these phenomena. Both the Earth and
the apple are falling towards their centre of mass. Both the Earth
and the Sun are revolving around their centre of mass. In the first
case, the error in the common sense description is so small, that
in practice we can always forget the actual physical description
of the process.

It is much bigger problem, when the issue is not the
magnitude of an error, but explanation of the mechanisms of
phenomena. For instance, the concept of free will requires that
the human subject has the ability to initiate and carry out an
action towards something unilaterally. Thus, even if we
overcome objections of Laplace regarding mechanical
determinism in the form of his omniscient demon, there is still
problem how to explain initiation of a causal chain.

Surprisingly, the concept of a causal relationship is
incompatible with mechanics, in a similar way as kinematic
theory of heat entered Loschmidt’s “reversibility paradox”.
Every mechanical process is symmetric with respect to time
inversion. What happens in one time-direction can happen in the
other, under appropriate change of force direction (but not of the
point where the force is applied!).

Causal relationship has as its necessary condition time
precedence, and therefore is strictly dependent on time direction.
Thus, we cannot derive causal relationship from the mechanical
description of the world.

To resolve this paradox, we can follow Boltzmann in his
resolution of the original paradox of Loschmidt, by giving the
Second Law of Thermodynamics statistical status.

While mechanics describes dynamics of micro-components
of the system (e.g. molecules of gas), thermodynamics describes
the compound system in terms of macro-states, whose high value
of entropy corresponding to the big number of microstates
producing the same macro-state makes them preferable in
dynamical evolution simply because of their higher likelihood.

In order to resolve our paradox, we can also assume that
the causal relationship is a collective phenomenon governed by
appropriate rules applicable to collectives. Thus, without getting
into contradiction with the physical image of the world, we can
say that lost control over the car caused collision with a tree,
even if from the mechanical point of view both the car and the
tree participated in the accident in exactly the same way.

The Second Law of Thermodynamics was later associated
with more general rule for not necessarily mechanical complex
systems described in terms of information. The connection is
very clear through the association of physical entropy (which has
physical dimension) with informational entropy (devoid any
physical dimension) introduced by Shannon as a measure of
information.

Since causality is a philosophical concept and does not
belong to strictly scientific terminology, it is more difficult to
associate it with the transfer of information in a formal manner.
However, the description of information dynamics in an earlier
paper of the author [4], together with the assumption of the
collective character of causality allows its interpretation in this
way. Actually, the view of causality as a transfer of information
was already considered before, but in different context [9].

When we have interaction of complex systems with two
hierarchically structured levels, local and global, associated by
the duality of the selective and structural manifestations of
information, the interaction (which lack direction) carried out at
the local level can produce directed transformation of the
structural information at the global level, which can be
interpreted as a cause-effect relationship.

This very general outline requires further elaboration
regarding justification of the association with causality, which
however is beyond the scope of the present paper. Our objective
is to present computation in its traditional form, as a special case
of the more general process of interaction of two complex
systems at the local level which results in a directed evolution at
the global level. Computation with a symmetric Turing machine
is an example of such process, which is fully consistent with
physics. Moreover, computation in its naturalized form becomes
a model for information dynamics, which can be useful in
explanation of natural phenomena, such as cognition.



4 CONCLUSIONS & FUTURE WORK

Turing S-machines based on mutual interaction of their
components as described above are minimal generalizations of
A-machines satisfying the requirement of consistency with
physics, and can have realizations in a large variety of natural
systems.

Since general information systems can have multi-level
hierarchic structures derived from the dualism of selective and
structural manifestations of information, further generalization of
computation may be considered in such architecture. An
important example can be found in living objects.

The objective of the present paper is to answer the question
“What is computation?” by putting computation in the context of
natural processes, which involve interaction. S-machine
generalization of Turing’s A-machine served this purpose. On
this occasion further generalizations appeared as possible ways
to make computation similar to natural processes, but their study
does not belong here.

Other generalizations worth future consideration mentioned
above include processes which instead of iteration, i.e. indexing
of steps in computation by natural numbers, can be described by
parameters with continuous values, or with parameters belonging
to a general partially (not necessarily linearly) ordered set. Yet
another generalization can be considered with a variety of
different ways active components interact.

The latter generalization is of special interest, as the
assumption of a single pair interaction seems most artificial. The
structure of cells and instruction list positions could have
geometry very different from the linear and interactions of active
components could depend on the geometry.

Finally, there is need for the theory of computing (with S-
machines, or A-machines) in complex systems with “limited
resources”, i.e. with the limits on the number of components,
either absolute, or “time”-dependent (i.e. with the limit as a
function of the number of steps performed in calculation).

REFERENCES

[1] M.J. Schroeder. Philosophical Foundations for the Concept of
Information: Selective and Structural Information. In: Procs. of the
Third International Conference on the Foundations of Information
Science, Paris 2005, http://www.mdpi.org/fis2005 ,(2005).

[2] MLJ. Schroeder. Quantum Coherence without Quantum Mechanics in
Modeling the Unity of Consciousness, In: P. Bruza, et al. (Eds.) QI
2009, LNAI 5494, Springer, Berlin, Germany, pp. 97-112, (2009).

[3]1 M.J. Schroeder. From Philosophy to Theory of Information, Intl. J.

Information Theor. and Appl., 18 (1), 56-68, (2011)

[4] M.J. Schroeder. Dualism of Selective and Structural Manifestations
of Information in Modelling of Information Dynamics, In: G. Dodig-
Crnkovic, R. Giovagnoli (Eds.) Computing Nature, SAPERE 7,
Springer, Berlin, Germany, pp. 125-137, (2013).

[51 M. Burgin. Super-recursive Algorithms. Springer, New York (2005).

[6] E. Eberbach. Toward a Theory of Evolutionary Computation.
BioSystems, 82 (1), 1-19, (2005).

[7]1 D. Roglic. The universal evolutionary computer based on super-
recursive algorithms of evolvability. arXiv:0708.2686 [cs.NE],
(2007).

[8] M.J. Schroeder. Semantics of Information: Meaning and Truth as
Relationships between Information Carriers, In: C. Ess & R.
Hagengruber (Eds.) The Past,

Computational Turn: Presents,

Futures? Procs. IACAP 2011, Aarhus University — July 4-6, 2011.
Monsenstein und Vannerdat Wiss., Munster, Germany, pp. 120-123,
(2011).

[9] J. Collier. Causation Is the Transfer of Information. In: H. Sankey,
(Ed.) Causation, Natural Laws and Explanation. Kluwer, Dordrecht,
pp- 279-331, (1999).

51



52

Computational Complexity: An Empirical View

Maél Pégny !

Abstract. Computational complexity theory (CCT) is usually con-
strued as the mathematical study of the complexity of computational
problems. In recent years, research work on unconventional com-
putational models has called into question the purely mathematical
nature of CCT, and has revealed potential relations between its sub-
ject matter and empirical sciences. In particular, recent debates sur-
rounding quantum computing have raised the possibility of a new
computational model, one based on quantum mechanics, which may
be exponentially more efficient than any previously known machine.
In this paper, I will show how those recent debates suggest an al-
ternative, empirical view of CCT. I will then examine what are the
fundamental arguments in the favor of this view, what are its con-
sequences for our conception of CCT as a scientific field, and how
further philosophical investigation should proceed.

1 Introduction: unconventional computing and
philosophy

In the last decades, computer scientists have been showing a grow-
ing interest in the study of unconventional computational models.
Those models stem from a broadened understanding of computation.
In his original paper, A. Turing made it clear that this model was
explicitly inspired by human, pen-and-paper computation (see [28],
section 9). In many unconventional computational models, compu-
tation is no longer reduced to the discrete process of pen-and-paper
computation: computation is any process that allows the encoding of
an input value into the state of a given system, the processing of that
information according to a given specification, and the reading of an
output value. Physical, chemical and biological processes can be har-
nessed to perform computations in this broadened sense. Algorithms
can no longer be conceived as abstract mathematical methods whose
conception and theoretical properties are completely independent of
implementation: algorithms now become abstract models of empiri-
cal processes.

This new approach to computing raises new challenges for com-
puter scientists. In the case of Turing machines, and other historical
models, empirical realizability was not a pending issue. The possi-
bility of implementing these models by pen-and-paper computation
was built into their very design. Many unconventional computational
models, on the contrary, raise more serious issues of empirical real-
izability. Furthermore, defining the set of computable functions, or
computational costs, according to these models, might depend on
considerations of empirical realizability. In this broadened frame-
work of computation, it becomes natural to think that not only logical
and mathematical arguments, but also empirical ones, are relevant to
decide whether a given model is realistic, and what its exact compu-
tational power is.
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To the extent of my knowledge, there is a striking assymetry in
the philosophical litterature® between the treatment of computabil-
ity issues and that of complexity issues, when it comes to analyz-
ing the role of empirical considerations. Foundational issues of com-
putability, especially the debate on the possibility of hypercomputa-
tion, have been the object of intensive scrutiny (see [12], [6], [27],
[21], [9], to mention only a few references). The relations between
computational complexity and empirical considerations have been
the object of a somewhat lesser attention (see [22], [23], [16], [17],
[30], [2], for a few remarkable exceptions). In particular, how this
empirical turn might affect our conception of CCT as a discipline
has not been the subject of a systematic philosophical treatment. The
aim of this work is to synthetise the dispersed remarks present in the
literature, and to provide such a systematic treatment.

After articulating the orthodox, mathematical conception of CCT
(section 1), I use recent analysis of the Extended Church-Turing The-
sis (ECTT) to present an empirical interpretation of CCT (section 2).
I then examine how research on unconventional computational mod-
els, especially quantum computing, can support arguments in favor
of this empirical interpretation (section 3). Finally, I discuss how this
interpretation offers a new vision of the subject-matter of CCT, and
its unity as a scientific field: CCT can be seen as an empirical science,
founded on empirical hypotheses (section 4)

2 The subject-matter of CCT, and the nature of
computation

What is the object of computational complexity theory (abbreviated
as CCT*)? In the literature, CCT is usually defined as a mathemati-
cal science quantifying and studying the difficulty of mathematical,
computational problems ([13], [5]). Two remarks must be made to
properly understand this definition.

First, complexity properties are, prima facie, properties of algo-
rithms. They become intrinsic properties of a given problem through
optimality results, which demonstrate that no algorithm can do better
than a given, optimal one. It is this quantification over all possible al-
gorithms, and the quest for optimality results, that distinguishes CCT
from Algorithmic Analysis.

2 By “philosophical literature”, I do not only mean the literature written by
professional philosophers, but also the foundational considerations pub-
lished by physicists, computer scientists, and logicians.

3 I will actually focus my attention on uniform computational complexity
theory. The reason for this restriction is simply that I am only interested in
computational models that can actually be implemented. If one thinks of the
characterization of non-uniform complexity classes by resource-bounded
Turing Machines receiving advice, one immediately faces the problem of
the actual origin of such an advice. In full generality, it is unclear whether
non-uniform computational models can be considered as empirically real-
izable models, or if they are to be considered as abstract tools used by the
theorist. Even though that might be a very interesting philosophical issue, I
do not think that such a short, synthetic work is the proper place to discuss
such details.



Second, and foremost, CCT as a domain rests on three distinct
hypotheses concerning the nature of its subject matter and the nature
of its results:

e Hardware-independence. CCT concepts and results are indepen-
dent of low-level hardware details. This is one of the central rea-
sons why the number of steps needed by a given algorithm is de-
scribed up to a linear factor, using the O notation. The exact num-
ber of steps taken by an algorithm on a given machine could be
sensitive to hardware details, but its gross magnitude should not
show that sensitivity.

o Model-independence. To be well defined, computational costs
must be considered within a given computational model, i.e. a
mathematical model describing precisely how algorithmic instruc-
tions are to be written, and how they are to be executed. But the
main concepts and results of CCT are independent from any par-
ticular choice of model, e.g. Turing machine, or register machine.

e Relevance for implementation. Despite hardware and model in-
dependence, CCT results are relevant to determine the concrete
values of time-interval, and memory size, needed by a concrete
device when it executes a given algorithm.

The first two hypotheses explain why CCT can be seen as a math-
ematical, abstract theory of computational problems. The third one
states that its concepts and results remain relevant for concrete ma-
chine implementations. This is the reason why CCT can also some-
times be defined as a branch of engineering, one that quantifies and
studies the resources needed by a computer to solve a given problem,
without creating any philosophical controversy [20].

From these three hypotheses, a vision of computation, and its com-
plexity, can be reconstructed. Computation is an abstract process that
can be studied a priori by a mathematical theory. The results of this
theory determine constraints relevant for any device that implements
that abstract process: real runtime and memory size are thus deter-
mined to a certain order of magnitude by the logical steps described
by the instructions of the algorithms.

This rather natural view of computation, and its complexity, has
been called into question by recent work in unconventional compu-
tational models. Since this criticism mainly stems from recent chal-
lenges made to the hypothesis of model-independence, I will first
take a closer look at it.

3 The core issue: model-independence and the
Extended Church-Turing Thesis

The rigorous expression of model-independence is a specific hypoth-
esis lying at the foundations of CCT, called the Extended Church-
Turing Thesis (henceforth abbreviated as ECTT):

All reasonable computational models are simulable by a Turing
machine with at most polynomial overhead.

All the proven relations of efficient simulation between models
that have been explored so far provide evidence for this thesis. But as
the list of computational models is open-ended, it currently remains
a working hypothesis. It is not a mathematical proposition, and thus
can be neither demonstrated nor taken as an axiom.

Despite its informal character, the ECTT is a fundamental hypoth-
esis of CCT for at least two reasons. First, the ECTT allows complex-
ity theoretists to reason within one particular model, most frequently
Turing machines, knowing that any result regarding the polynomial
or superpolynomial time-complexity of a given problem will remain
untouched by a change of model. Without the ECTT, complexity
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properties could not be attributed to computational tasks in an ab-
solute sense, but only relatively to a given model. The second reason
is that the model-independence of polynomial time is one of the main
arguments for the identification of polynomial-time complexity with
tractability, and superpolynomial time-complexity with untractabil-
ity (see, for instance, [19]).

The obvious escape in ECTT is the adjective “reasonable.” It sug-
gests the existence of computational models that go beyond the lim-
its drawn by the ECTT, but are characterized as 'unreasonable.’” Yet
without any specification of what a reasonable computational model
should look like, the ECTT is not only informal, but also not well-
defined.

In recent years, several computer scientists and physicist, includ-
ing P. Shor, U. Vazirani, E. Bernstein and D. Aharonov suggested
that “empirically realizable”* should be substituted for “reasonable”
in the above phrasing (see [26], [7], [4]). The suggestion is quite
natural, since empirical realizability is a necessary condition of im-
plementation.

A straightforward identification of “reasonable” with “empirically
realizable” might nevertheless be questionable. As P. van Emde Boas
noticed in [29], a computational model might violate the ECTT sim-
ply because of a bad choice of data representation. There is no rela-
tion of efficient simulation between an unary Turing machine and a
Turing machine with a shorter data representation but it is yet empiri-
cally realizable. A reasonable computational model might be defined
only up to a convenient choice of data representation. Other similar
conditions, independent of empirical realizability, might be added to
an improved understanding of what a reasonable model is. For the
sake of caution, one might distinguish a special, empirical ECCT
(All empirically realizable computational models are simulable by a
Turing machine with at most polynomial overhead) from the original,
general ECCT. The empirical ECCT is not an autonomous proposi-
tion but a simple subhypothesis of the general ECCT: if it turns out
to be false, the general ECCT would be refuted. Even if the ECTT is
not reduced to an empirical hypothesis, it would still depend on such
an empirical hypothesis®. This being said, we can drop the distinc-
tion between the empirical ECTT and the general ECTT for the sake
of conciseness.

We may then consider an empirical interpretation, or empirical
view, of computational complexity, based on the following state-
ment: a valid definition of a reasonable computational model, and a
valid definition of computational costs within a computational model,
should take into account the empirical factors of empirical realizabil-
ity. The value of this proposition is essentially heuristic, since we do
not have a definition of what a reasonable computational model is.
It simply warns computer scientists, that they should take empirical
factors into account, when they discuss the reasonableness of a given
computational model.

This proposal opens a new vista on the subject-matter of CCT,
since it lays at its foundations an empirical hypothesis, which might

4 The most commonly used phrase is “physically realizable”. But I prefer to
avoid the common philosophical ambiguity associated with the adjective
“physical,” which refers both to any empirical entity or process, and to the
entities or process that are explicitly modelized by physics. P. Shor clearly
had the second acception in mind, since he writes [26] :

Researchers have produced machine models that violate the above
quantitative Church’s thesis, but most of these have been ruled out by
some reason for why they are not “physical;” that is, why they could
not be built and made to work.

w

Our inability to demonstrate the ECTT should not be attributed to a mere
lack of definition, but to this very dependence on an empirical hypothesis,
which cannot be proven.
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be refuted by further empirical findings. The purely a priori nature
of CCT as a discipline might thus be called into question. A proper
account of computational complexity should take into consideration
the empirical conditions of implementation. As P. Shor explicitly
remarked, the success of our mathematical models of computation
might have blinded us to this seemingly elementary fact, tricking us
into thinking that computational complexity was a purely abstract, a
priori topic.

With this interpretation in mind, it is easy to see the reason why the
ECTT should not be considered an implicit definition, as P. van Emde
Boas proposed [29]. If one thinks that the ECTT should be a math-
ematically well-defined proposition, then one can only be disturbed
by the lack of definiteness of the notion of "reasonable model". At
first sight, it would seem relevant to consider that statement as a im-
plicit definition of the notion. But one would then be unable to use
this concept to discuss the merits of original computational models,
which is a quite unpleasant consequence.

An empirical view can help us out of this dead-end. The basic con-
cepts of physics, for instance, are never defined with perfect mathe-
matical rigor. Think for instance of the wave-packet reduction prin-
ciple in quantum mechanics: when a measurement occurs, the wave
function of the measured system collapses to an eigenstate of the
measured observable. It does not tell us precisely what counts and
what does not count as a measurement, and this has precisely been a
topic of discussion in the interpretation of quantum mechanics. But
it would nevertheless be foolish to think that it is an implicit def-
inition of what a measurement is, and it does not keep physicists
from believing that they would acknowledge a counter-example to
that principle if they met one. In mathematics, you cannot speak of a
counter-example to a proposition that is not rigorously defined. That
is not the case in empirical sciences: physicists agree that they would
acknowledge a counter-example to basic physical principles, even
if a basic principle is never defined with perfect rigor, and there is
always room for interpretation. In that sense, physical principles, if
they cannot be demonstrated, can be falsified, and have to be con-
strued as genuine propositions, not mere definitions.

In a similar fashion, we might not be able, and we should prob-
ably not try to reach mathematical rigor in the definition of what
a reasonable computational model is. It should not keep us from
discussing the issue, and it will not keep us from acknowledging a
counter-example to the ECTT if we ever meet one. Thus, the empir-
ical interpretation of the ECTT illuminates its present status, and the
understanding that we should have of it. It is a empirical proposition,
that cannot be demonstrated, but can both be falsified by a relevant
counter-examples, and corroborated inductively by the rebutting of
alleged counter-examples, just as our fundamental physical princi-
ples are corroborated by years of resistance to seemingly adversary
experiments.

4 How empirical considerations are brought into
CCT: unconventional computational models

Let us now see how one can argue in favor of this empirical interpre-
tation. Before we come to the main argument, namely the current de-
bate around quantum computing, let us put the problem into a larger
perspective, by presenting quantum computing as one among many
other unconventional computational models.

A fundamental distinction has to be drawn between two different
questions: the relevance of empirical considerations in the definition
of a computational model, and the success to implement this or that
unconventional model. Many unconventional models are blatantly

unreasonable, but the very reasons why they are deemed so make
them relevant for the discussion of the empirical view of computa-
tion. If the arguments formulated to dismiss exceptional complexity-
theoretic performances are empirical, then the empirical interpreta-
tion of complexity is supported by the following counterfactual argu-
ment: if empirical facts of the matter have been different from what
they actually are, then it would have been possible to achieve ex-
ceptional computational performances, such as the violation of the
ECTT. The truth-value of the empirical interpretation of complexity
does not depend on the success or failure to implement some uncon-
ventional computational model, but on the specific reasons for this
success or failure.

Depending on the computational model under scrutiny, the “em-
pirical facts of the matter” mentioned in the antecedent can vary
greatly in nature. In certain cases, such as quantum computing with
non-linear variants of Schrodinger’s equation [3], the computational
model contradicts well-established principles of some physical theo-
ries. In other cases, such as computing with Closed Timelike Curves,
a controversial aspect of some accepted theory, i.e. General Relativ-
ity, is put to use (see [10], for a critical appraisal). In still other cases,
the computational model makes use of a formal possibility that would
be deemed unrealistic by most physicists, such as arbitrarily precise
control or measurement of a given system, even though for the time
being no fully established principle explicitly forbids such a possi-
bility (see [2] for a comprehensive review).

Among all unconventional computational models, quantum com-
puting (abbreviated as QC) has drawn an exceptional amount of at-
tention from the CCT and physics community. To this day, QC is the
only computational model violating the ECTT that has been the ob-
ject of intensive scientific scrutiny, with entire research groups work-
ing on both theoretical and experimental aspects of the problem.

What makes QC so special? In 1994, P. Shor published an effi-
cient algorithm to factorize integers using a quantum computational
model [25]°. This result was striking mainly for two reasons. First,
factorizing integers was, and still is believed to be hard on a Turing
machine: it is thus likely that Shor’s algorithm violates the ECTT.
Second, quantum computing is not based on a blatantly unrealistic
model, but on our best-confirmed physical theory, and it is not obvi-
ous to say that it misconstrues this theory.

For very small input sizes, prototypical quantum computers have
already been implemented and shown to work. Nevertheless, a true
demonstration of the extra computational power of quantum comput-
ers would require the use of large inputs to study how computational
time scales with input size. This has not yet been achieved and would
represent a considerable experimental challenge. Thus the possibility
of a large-scale quantum computer is still a controversial topic.

From our philosophical perspective, one argument used by QC en-
thusiasts has special interest. The relevance of research in quantum
computing has been defended on the basis of an “either way I win”
argument. Trying to build a large scale quantum computer would be
a topic of major scientific interest, because if we were successful, we
would have shown that the ECTT could be violated, and if we were
not, since quantum computing is compatible with quantum theory
as we know it, we would have proven quantum theory wrong. The
debates on the possibility of quantum computing exhibit the depen-
dence of a complexity-theoretic question -does there exist a reason-
able computational model violating the ECTT? - to non-trivial, open

6 There exist other results indicating that a quantum computer might be more
powerful than any conventional, “classical” model (see, for instance, [14]).
But Shor’s algorithm is the only known example that provides an exponen-
tial speed-up over conventional models.



questions in quantum theory, such as the possibility to protect large
quantum systems against decoherence, the exact precision to which
a quantum system can be controlled, the exact accuracy to which
quantum-theoretic predictions hold (see, for instance, [19] and [1]).
Even if a large-scale quantum computer turned out to be impossible,
one could still formulate a particularly strong counterfactual argu-
ment in favor of the empirical interpretation: if any, or several of
the aforementioned facts had been different from what they actually
are, then we would have violated the ECTT. The particular strength of
this argument would come from the necessity to refute the possibility
of efficient quantum computing of gathering new information about
the physical world, as opposed to just using already well-established
physical principles, or exerting skepticism towards already criticized
models.

The “either way I win“ argument has of course been criticized
(see for instance [18], section 2). In this paper, I do not intend to
discuss this argument with all desirable precision and I will just make
the following, heuristic remark. The “either way I win* argument is
the proper place to discuss the empirical interpretation of complexity
because it states that even if quantum computing fails to violate the
ECTT, it will fail for interesting, empirical reasons.

5 Philosophical implications

5.1 CCT as a mathematical theory of
computational problems: a critical appraisal

In the current state of affairs, there are significant, if not compelling,
arguments in favor of the empirical interpretation of complexity.
Leaving to further investigation the strengthening or correction of
these arguments, the philosopher can wonder how this empirical in-
terpretation, if it turned out to be vindicated, would change some of
our fundamental intuitions about the subject matter of CCT, and the
very nature of computation.

If one admits the validity of counterfactual arguments, the empir-
ical interpretation of complexity can be considered as independent
from the truth of the ECTT. Even if the ECTT is vindicated from all
the different trials to which it has been subjected by unconventional
computational models, it will have been established that CCT rests
on a fundamental empirical postulate, and is therefore an empirical
science.

This last remark calls into question our initial vision of CCT as
a mathematical study of complexity properties of problems. If the
empirical interpretation is vindicated, it would no longer be possible
to demonstrate that a given problem, construed as an abstract math-
ematical entity, has certain computational complexity properties. As
we have seen above, the ECTT, along with the existence of optimal
algorithms, is necessary to attribute complexity properties to prob-
lems, and not just to algorithms. If the ECTT depends on a true em-
pirical postulate, namely the empirical ECTT, then the attribution of
complexity properties to a problem is not a mathematically provable
result, demonstrated with purely a priori means, but an empirical re-
sult, which might be refuted by new empirical findings.

However, if the ECTT is false, then it is no longer possible to
consider that the polynomial-superpolynomial time-complexity of a
given problem as an intrinsic property of that problem. This is par-
ticularly obvious in the case of quantum computing. If a large-scale
quantum computer is empirically realizable, then the same problem,
FACTORING, will be polynomial on a quantum computer, and su-
perpolynomial on a classical computer. Of course, it would still be
possible to talk about the “complexity of the problem,” to desig-
nate the complexity of the most efficient known algorithm solving
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that problem. But that property would be an extrinsic property of the
problem, depending on the machine model at hand.

Complexity properties could still be attributed to algorithms, but
a new vision of their relation to implementation would emerge, es-
pecially if a large-scale quantum computer is feasible. Again, this
is particularly obvious in the case of quantum computation. Shor’s
algorithm can be simulated by a Turing machine, and thus by a clas-
sical computer. But this simulation would not preserve its complexity
properties and create exponential slowdown. It is only on a true quan-
tum computer that the desired complexity properties of this algorithm
could be achieved. If complexity properties were still conceived as
intrinsic properties of algorithms, this last remark would call for a
reassessment of the distinction between hardware and software. An
algorithm like Shor’s algorithm is not “portable”, in the sense that its
complexity-theoretic advantages would be destroyed by classical im-
plementations. But it is not so much dependent on the technological
details of hardware than on the underlying physics of the hardware,
as I will now demonstrate.

5.2 The unity of CCT as an empirical science

If CCT subject matter can no longer be conceived as complexity
properties of problems, how can we conceive of it? As we have seen
above, the ECTT guarantees that fundamental distinctions of CCT
are robust. As we have previously seen, it also guarantees the pa-
cific coexistence of two presentations of CCT: a pure mathematical
discipline, and a study of the actual performances of real-world com-
puters. If the ECTT is false, one would then be tempted to consider
CCT as some branch of engineering, studying the properties of multi-
farious computational models, without any systematic unity. But this
conclusion, I will argue, is not warranted by our previous analysis.
To better understand how CCT maintains its unity as a scientific dis-
cipline, one has to take a closer look at the fundamental hypotheses
of CCT.

First, I call “physics-dependence” the hypothesis that complexity-
theoretic properties of a given computational model depend on un-
derlying physical assumptions of this model. Physics-dependence
should be distinguished from hardware-dependence. This distinction
is more easily explained by considering quantum computers. A quan-
tum algorithm depends on quantum properties of the system used for
implementation, but it does not depend on the particular technologi-
cal detail of that implementation. From a complexity-theoretic point
of view, it does not really matter whether a quantum computer is
made out of trapped ions or photons, to mention two actual imple-
mentation strategies. CCT is still independent from hardware details,
even if it is no longer independent from the physics underlying that
hardware.

Secondly, physics-dependence should also be distinguished from
model-dependence. These last two decades have seen the birth of
many different quantum computational models: quantum Turing ma-
chines, quantum circuits, quantum cellular automata, one-way quan-
tum computer, topological quantum computation, quantum adia-
batic computation, and several high-level models such as quantum
lambda-calculi, quantum flow-charts, and categorical quantum lan-
guages. This list is of course open-ended, just as the list of “classi-
cal” computational models is open-ended. The study of the relations
of efficient simulation between all these models raises exactly the
same issues as before. Many of these models have been demonstrated
to be polynomially equivalent (see, for instance, [31], [24]), but the
question has been raised whether a given model, namely quantum
adiabatic computation, could be more powerful than other quantum
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models, allowing the computation of NP-complete problems in poly-
nomial time [11]. This idea has been criticized along customary lines
for not being empirically realizable [2].

Even if the hypothesis of model-independence in all general-
ity is false, it becomes possible to formulate a milder form of the
ECTT: all realistic computational quantum models are intersimu-
lable with at most polynomial overhead. This new form is rela-
tivized to an underlying set of physical assumptions. What uncon-
ventional computational models suggest is not so much a dependence
of complexity-theoretic properties on a particular model, but a de-
pendence on the physical hypotheses underlying a class of models.
Thus it is preferable to present the subject-matter of CCT as the study
of the resources needed to solve some computational problem on a
given class of computers, characterized by a common set of physi-
cal assumptions. If CCT had to be compared with any other branch
of knowledge, it would be wiser to compare it with mathematical
physics, studying the various computational potentials of different
physical theories, than it would be to classify it as a branch of en-
gineering. But it is not necessary to assimilate CCT to any existing
discipline, and we can consider it as an empirical discipline on its
own.

This view, however, remains problematic. For about two decades,
physicists and computer scientists have tried to pinpoint what ex-
act feature of quantum theory would cause the supposed exponential
speed-up a quantum computer might provide and the question re-
mains controversial (see, for instance, [8]). Consequently, it is hard to
explain what “classical” means in “classical computational model.”
Worse still, models inspired by pen-and-paper computation, such as
the Turing machine, do not make any explicit reference to classical
physics. The input is not encoded in the state of a classical system,
the dynamics of the system is not made explicit, and no mention is
made of measurement. The model is classical only in the loose sense
that it is not quantum: it does not make any use of specific quantum
properties such as state superposition and entanglement. Even if one
subscribes to the idea that CCT is physics-dependent, fleshing out
this idea is a difficult task.

Nevertheless, if this view were vindicated, it would explain why
CCT could maintain a systematic unity as a field, instead of just be-
ing a conjunction of computational models without any theoretical
relation to one another. The different sets of physical assumptions
made by different classes of computational models need not have an
empty intersection. Even if the ECTT is false, some weaker physical
hypothesis might still hold, and could be substituted to the ECTT at
the foundations of CCT. This physical hypothesis would be respected
by every class of computational model and thus unify CCT as a field.

To better explain this point, it is necessary to understand which
part of CCT could be shattered by new computational models and
which part could remain untouched. If a large-scale quantum com-
puter is empirically realizable, the time-complexity of a given prob-
lem depends on the selected computational model. This would not
imply that the distinction between polynomial and superpolynomial
complexity classes should be abandoned, or even the distinction be-
tween P and NP for that matter. In the current state of art, FACTOR-
ING is conjectured to be in NPI, the classes of problems in NP that
are neither in P nor NP-complete: the existence of an efficient solu-
tion to that problem does not imply that P = NP. Some of the mod-
els we have presented above make bigger promises, pretending to
solve NP-complete problems in polynomial time, or even to solve ef-
ficiently all problems in a class larger than NP. As we have seen, these
models are considered far less likely to succeed than the quantum
computer, but the failure of an attempt is not the failure of an idea.

Should we expect further developments in physics and unconven-
tional computational models to yield such extraordinary results (see
[22] for an interesting discussion of this point)? In recent years, quan-
tum complexity theorist S. Aaronson has defended the exact opposite
view [2]. Not only we should not expect such a complexity-theoretic
wonder, but we could even state its impossibility as a physical prin-
ciple, the “No SuperSearch Principle” (aka “NP-hardness Assump-
tion”): there is no physical means to solve NP-complete problems in
polynomial time.

S. Aaronson’s main argument for this principle is the follow-
ing: if an efficient solution of an NP-complete problem were
possible, it would trivialize many problems we strongly conjec-
ture to be hard. For any usual axiomatic system A, the fol-
lowing problem is in NP: THEOREMS = {(¢,1")
¢ has a formal proof of length < m in system A}. Even
if no algorithm can decide every mathematical conjecture, there is
a simple search algorithm that decides whether there exists a proof
of length inferior to a given bound. If there were, thanks to some
unconventional computational model, an efficient algorithm for this
problem, it would become possible to “solve practically” any math-
ematical conjecture, by examining only proofs of reasonable length,
e.g. a length inferior to the number of particles in the Universe. We
would then have access to a form of automated mathematical re-
search, despite the negative solution to the Enstcheidungsproblem.
The P-NP problem can thus be seen as a bounded ressources version
of the Entscheidungsproblem. Such implausible computational won-
der should be explicitly excluded by a new physical principle, the
No SuperSearch Principle, which would perform the function of the
unifying hypothesis we mentioned above.

The previous argument might be questionable. It only justifies the
proposed principle in terms of apocalyptic consequences for our un-
derstanding of mathematics and does not provide a proper physical
ground for its acceptance. It has nevertheless a great heuristic value,
for it demonstrates how much is at stake in the interpretation of CCT.

Without further developing S. Aaronson’s arguments for that new
principle, I would like to comment on the insight this proposition
gives us on the new relations between physics and CCT allowed by
the empirical interpretation of complexity. Once we accept this in-
terpretation, it opens a two-way street between theoretical physics
and complexity theory. We should not only expect that new insights
from physics might shatter complexity-theoretic conjectures, estab-
lished results and concepts, but we should also expect new insights on
physics coming from CCT. Some CCT concepts, like the distinction
between polynomial and superpolynomial complexity classes, might
have a deep and physically robust meaning. Computation should not
only be considered as a tool used by physics, but also as a subject
matter of physics, whose properties are to be defined and studied
from a physical point of view (for a similar position, see [15]).

6 Conclusion

The aim of this brief work was less to defend a thesis than to raise an
issue. A comprehensive discussion of the arguments pro and contra
the empirical interpretation would demand another article. I will be
content if I have convinced the reader that the empirical interpretation
of CCT is a legitimate problem.

I have also given indications on how further discussion of this in-
terpretation should proceed. From this perspective, I tried to show
that there is much at stake in the current scientific debate on the fea-
sibility of quantum computing. The problem is not only relevant for
physicists, computer scientists, and amateurs of high-end technol-



ogy, but for philosophers as well. Philosophers do not even need to
wait for the definite resolution of this scientific controversy to show
interest. If the “either way I win” argument is correct, complexity
theory is physics-dependent, even if a large-scale quantum computer
finally turns out to be unfeasible. This argument, which might be
a topic of interest for philosophers studying counterfactual proposi-
tions, should be placed at the core of further discussion of the empir-
ical view.

This view, if it were vindicated, would call for a radical reappraisal
of the epistemological status of computational properties, which I
have only been able to sketch out. These properties would no longer
be the object of pure a priori knowledge, but should be seen as the-
oretical properties of the empirical processes that are harnessed to
perform computation. This should be of interest not only for the
philosophy of physics or computer science, but also for the general
philosophy of knowledge, especially the debates concerning a priori
knowledge.
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The Development of Models of Computation
with Advances in Technology and Natural Sciences

Gordana Dodig-Crnkovic *

Abstract. The development of models of computation induces
the development of technology and natural sciences and vice
versa. Current state of the art of technology and sciences,
especially networks of concurrent processes such as Internet or
biological and sociological systems, calls for new computational
models. It is necessary to extend classical Turing machine model
towards physical/ natural computation. Important aspects are
openness and interactivity of computational systems, as well as
concurrency of computational processes. The development
proceeds in two directions — as a search for new mathematical
structures beyond algorithms as well as a search for different
modes of physical computation that are not equivalent to actions
of human executing an algorithm, but appear in physical systems
in which concurrent interactive information processing takes
place. The article presents the framework of info-
computationalism as applied on computing nature, where nature
is an informational structure and its dynamics (information
processing) is understood as computation. In natural computing,
new developments in both understanding of natural systems and
in their computational modelling are needed, and those two
converge and enhance each other.

1 INTRODUCTION: WHAT IS COMPUTING?

“The idea behind digital computers may be explained by
saying that these machines are intended to carry out any
operations which could be done by a human computer.”

Turing in [1] p.436

Turing pioneered the development of first digital computers,
based on his Logical Calculating Machine (Turing’s name for
Turing machine) simulating a human strictly following an
algorithm. But he also devised two other fundamentally different
theoretical models of computation: neural networks and
morphological computing. In the background for all three
models we can discern his computational natural philosophy.
According to Hodges [2], Turing was a natural philosopher, and
nature — from patterns on the animal skin to functioning of
human brains - was for him possible to understand in
computational terms. Turing lived in a time when computing
machinery still was in its beginnings, and there was
characteristic dominance of theory over practical devices.

Today on the contrary, it appears that the existing computing
machinery developed faster than the corresponding theory of
computation. The consequence is that for different directions of
the development of computing systems different models of
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computation apply ranging from classical Turing Machine
theories of [3] to steps beyond in [4][5][6] to interactive
computing of [7], and natural computing in different variations
[81[9][10][11] to the view that computing is a natural science
[12][13].

The existing diversity of ideas about computing can be
confusing. However, the lack of consensus about the nature of
computation is not unique and it has the parallel in the current
lack of consensus about the nature of information. Those two are
related questions and both have two parts:

a) What is it in the world that corresponds to information/
computation?

b) How do we model that information/ computation [once we
agree upon what in the world they correspond to]?

The answer to the above is not simple, as concepts are theory-
laden and we use our existing theories in order to formulate new
ones, going via phenomena in the real world that we identify as
information/ computation.

We can compare this situation with the development of other
basic scientific concepts. Ideas about matter, energy, space and
time have their history. The same is true of the idea of number in
mathematics or the idea of life in biology. So, we should not be
surprised to notice the development in the theory of computation
that goes along with the development of mathematical methods,
new computational devices and new domains of the real world
that can be modelled computationally.

2 HYSTORY OF COMPUTATION UP TO
ELECTRONIC COMPUTERS

The oldest computational devices were analog. The earliest
calculating tools that humans used were fingers (Latin "digit")
and pebbles (Latin “calculus”) that can be considered as simple
means of extended human cognition [14]. Tally stick, counting
rods and abacus were the first steps towards mechanization of
calculation. The ancient Greek astronomical analog calculator,
Antikythera mechanism, from the second century BC, calculated
the motions of stars and planets. [15] Among the first known
constructors of mechanical calculators was Leonardo da Vinci.
Pascal invented mechanical calculator that could add and
subtract two numbers directly, and multiply and divide by
repetition, improved by Leibniz who added direct multiplication
and division.

Traditionally, computation was understood as synonymous
with calculation. The first recorded use of the word "computer"
was in 1613 to denote a person who carried out calculations, and
the word retained the same meaning until the middle of the 20th
century, when the word "computer" started to assume its current
meaning, describing a machine that performs computations.



Babbage was the first to design a programmable mechanical
computer, the general purpose Analytical Engine. The first
electronic digital computer was built in 1939 by Atanasoff and
Berry and it marks the beginning of the era of digital computing.
In 1941 Zuse designed the first programmable computer Z3, also
the first one based on the binary system. UNIVAC was the first
computer capable of running a program from memory. The first
minicomputer PDP was built in 1960 by DEC. Since 1960s the
extremely fast growth of computer use was based on the
technology of integrated circuit/ microchip, which triggered the
invention of the microprocessor, by Intel in 1971. [16]

The progress of computing of course depends both on the
development of hardware and the corresponding development of
software. This includes algorithms, programming languages,
compilers and interpreters, operating systems, virtual machines,
and so on. Yet a lot of software development was considered as
advanced applications of Turing Machine model. Computability
Theory is still based on Turing Machine.

3 BEYOND CONVENTIONAL COMPUTING
MACHINERY: NATURAL COMPUTING

The development of computing, both machinery with
programs and its models, continues. We are accustomed to rapid
increase of computational power, memory and usability of
computers, but the limit of miniaturization within the present-
day concept of computing is approaching as we are getting close
to quantum dimensions of hardware. One of the ideals of
computing ever since the time of Turing is intelligent computing,
which would imply machine capable of not only executing
mechanical procedure, but even intelligent problem solving.
Thus the goal is a computer able to simulate behaviour of human
mathematician, able of making an intelligent insight. A
development of cognitive computing aimed towards human-level
abilities to process/organize/understand information is presented
in [17].

At the same time computational modelling of human brain in
The Human Brain Project [18] has for a goal to reveal the exact
mechanisms of human brain function that will help us
understand both how humans actually perform symbol
processing when they follow an algorithm, and also how humans
create algorithms or models. Those new developments in
computational modelling of brain can be seen as a part of the
research within the field of natural computing, where natural
system performing computation is human brain.

However, natural computing has much broader scope.
According to the Handbook of Natural Computing [11] natural
computing is “the field of research that investigates both human-
designed computing inspired by nature and computing taking
place in nature.” It includes among others areas of cellular
automata and neural computation, evolutionary computation,
molecular computation, quantum computation, nature-inspired
algorithms and alternative models of computation.

An important characteristic of the research in natural
computing is that knowledge is generated bi-directionally,
through the interaction between computer science and natural
sciences. While natural sciences are adopting tools,
methodologies and ideas of information processing, computer
science is broadening the notion of computation, recognizing
information processing found in nature as computation.
[19][8][9][20] That led Denning [12] to argue that computing

today is a natural science. Natural computation provides a basis
for a unified understanding of phenomena of embodied
cognition, intelligence and knowledge generation. [21][22]

The idea of computing nature has important consequences for
our view of computation as information processing that
generalizes the idea of algorithm. Computation found in nature is
understood as a physical process, where nature computes with
physical bodies as objects. Physical laws govern processes of
computation, which necessarily appears on many different levels
of organization of physical systems.

Natural computation can be modelled as information
processing based on the exchange of information in a network of
agents. An agent is defined as an entity capable of acting in the
world on its own behalf.

One sort of computation is found on the quantum-mechanical
level where agents are elementary particles, and messages
(information carriers) are exchanged by force carriers, another
type of computation is on the other levels of organization. In
biology, computational processes (information processing) are
going on in cells, tissues, organs, organisms, and eco-systems,
with corresponding agents and message types passed. In
biological computing or social computing the message carriers
are complex chunks of information such as molecules, or
sentences and the computational nodes (agents) can be
molecules, cells, organisms or groups. [23]

4 COMPUTATION
SYSTEMS

As we have seen in Section 2, computational machinery evolved
historically from simplest tools of extended human cognition to
mechanical computers (calculators) to electronic machines with
vacuum tubes and then transistors, to integrated circuits and
eventually to microprocessors. During this development of
hardware technologies towards ever smaller, faster and cheaper
devices, the computational principles remained similar: an
isolated computing machine calculating a function, executing an
algorithm that can be represented by the Turing machine model.

However, since the 1950s computational machinery has been
increasingly used to exchange information and computers
gradually started to connect in networks and communicate. In
the 1970s computers were connected via telecommunications.
The emergence of networking involved a rethinking of the nature
of computation and boundaries of a computer. Computer
operating systems and applications were modified to access the
resources of other computers in the network. In 1991 CERN
created the World Wide Web, which resulted in computer
networking becoming a part of everyday life for common
people. By the end of 2011 an estimated 35% of Earth's
population used the Internet, according to Wikipedia article
Global Internet usage.

With the development of computer networks, two
characteristics of computing systems have become increasingly
important: parallelism/concurrency and openness — both based
on communication between computational units.

Comparing new open-system with traditional closed-system
computation models, Hewitt [24] characterizes the Turing
machine model as an internal (individual) framework and his
own Actor model of concurrent computation as an external
(sociological) model of computing.

IN CLOSED VS. OPEN
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In order to provide mathematical framework for open-system
modelling, Burgin and Dodig-Crnkovic analyze methodological
and philosophical implications of algorithmic aspects of
unconventional/natural computation that extends the closed
classical universe of computation of the Turing machine type.
[25] The new model constitutes an open world of algorithmic
constellations, allowing increased flexibility and expressive
power, supporting constructivism and creativity in mathematical
modelling and enabling richer understanding of computation.
The greater power of new types of algorithms also results in the
greater complexity of the algorithmic universe, transforming it
into the algorithmic multiverse. New tools are brought forth by
local mathematics, local logics and logical varieties.

5 COMPUTATION AS INTERACTION AND
INTERACTIVE COMPUTING

As we have seen in the previous sections, interaction between
computational units and processes has become one of the central
issues in computing. In 1998 Wegner developed the interactive
model of computation [26] which involves interaction, or
communication, with the environment during computation,
unlikely the traditional Turing machine model of computation
which goes on in an isolated system. The interactive paradigm
includes concurrent and reactive computations, agent-oriented,
distributed and component-based  computations,  [27].
Interestingly, Bohan Broderick [28] argues based on the study of
technical notions of communication and computation and finds
them practically indistinguishable. “The two notions may be kept
distinct if computation is limited to actions within a system and
communications is an interaction between a system and its
environment.” — Bohan Broderick ascertains.

Goldin and Wegner [27] show, that the paradigm shift from
algorithms to interactive computation follows the technology
shift from mainframes to networks, and intelligent systems, from
calculating to communicating, distributed and often even mobile
devices. A majority of the computers today are embedded in
other systems and they are continuously communicating with
each other and with the environment. The communicative role
has definitely prevailed over the initial role of a computer as an
isolated calculating machine.

The following characteristics distinguish this new, interactive
notion of computation [7]:

- Computational problem is defined as performing a task, [in
a dynamical environment — my addition] rather than
(algorithmically) producing an answer to a question.

- Dynamic input and output are modelled by dynamic streams
which are interleaved; later values of the input stream may
depend on earlier values in the output stream and vice versa.

- The environment of the computation is a part of the model,
playing an active role in the computation by dynamically
supplying the computational system with the inputs, and
consuming the output values from the system.

- Concurrency: the computing system (agent) computes in
parallel with its environment, and with other agents. (Agents can
consist of agents networks, recursively.)

- Effective non-computability: the environment cannot be
assumed to be static or effectively computable. We cannot
always pre-compute input values or predict the effect of the
system's output on the environment.

6 CONCURRENCY

Even though practical implementations of interactive
computing such as Internet are decades old, a general
foundational theory, and the semantics and logic of interactive
computing is still missing. A theoretical foundation analogous to
what Turing machines are for algorithmic computing, is under
development. [26][12][29][24] One important aspect of
interactive computing is concurrency. In concurrent systems
multiple agents (processes) interact with each other. In biology,
where systems are typically concurrent, the following models of
concurrent computation are used: Petri nets, Process calculi,
Interacting state machines, Boolean networks (especially for
gene regulatory networks).

The advantages of concurrency theory that is used to simulate
observable natural phenomena are according to [30] that:

“it is possible to express much richer notions of time and
space in the concurrent interactive framework than in a
sequential one. In the case of time, for example, instead of a
unique total order, we now have interplay between many partial
orders of events--the local times of concurrent agents--with
potential synchronizations, and the possibility to add global
constraints on the set of possible scheduling. This requires a
much more complex algebraic structure of representation if one
wants to “situate” a given agent in time, i.e., relatively to the
occurrence of events originated by herself or by other agents.*

Theories of concurrency are partially integrating the observer
into the model by allowing certain shifting of the inside-outside
system boundary. According to Abramsky [29]:

“An important quality of Petri’s conception of concurrency,
as compared with “linguistic” approaches such as process
calculi, is that it seeks to explain fundamental concepts:
causality, concurrency, process, etc. in a syntax-independent,
“geometric” fashion. Another important point, which may
originally have seemed merely eccentric, but now looks rather
ahead of its time, is the extent to which Petri’s thinking was
explicitly influenced by physics (...).

To a large extent, and by design, Net Theory can be seen as a
kind of discrete physics: lines are time-like causal flows, cuts are
space-like regions, process unfoldings of a marked net are like
the solution trajectories of a differential equation. This acquires
new significance today, when the consequences of the idea that
“Information is Physical” [17] are being explored in the rapidly
developing field of quantum informatics.”

If the current programme for computation is formulated as
aiming at reconstruction of the computational capabilities of
human, then it seems unavoidable to further develop new models
of computation, especially interactive computing and natural
computing. Living systems are essentially open and in constant
communication with the environment. New computational
models must include interactive, embodied, concurrent
computation processes in order to be applicable not only to
physics but also to biological and social phenomena.

As Sloman shows, concurrent and synchronized machines are
equivalent to sequential machines, but some concurrent
machines are asynchronous, and thus not equivalent to Turing
machines. [37] If a machine is composed of asynchronous
concurrently running subsystems, and their relative frequencies
vary randomly, then such a machine cannot be adequately
modelled by Turing machine.

Turing machines are discrete but can in principle approximate
machines with continuous changes, but cannot implement them



exactly. Continuous systems with non-linear feedback loops may
be chaotic and impossible to approximate discretely, even over
short time scales, see [37] and [24].

Theoretical model of concurrent (interactive) computing that
would be the counterpart of Turing machine model of
algorithmic computing is under development. (Abramsky,
Hewitt, Wegner) From the experience with present day
networked concurrent computation it becomes obvious that
Turing machine model can be seen as a proper subset of a more
general interactive, embodied, concurrent computation.

7 DIGITAL VS. ANALOG, DISCRETE VS.
CONTINUOUS AND SYMBOLIC VS. SUB-
SYMBOLIC COMPUTATION

Among many discussions concerning concepts of
computation, a prominent place is given to the controversy about
the continuous/discrete vs. analogue/digital computation. [31]
Some believe in the ultimately discrete nature of physical reality
and deny any true continuum. Some believe that human
cognition can be understood in terms of language and symbol
manipulation. Understanding of nature of symbols has relevance
for understanding of human cognition and information
processing going on in human body (including brain and nervous
system).

Trenholme [32] describes the relationship of analog vs.
symbolic simulation:

“Symbolic simulation is thus a two-stage affair: first the
mapping of inference structure of the theory onto hardware
states which defines symbolic computation; second, the mapping
of inference structure of the theory onto hardware states which
(under appropriate conditions) qualifies the processing as a
symbolic simulation.

Analog simulation, in contrast, is defined by a single mapping
from causal relations among elements of the simulation to causal
relations among elements of the simulated phenomenon.” [32]

Both symbolic and sub-symbolic simulations depend on
causal/analog/physical and symbolic type of computation on
some level of abstraction but in the case of symbolic
computation it is the symbolic level where information
processing is observed. Similarly, even though in the sub-
symbolic model symbolic representation exists at some high
level of abstraction (because language is used for its
description), it is the physical agency and its causal structure
that define computation.

Freeman characterizes accurately the relationship between
physical/sub-symbolic and logical/symbolic level in the
following:

“Human brains intentionally direct the body to make
symbols, and they use the symbols to represent internal states.
The symbols are outside the brain. Inside the brains, the
construction is effected by spatiotemporal patterns of neural
activity that are operators, not symbols. The operations include
formation of sequences of neural activity patterns that we
observe by their electrical signs. The process is by
neurodynamics, not by logical rule-driven symbol manipulation.
The aim of simulating human natural computing should be to
simulate the operators. In its simplest form natural computing
serves for communication of meaning. Neural operators
implement non-symbolic communication of internal states by all

mammals, including humans, through intentional actions. (...) |
propose that symbol-making operators evolved from neural
mechanisms of intentional action by modification of non-
symbolic operators.* [33]

Consequently, our brains use non-symbolic computing
internally in order to manipulate relevant external
symbols/objects.

In the words of MacLennan [34], who emphasizes the
importance of continuous computation for natural systems:

“We propose certain non-Turing models of computation, but
our intent is not to advocate models that surpass the power of
Turing Machines (TMs), but to defend the need for models with
orthogonal notions of power. We review the nature of models
and argue that they are relative to a domain of application and
are ill-suited to use outside that domain. Hence we review the
presuppositions and context of the TM model and show that it is
unsuited to natural computation (computation occurring in or
inspired by nature). Therefore we must consider an expanded
definition of computation that includes alternative (especially
analog) models as well as the TM.**

8 THE UNREASONABLE INEFFECTIVENESS
OF MATHEMATICS IN BIOLOGY AND BIAS
OF MATHEMATICIANS

Mathematician’s contribution to the development of the idea of
computing nature is central. Turing was mathematician and an
early proponent of natural computing who put forward two
computational models of physical processes — morphological
computing and neural networks.

In the context of computing nature, living systems are
particularly interesting because of their complexity of
informational processing, but up to now science haven’t been
able to adequately model and simulate the behaviour of even the
simplest living organisms. “The unreasonable effectiveness of
mathematics” observed in physics by Wigner [35] is missing in
biology, according to Gelfand as quoted by Chaitin, see [36].

Not many people today would claim that human cognition
(information processing going on in our body, including our
brains) can be adequately modelled as a result of computation of
one Turing machine, however complex function it might
compute. In the next attempt, one may imagine a complex
architecture of Turing machines running in parallel as
communicating sequential processes exchanging information.
We know today that such a system of Turing machines cannot
produce the most general kind of computation, as truly
asynchronous concurrent information processing going on in our
brains. [37]

On the other hand, one may object that IBM’s Watson, the
winner in man vs. machine "Jeopardy!" challenge, runs on
contemporary  supercomputer which is claimed to be
implementation of the Turing machine. Yet, Watson is
connected to the Internet, and Internet is not a Turing machine. It
is not even a network of Turing machines. Information
processing going on throughout the Internet includes signalling
and communication based on complex concurrent physical
processes that cannot be sequentialized. [24][37] As an
illustration see [38] on parasitic computing that implements
computation on the communication infrastructure of the Internet.
Real world computation is physical.

61



62

Cooper in his article Turing's Titanic Machine? [39]
diagnoses the limitations of the Turing machine model and
identifies the following ways for overcoming those limitations:

— Embodiment invalidating the “machine as data’ and
universality paradigm.

— The organic linking of mechanics and emergent outcomes
delivering a clearer model of supervenience of mentality on
brain functionality, and a reconciliation of different levels of
effectivity.

— A reaffirmation of experiment and evolving hardware, for
both Al and extended computing generally.

— The validating of a route to creation of new information
through interaction and emergence.

Related article by the same author, The Mathematician's Bias
and the Return to Embodied Computation, elucidates the
differences of physical computation compared to universal
symbol manipulation. [40]

From all above it is clear that Turing machine model of
computation is an abstraction and idealization. In general, the
trend in computing can be discerned towards extension to more
and more physics-inspired instead of idealized, symbol-
manipulating models, which are its subset.

9 LOGIC OF COMPUTING AND PARA-
CONSISTENCY

Besides physical embodiment, one of the important aspects of
computing is logic. The underlying logic of Turing’s Logical
Calculating Machine is fully consistent standard logic. Hintikka
proposes Logic as a Theory of Computability, still within the
same classical framework. [41]

Turing machine is assumed always to be in a well defined
state. [24] In contemporary computing machinery, however, we
face both states that are not well defined (in the process of
transition) and states that contain inconsistency:

“Consider a computer which stores a large amount of
information. While the computer stores the information, it is also
used to operate on it, and, crucially, to infer from it. Now it is
quite common for the computer to contain inconsistent in-
formation, because of mistakes by the data entry operators or
because of multiple sourcing. This is certainly a problem for
database operations with theorem-provers, and so has drawn
much attention from computer scientists. Techniques for
removing inconsistent information have been investigated. Yet
all have limited applicability, and, in any case, are not
guaranteed to produce consistency. (There is no algorithm for
logical falsehood.) Hence, even if steps are taken to get rid of
contradictions when they are found, an underlying
paraconsistent logic is desirable if hidden contradictions are not
to generate spurious answers to queries.” [42]

Open, interactive and asynchronous systems have special
requirements on logic. Goldin and Wegner [27] and Hewitt [24]
argue e.g. that computational logic must be able to model
interactive computation, and that classical logic must be robust
towards inconsistencies i.e. must be paraconsistent due to the
incompleteness of interaction.

10 INFORMATION/ COMPUTATION AND
MATTER/ENERGY

As pointed out in the introduction, not only the idea of
computation is under dynamic development, but similar is true
of the concept of information. Both processes can be seen as a
result of current rapid development of information technology/
computing machinery and our newly acquired insights in
sciences, largely based on the development of information and
communication technology.

Even though we are far from having a consensus on the
concept of information, the most general view is that information
is a structure consisting of data. Floridi [43] has the following
definition of datum: “In its simplest form, a datum can be
reduced to just a lack of uniformity, that is, a binary difference.”
Bateson’s “the difference that makes the difference” [44] is a
datum in that sense. Information is both the result of observed
differences (differentiation of data) and the result of synthesis of
those data into a common informational structure (integration of
data), as argued by Schroeder in [47]. In the process of
knowledge generation an intelligent agent moves between those
two processes — differentiation and integration of data. It is
central to keep in mind that for something to be information
there must exist an agent from whose perspective this structure
is established. Thus information is a network of data points
related from an agent’s perspective.

There is a distinction between the world as it exists
autonomously, independent from any agent, Kantian ”ding an
sich”, (thing in itself, nuomenon) and the world for an agent,
things as they appear through interactions (phenomena).

Informational realists (like Floridi, Sayre, Vedral) take the
reality/world/universe to be information. In [23] | added by
analogy “information an sich” representative of the "ding an
sich” as a potential information for an agent.

When does this potential information become actual
information for an agent?

The world in itself is (proto)information that gets actual
through interactions with agents and huge parts of the universe
are potential information for different kinds of agents — from
elementary particles, to molecules, etc. and all the way up to
humans and societies.

Living organisms as complex agents inherit bodily structures
(which ultimately are informational structures) as a result of a
long evolutionary development of species. Those structures are
embodied memory of the evolutionary past. They present the
means for agents to interact with the world, get new memories,
learn new patterns of behaviour and construct knowledge. World
via Hebian learning forms a human’s (or an animal’s)
informational structures.

If we say that for something to be information there must
exist an agent from whose perspective this structure is
established, and we argue that the fabric of the world is
informational, the question can be asked: who/what is the agent?
An agent (an entity capable of acting on its own behalf in the
world) can be seen as interacting with the points of
inhomogeneities (data), establishing the connections between
those data and the data that constitute the agent itself (a particle,
a system). There are myriads of agents for whom information of
the world makes differences (Bateson’s “difference that makes
the difference”) — from elementary particles to molecules, cells,
organisms, societies... - all of them interact and exchange



information on different levels of scale and this information
dynamics is natural computation. When | interact via computer,
photons from the screen reach my retina, and agents are both
photons and the cells that photon hits and interacts with but also
all the other parts of the system that transfer and process
information from my eye to my brain and back to the motor
control that controls my fingers that type on the keyboard. | can
also see myself as an agent and my agency in this case is
different from the agency of the cells on my retina. In short, this
is an agent-based (or actor-based) view of natural computation.
The change in the physical world happens through data self-
organization in an agent.

Information processes are governed by laws of physics and
physicists are already working on reformulating physics in terms
of information. This development can be related to the
Wheeler’s idea “it from bit”. [45] For more details on current
research, see the special issue of the journal Information
dedicated to matter/energy and information [46], with articles by
Vedral, Goyal, Brenner, Matsuno and Salthe, Fields, Fiorillo,
Yoshitake and Saruwatari, Luhn and Zenil. Furthermore, a recent
special issue of the journal Entropy addresses
natural/unconventional computing [47] with articles by
Chiribella, D’Ariano and Perinotti, Stepney, Ehresmann, Dodig
Crnkovic and Burgin, Zenil, Gershenson, Marshall and
Rosenblueth. All contributions explore the space of natural
computation and relationships  between the physical
(matter/energy), information and computation.

11 INFO-COMPUTATIONALISM

As a result of a synthesis of the idea of computing nature
(naturalist computationalism/ pancomputationlism) [22][48][49]
[50][51] with the informational structural realism [43][52] (the
view that nature represents a complex informational structure for
a cognizing agent), the framework of info-computationalism is
construed [21]. W.ithin info-computationalism the time
development (dynamics) of physical states in nature is
understood as information processing. Such processes include
self-organization  processes, self-assembly, developmental
processes, gene regulation networks, gene assembly, protein-
protein interaction networks, biological transport networks, and
similar processes found in nature. The majority of info-
computational processes are sub-symbolic and some are
symbolic (in case of agents capable of symbol manipulation).

Within info-computational framework, computation on a
given level of organization presents a realization/actualization of
the laws that govern interactions between constituent parts.
Computation comes with built-in causation. What happens in
every next layer of organization of matter is that a set of rules
governing the system switch to the new emergent regime. It
remains yet to be revealed how this process exactly goes on in
nature, how emergent properties occur. With help of natural
computing we may hope to uncover those mechanisms.

In words of Rozenberg and Kari: “(O)ur task is nothing less
than to discover a new, broader, notion of computation, and to
understand the world around us in terms of information
processing.” [19] From the research in complex dynamical
systems, biology, neuroscience, cognitive science, networks,
concurrency and more, new insights essential for the info-
computational universe may be expected in the years to come.

12 MORPHOLOGICAL COMPUTING.
MEANING GENERATION FROM RAW DATA
TO SEMANTIC INFORMATION

In 1952 Turing wrote a paper on morphogenesis proposing a
chemical model as the explanation of the development of
biological patterns such as the spots and stripes on animal skin.
[53] Turing did not claim that physical system producing
patterns actually performed computation. Nevertheless, from the
perspective of info-computationalism we can argue that
morphogenesis is a process of morphological computing.
Physical process — though not computational in the traditional
sense, presents natural (unconventional), morphological
computation. Essential element in this process is the interplay
between the informational structure and the computational
process - information self-structuring and information
integration, both synchronic and diachronic, going on in
different time and space scales in physical bodies.

Informational structure presents a program that governs
computational process [23], which in its turn changes that
original informational structure obeying/implementing/realizing
physical laws.

Morphology is the central idea in understanding of the
connection between computation (morphological/
morphogenetical) and information. What is observed as
materials on one level of analysis, represents morphology on the
lower level, recursively. So water as material presents
arrangements of [molecular [atomic [elementary particle [] ]1]
structures.

Info-computational ~ naturalism  describes  nature  as
informational structure — a succession of levels of organization
of information. Morphological computing on that informational
structure leads to new informational structures via processes of
self-organization of information. Evolution itself is a process of
morphological computation on a long-term scale. It will be
instructive within the info-computational framework to study
processes of self organization of information in an agent (as well
as in population of agents) able to re-structure themselves
through interactions with the environment as a result of
morphological (morphogenetic) computation.

Cognition can be seen as a result of processes of
morphological computation on informational structures of a
cognitive agent in the interaction with the physical world, with
processes going on at both sub-symbolic and symbolic levels.
This  morphological computation establishes connections
between an agent’s body, its nervous (control) system and its
environment. Through the embodied interaction with the
informational structures of the environment, via sensory-motor
coordination, information structures are induced in the sensory
data of a cognitive agent, thus establishing perception,
categorization and learning.

Essential element in this process is the interplay between the
informational structures and the computational processes -
information self-structuring and information integration, both
synchronic and diachronic, going on in different time and space
scales. [22][44][45]

From the simplest cognizing agents such as bacteria to the
complex biological organisms with nervous systems and brains,
the basic informational structures undergo transformations
through morphological computation. Here an explanation is in
order regarding cognition which is defined in general way of
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Maturana and Varela who take it to be synonymous with life.
[54][55]. All living organisms possess some degree of cognition
and for the simplest ones like bacteria cognition consists in
metabolism and (my addition) locomotion. [21] This process of
interaction with the environment causes changes in the
informational structures that correspond to the body of an agent,
and its control mechanisms, which define its future interactions
with the world and its inner information processing.
Informational structures of an agent become semantic
information first in the case of highly intelligent agents.

13 DEVELOPMENTS AND PROSPECTS OF
NATURAL COMPUTATION. COMPUTING AS
NATURAL SCIENCE

When we talk about natural computation by “nature” we
mean everything that physically exists — not only living
organisms, animals, plants and microorganisms, geological
formations, astronomical objects but also machines, humans and
human societies understood as physical systems — in other words
all that can be described as existing in terms of matter/energy
and space/time. Info-computational framework in effect replaces
matter/energy (in space/time) with more basic formulation in
terms of information/computation (in space/time).

On different levels of physical organization we find different
types of natural computation: on quantum level, there is quantum
computation, on the molecular level there is molecular
computation, higher up in hierarchy we find nano-computation,
networks of proteins are computing in living organisms, DNA
code governs variety of computational processes in cells,
metabolic processes are at the same time information processing
and they are constitutive of life. Maturana and Varela equate
cognition with life. [54][55] Computations of nervous systems
resemble neural network models, living organisms as wholes are
regulated on variety of levels and so are ecologies.

Information processing going on in the physical world can be
modelled as computation — some of it on continuous flow of
signals, some on discrete signals or symbols, some within living
agents without conscious control, whilst other which proceed via
languages require conscious living organisms for information to
be processed. Morphological computing can be considered as a
basis for all those physical processes that can be studied as
information self-structuring. [23][48][49]

14 CONCLUSIONS & FUTURE WORK

| invite readers not on a visit to an archaeological museum,
but rather on an adventure in science in making”
Prigogine [56] p. IX

In this article too, a new science in making is presented. Starting
with the short history of computational machinery and models,
presentation focuses on the current state of the art of computing
machinery and complex biological and social systems/networks
which all are in need of better models of computation. Present
account highlights several topics of importance for the
development of new understanding of computation and its role in
the physical world: natural computation and the relationship
between the model and physical implementation, interactivity as
fundamental for computational modelling of concurrent

information processing systems such as living organisms and
their networks, and the new developments in mathematical
modelling needed to support this generalized framework.
Besides the Turing machine model as well developed and
generally established model of computation, variety of new
ideas, still under developments are taking shape and have good
prospects to extend our understanding of computation and its
relationship to physical implementations.

As Stephen Hawking aptly noticed, in spite of enormous
attraction of the idea of final theory of everything (including
such theory of everything computational), the progress goes on:

“Some people will be very disappointed if there is not an
ultimate theory that can be formulated as a finite number of
principles. | used to belong to that camp, but I have changed my
mind. I'm now glad that our search for understanding will never
come to an end, and that we will always have the challenge of
new discovery.” [57]
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Abstract Procedures and the Physical World

Paul Schweizer! and Piotr Jablonski'

Abstract. The paper examines some central issues concerning
the notion of implementing abstract formal structures, including
effective procedures and dynamical systems, in the realm of
physical space-time. We address the view originally put forward
by Putnam and Searle, that virtually any physical system can be
interpreted as implementing virtually any computational
formalism, and defend the general conclusion that realizing an
abstract procedural structure is not an intrinsic property of
physical systems, but rather is a purely observer-dependent
ascription. In a parallel manner, the ‘trivialization' arguments
originally put forward against computationalism are extended to
dynamical systems theory, an alternative abstract framework that
has also been advocated as providing the theoretical foundation
for mentality in the natural world. Rather than attempting to
distinguish ‘true' from ‘false’ cases of implementation, we
distinguish pragmatically useful ascriptions from those that serve
no epistemic purpose.

1 ENGINEERED IMPLEMENTATION

From a disembodied mathematical perspective, classical
computation comprises an extremely well defined and stable
phenomenon. Central to the theory of traditional computation is
the intuitive notion of an effective or ‘mechanical’ procedure,
and there are any number of different possible frameworks for
filling in the details and making the idea rigorous and precise.
Turing’s ‘automatic computing machines’ [1] (TMs), supply a
very intuitive and elegant rendition of the notion of an effective
procedure, but there is a well known variety of alternative
frameworks.

According to the widely accepted Church-Turing
thesis, the class of computable functions is nonetheless captured
in a mathematically absolute sense by the notion of TM
computability, and every alternative formalization so far given of
the broad intuitive notion of an effective procedure has been
demonstrated to be equivalently powerful, and hence to specify
exactly the same class of functions [2]. Thus the idealized notion
of in-principle computability, where all finite bounds on input
size, storage capacity and length of running time are abstracted
away, seems to constitute a fundamental category, a stable and
fundamental ‘mathematical kind’.

A related further question is whether any sort of
comparable feature carries over to computation as implemented
or realized in the physical universe. Turing machines and other
types of computational formalisms are mathematical
abstractions and don’t exist in real time or space. In order to
perform actual computations, an abstract Turing machine must
be realized by a suitable arrangement of matter and energy, and
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as Turing observed long ago [3], there is no privileged or unique
way to do this. Like other abstract structures, Turing machines
are multiply realizable - what unites different types of physical
implementation of the same abstract TM is nothing that they
have in common as physical systems, but rather a structural
isomorphism expressed in terms of a higher level of description.
Hence it’s possible to implement the very same computational
formalism using modern electronic circuitry, a human being
executing the instructions by hand with paper and pencil, a
Victorian system of gears and levers, as well as more atypical
arrangements of matter and energy including beer cans serving
as tokens of the symbol ‘1’ and rolls of toilet paper serving as
the tape.

Adopting the conventions introduced by Schweizer
[4], let us call this ‘downward’ multiple realizability, wherein,
for any given abstract structure or formal procedure, this same
abstract structure can be implemented via an arbitrarily large
number of distinct physical systems. And let us denote this type
of downward multiple realizability as < |MR’. After the essential
foundations of the mathematical theory of computation were
laid, the vital issue then became one of engineering — how best to
utilize state of the art technology to construct rapid and powerful
physical implementations of our abstract mathematical
blueprints, and hence perform actual high speed computations
automatically. This is a clear and deliberate |MR endeavour,
involving the intentional construction of artefacts, painstakingly
designed to follow the algorithms that we have created. From
this top-down perspective, there is an obvious and pragmatically
indispensible sense in which the hardware that we have designed
and built can be said to perform genuine computations in
physical space-time.

2 NATURAL COMPUTATION?

In addition to these comparatively recent engineering
achievements, but presumably still members of a single
underlying category of phenomena, various authors and
disciplines propound the notion of ‘Natural Computation’ (NC),
and invoke a host of indigenous processes and occurrences as
cases in point, including neural computation, DNA computing,
biological evolution, molecular and membrane computing, slime
mould growth, cellular automata, ant swarm optimization, etc.
According to such views, computation in the physical world is
not merely artificial — it is not restricted to the devices
specifically designed and constructed by human beings. Instead,
computation is a seemingly ubiquitous feature of the natural
order, and the artefacts that we have produced constitute only a
very small subset of the overall class of computational systems
that inhabit the physical universe.

The disciplinary and terminological practices
surrounding NC plainly invite a more thorough and rigorous
examination of the underlying assumptions involved. Salient



questions in need of scrutiny include: To what extent, if any, is
computation a genuine natural kind — is there an intrinsic unity
or core of traits systematically held in common by the myriad of
purported examples of computation in the physical world? In
what sense, if any, can computation be said to take place
spontaneously, as a truly native, ‘bottom-up’ phenomenon?

The issue has pronounced conceptual importance with
respect to positions on the conjectured computational nature of
mentality and cognition. According to the widely embraced
computational theory of mind (CTM), which underpins cognitive
science, Strong Al and various allied positions in the philosophy
of mind, computation (of one sort or another) is held to provide
the scientific key to explaining and, in principle, reproducing
mentality artificially. The paradigm maintains that cognitive
processes are essentially computational processes, and hence that
intelligence in the physical world arises when a material system
implements the appropriate kind of computational formalism. So
it’s an immediate corollary of CTM that the human brain counts
as an exemplary instance of natural computation.

Hence it is crucial to CTM's theoretical stance that
there be a rigorous and precise analysis of physically grounded
computation in the case of organically engendered human brains.
But the issue has wider and independent significance, in an
attempt to gain conceptual clarity on whether and to what extent
computation can be cogently viewed as a natural occurrence.
And this in turn requires a general theoretical investigation and
articulation of what it means for computations and other sorts of
abstractly specified formalisms and structures to be implemented
in the physical realm. It is this last, overarching theme that will
comprise the primary focal point of the ensuing discussion.

3 THREE DIFFERENT SENSES

For the sake of analytical precision, we will begin by
disambiguating three possible senses in which real physical
systems might be thought of as ‘performing a computation’, and
where these distinct senses are often blurred or run together by
proponents of NC.

First (1), a physical system or object may be said to
obey or satisfy a particular equation or mathematical function.
For example, a falling body in the earth's gravitational field will
satisfy or obey Newton's equation for gravitational acceleration.
Similarly, the planets orbiting the sun satisfy or obey Kepler's
laws of planetary motion. This has lead various NC enthusiasts
to claim that the planets orbiting the sun, falling bodies in the
earth's gravitational field, etc., are in fact computing the values
of the equations in question. Taken to its most extreme form, this
becomes the assertion that physical processes and natural laws
are themselves fundamentally computational, and hence that
computation constitutes the foundational key to the natural order.

Second (2), the activities of a physical system or
process may be precisely modelled or simulated by a given
computational formalism or depiction. For example, it is
possible to create highly accurate and explanatorily useful
computer models which simulate the behaviour of various
complex physical events such as earthquakes, climate change,
hurricanes, particle collisions, protein folding, brain processes,
etc. Again, the usefulness and accuracy of these computational
models has lead proponents of NC to claim that the physical
phenomena themselves are performing such computations or are
somehow instances of such computations occurring in nature.

And third (3), a physical device or process may be said
to literally implement, realize or execute a particular algorithm
or effective procedure. Thus when | write a piece of code in
some artificial programming language, say Prolog, and then run
this code on my desktop computer, there is a very clear and
paradigmatic sense in which the electro-mechanical hardware in
question is performing or executing the algorithm explicitly
encoded in Prolog.

It seems uncontroversial that (3) is the basic and
indeed canonical sense of computation in the physical world, and
constitutes the modern historical origin of the concept. But in the
Prolog example used to illustrate the import of (3), the
computation in question is not a natural occurrence — rather it’s
a direct result of human design and engineering. Human artefacts
in the form of electromechanical hardware devices comprise the
arrangements of matter and energy that carry out the actual
computation in space and time, and the procedures being
executed are specified in terms of artificial programming and
machine languages. In such literal and exemplary cases, real
world computation is a purely synthetic phenomenon.

However, this does not in itself rule out the possibility
that there could be genuine natural computation in the stringent
sense of (3), since it is still entirely possible that some
appropriate version of CTM is true. For example, if Fodor [5] is
correct, then the human brain, an organically engendered
‘wetware' device, is running the Language of Thought (LOT) as
an indigenous formal system of rule governed symbol
manipulation, in a manner directly comparable with a
computational artefact. Thus if Fodor is correct, then the human
brain is a paradigmatic instance of NC in sense (3).

Accordingly, in the ensuing discussion we will treat
Fodor's conjectured LOT as epitomizing what genuine
computational processing in the natural world would look like in
its most explicit form — a spontaneously generated, bottom-up
case of formal symbol manipulation. And this is compatible with
the foregoing discussion of downward multiple realization, since
the relation between LOT and the brain could then be viewed in
typical |MR terms. For example, an alternative mechanical
device, physically quite unlike the brain, could presumably be
constructed to implement the LOT in an artificial medium.

In order to construct such an implementation, we
would need to utilize expertise in engineering and materials
science, which exploited the lawlike regularities that characterize
the time evolution of physical systems. This expertise would be
required to design the material implementation in such a way
that it could be methodically interpreted, at the appropriate level
of description, as behaving in a manner isomorphic to the
abstract processing structure of the human brain. Indeed, it's
perfectly conceivable that if we could abstract out the relevant
computational structure of the LOT physically realized in brain
activity, then we could run this same abstract computational
structure on some version of our existing artificial hardware.
And then, in perfect accord with |[MR, the systematic and
predictable behaviour of both the brain and the artificial device,
seen as systems governed by natural law, could be interpreted, at
a higher level of description, as implementations of the same
abstract computational structure.

4 CRITIQUE OF SENSES (1) AND (2)
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As noted in sense (1) above, a physical system or object, such as
a piece of electromechanical hardware, may be described as
obeying or satisfying various equations or mathematical
functions. And it is by utilizing our knowledge of these
regularities that we are able to construct physical realizations of
abstract computational procedures, and thereby systematically
and reliably preserve the implementational mapping from
abstract formalism to relevant sequences of states of the physical
machine. What then is to be gained by then claiming that, in
addition to performing a computation in virtue of systematically
preserving this mapping, the hardware is performing yet another,
underlying computation, simply in virtue of evolving through
time in accordance with natural laws?

Such a claim seems to be founded on a conflation
between two of Marr's [6] classic distinctions in levels of
analysis. The salient difference between what is going on in (1)
as opposed to (3) is precisely the difference between the level of
bare mathematical function and the level of computational
algorithm. For any given function there are many different
algorithms for computing its input/output values, and a
mathematical function or general equation on its own does not
specify any corresponding formal method or single out any one
of the many different possible corresponding effective
procedures as privileged. Hence merely satisfying an equation,
as in the case of a hardware device obeying a lawlike physical
regularity, is too weak to underwrite an assertion of distinctively
computational processing, because it leaves the vital procedural
details completely unspecified. Exactly which particular
algorithm for computing the values of Kepler's laws of planetary
motion is the earth currently implementing? And articulated in
precisely which abstract computational framework?

Thus sense (1) seems to constitute an unmotivated and
theoretically unilluminating inversion of perspective. Human
scientists have devised mathematical abstractions in the form of
general equations in order to characterize observed regularities
in physical behaviour. In turn, we utilize these rigorously
characterized regularities to construct artefacts that can be
systematically interpreted, at a higher level of description, as
implementations of selected computational formalisms. In this
respect, we have a well defined implementational foundation in
brute physical behaviour. The ontological and causal status of
real-time computations is thus grounded in a stable, non-
computational medium. But to then assert that the
implementational medium itself, simply in virtue of evolving in
accord with certain abstractly characterized patterns, is thereby
performing lower level computations, seems to threaten a
causal/ontological regress. And unless the particular algorithms
and formalisms purportedly being executed are explicitly
specified and substantiated, the assertion seems to make no
additional contribution. However, the general equations as such
are central to our scientific theorizing and abstract representation
of the natural world. In section 7 below we shall further
investigate sense (1) and the status of such formal specifications
in the particular guise of dynamical systems.

In the case of sense (2), the algorithmic details missing
from sense (1) are provided, but they are located in the wrong
place. When complex physical events and processes are
accurately simulated via computational models, it is the artificial
computational structures which compute the values of the laws,
equations and regularities governing the physical phenomena
being simulated. And indeed, this is why the models are accurate

and useful. But what motivates the further claim that the
complex physical phenomena are themselves somehow
implementations of the computations performed by the artificial
models? Again, the same equations and regularities could be
computed by another computational model using different
underlying algorithms, programming languages, etc. to calculate
the relevant values. Which of the many distinct computational
possibilities is privileged or singled out by nature? In agreement
with Piccinini [7], we would advocate a sharp distinction
between mere computational modelling and genuine
computational processing in nature.

So in the ensuing discussion we will treat (3) as the
literal and canonical sense of computation in the space-time
arena. We diagnose sense (1) as derived from the mathematical
characterization of fundamental regularities in nature, but where
the additional attribution of computational activity is due to a
conflation between Marr's distinct levels of bare mathematical
function versus specific algorithm for computing the values of
the function. Finally, sense (2) is a case of artificial simulation of
natural events and processes, where the values of the regularities
salient to sense (1) are explicitly computed, but where this
computation is merely a tool of human heuristics and is not
supported by nature. In this respect sense (2) is a hybrid of the
more basic content involved in (1) and (3), and will not receive
any further investigation. The ensuing discussion will focus
primarily on (3) as the paradigmatic sense of computation in the
physical world, and will also provide an allied investigation of
sense (1), since both (1) and (3) are cases of applying explicit
renditions of abstract, formal procedures directly to physical
events and processes.

Of course, to some extent the issue could be seen as
purely terminological. One could choose to brand computation in
sense (3) as ‘classical’ or 'Turing' computation, and then label
senses (1) and (2) as ‘computation’, but of a different, broader
sort. But for this broadening of the scope of application of the
term to count as useful and well motivated, it would need an
accompanying story to explain (i) what essential characteristics
are had in common to unify all three apparently quite disparate
senses of the term, and then (ii) why the category of phenomena
so unified should be called ‘computation’ and not something else.

We don't wish to dwell on mere terminological or
taxonomical disputes, and hence maintain that, whatever use of
terminology one may adopt, sense (3) has clear and paradigmatic
import, and it is this interpretation of the word that we wish to
emphasize and investigate. Furthermore, whatever may be going
on in most cases of (1) and (2), be it felicitously categorized as
‘natural computation' or as something else, it is still quite distinct
from what is captured by sense (3).

5 COMPUTATION IS NON-INTRINSIC

We will now articulate and begin to defend one of the main
theses of the paper, a thesis stemming from arguments originally
put forward by Putnam [8] and Searle [9, 10], that even in the
quite restricted and canonical sense of (3), computation is not an
inherent or intrinsic characteristic of any physical system.
Instead, it's a purely observer dependent ascription, projected
onto a physical system via an act of human interpretation.
Furthermore, the extent to which a physical device can be
interpreted as realizing any sufficiently rich computational
formalism, such as an abstract Turing machine, is not absolute,



but instead is always a matter of degree of approximation. And
the choice to interpret a physical device as implementing a
particular abstract formalism is always relative to our particular
purposes and potential epistemic gains.

Our normal practice of interpreting specialized
artefacts as performing computations is clearly of very high
pragmatic value. Nonetheless, such interpretations are ultimately
dependent on human conventions and are not intrinsic to the
hardware itself. Thus computation in the physical world is not
sustained or underwritten by the innate structure of the systems
interpreted as realizers, and computation as such is not a natural
kind. We will begin our defence of this view by examining some
well known arguments concerning the theoretical possibility of
multifarious ‘deviant’ interpretations.

6 TRIVIALIZATION ARGUMENTS

Various critics of CTM have put forward a family of
‘trivialization arguments', directly relevant to sense (3) above.
The arguments are based on the contention that the notion of a
physical system implementing a computational formalism is
overly liberal to the point of vacuity. As a case in point, Putham
[8] offers a proof of the thesis that every open physical system
can be interpreted as the realization of every finite state
automaton. Putnam's argument will be explored in more detail in
section 7, in the context of Dynamical Systems theory.

In the current section of the paper we will consider the
closely related position advanced by Searle [9], who argues that
virtually any physical system can be interpreted as following
virtually any program. Thus hurricanes, our digestive system, the
motion of the planets, even an apparently inert lecture stand, all
possess a level of description at which they instantiate any
number of different abstract formal procedures. The stomach has
inputs, internal processing states and outputs, and if one wanted
to, one could interpret the inputs and outputs as code for any
number of different symbolic processes. And in [10] Searle
attempts to illustrate the extreme conceptual looseness of the
notion of implementing an abstract formalism by famously
claiming that the molecules in his wall could be interpreted as
running the WordStar program.

Again adopting conventions introduced by Schweizer
[4], let us label multiple realizability in this direction, wherein
any given physical system can be interpreted as implementing an
arbitrarily large number of different computational formalisms
‘upward MR’ and denote it as ‘tMR’. The basic import of MR
is the non-uniqueness of computational ascriptions to particular
physical systems. In the extreme versions suggested by Putnam,
Searle, and more recently Bishop [11], there are apparently no
significant constraints whatever — it is possible in principle to
interpret every open physical system as realizing every
computational procedure. Let us call this extreme version
‘universal upward MR’ and denote it as ‘tMR*’. Mere TMR is
weaker than TMR*, since the former does not assert that there
are no salient constraints, and hence TMR would be consistent
with the denial that, e.g., the molecules in Searle’s wall can in
fact be interpreted as implementing the WordStar program,
although every physical system is still interpretable as
implementing some very large set of distinct computations.

In the present discussion we will not argue for or
against TMR* but instead confine our considerations to the more
modest TMR. In view of tMR, it’s still never the case that any

given computational interpretation of a physical system is
privileged or unique, and this is far more difficult to deny than
the powerful and broad sweeping tMR*. In turn, the non-
intrinsic status of computation would seem to follow as a direct
consequence of mere TMR alone. As long as there are at least
two distinct interpretations, there is no objective fact of the
matter regarding which computation is ‘actually’ being
performed, nor which of the alternatives is the ‘correct’ or ‘real’
account. And this is because the computation itself is not an
intrinsic property of the physical device, and is instead
dependent on a human observer to supply the various alternative
interpretations.

This is not to say that it’s purely a matter of caprice,
and that there are no objective constraints that the interpretation
must satisfy. Instead, the situation is perhaps comparable to the
distinction between natural kinds, such as water, and
conventional kinds, such as being a table. Even though
membership in either kind might be based on criteria whose
satisfaction (or not) is a matter of objective truth, still the criteria
for conventional kinds are not intrinsic, and there is nothing
about the particular arrangement of matter now holding up my
desk top computer which makes it intrinsically a table. The
salient criteria stem purely from human practices and
stipulations rather than from, e.g., fundamental microstructure or
natural law.

The original trivialization arguments are intended to
undermine CTM, by showing that attributions of computational
processing are overly liberal to the point of vacuity, and hence
cannot serve as a criterion for mentality in the natural world. But
the potential scope of application is clearly much wider, and they
also serve to trivialize the idea of ‘Natural Computation’ in
general. According to tMR*, anything computes everything, and
hence computational processing in the natural world turns out to
be far more rampant and ubiquitous than proponents of NC ever
suspected.

7 SYNTAX, SEMANTICS, PHYSICS

At the abstract, formal level, computation is an essentially
syntactic phenomenon, and how we choose to interpret
arrangements of matter and energy as constituting, say, tokens of
an abstract syntactic type, and thus specifying an implementation
of the basic computational vocabulary, is entirely independent of
physical composition. For example, in the downward |MR
direction there is a more or less limitless diversity in the ways in
which material patterns and arrangements can be viewed as
implementing the binary notation of ‘0’ and ‘1°, from ink marks
on a piece of paper, stones placed in wooden boxes, patterns on
old-fashioned punch cards, electric voltages, beer cans
positioned on rolls of toilet paper, ... And this applies in the
reverse TMR direction as well, wherein the same stones placed
in wooden boxes can be interpreted as implementing any number
of distinct computational formalisms.

Classical computation is rule-governed syntax
manipulation, and it is no more intrinsic to physical
configurations than is syntax itself. It is also worth observing
that discrete states are themselves idealizations, since the
physical processes that we interpret as performing computations
are in fact continuous, and we must abstract away from the
continuity of the underlying substrate and impose a scheme of
conventional demarcations to attain discrete values. Hence even
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this elemental building block of digital procedures must be
projected on to the natural order from the beginning. The
irresistible conclusion to be drawn is that there is a fundamental
gap separating ‘concrete’ physical reality from the human-based
ascriptions of abstract syntactic features.

In turn, there is yet another fundamental gap
separating abstract syntactic features from their semantic
interpretation. Just as syntax is not intrinsic to physics, so too
semantics is not intrinsic to syntax. Just as being an instance of
the spoken English sentence ‘The cat is on the mat’ is not an
inherent property of the sound waves constituting any particular
utterance token, so too, the associated proposition comprising
the interpretation of the utterance is not intrinsic to the abstract
syntactic structure. Instead, the associated meaning is determined
via arbitrary human convention, and the same syntactic item
could just as well have had the interpretation currently expressed
in English by ‘The rat is on the table’ or ‘The dog is on the
hearth’.

In the context of classical computation, one of the key
constraints in the notion of an effective procedure is that the
rules can be followed 'mindlessly’, i.e. without knowing what the
manipulated symbols are supposed to mean. As a consequence,
there is no unique meaning determined by the procedure as such,
and a multitude of distinct and incompatible interpretations are
always possible. As a simple example, a Turing machine
intended to compute the values of a particular truth function, say
inclusive disjunction, can be easily reinterpreted as computing
conjunction instead, simply by flipping our interpretation of the
symbols ‘0’ and ‘1°, so that ‘0’ is construed as denoting true
while ‘1’ denotes false. And the same procedure interpreted as
computing conjunction could instead be construed as computing
the values of the arithmetical function of multiplication.
restricted to the numerical inputs 0 and 1.

Similarly, formal systems in general are such that the
transformations on symbols are not specified with reference to
their intended interpretation. Many classical negative results in
mathematical logic stem from this separability between formal
syntax and meaning. The various upward and downward
Léwenheim-Skolem theorems show that formal systems cannot
capture intended meaning with respect to infinite cardinalities.
As another eminent example, Godel’s incompleteness results
involve taking a formal system designed to be ‘about’ the natural
numbers, and systematically reinterpreting it in terms of its own
syntax and proof structure. As a consequence of this
‘unintended’ interpretation, Godel is able to prove that
arithmetical truth, an exemplary semantical notion, cannot, in
principle, be captured by finitary proof-theoretic means.

In summary, there are two fundamental gaps
separating formal procedures, standardly interpreted as
computing the values of given functions, from the physical
processes that we construe as implementing such procedures.
First there is the gulf dividing the intended semantic
interpretation from the bare syntactic formalism, and second
there is the chasm between abstract syntactic formalism and
physical reality. In both cases the gaps can only be bridged by an
act of purely conventional human interpretation. And it is in this
sense that computation in the physical world is inherently
observer dependent.

8 PUTNAM AND DYNAMICAL SYSTEMS

We will now take a closer look at the foregoing sense (1)
sometimes used to support the view of computation in nature.
As was noted in section 3, the term ‘computation’ is occasionally
meant as a description of the fact that some physical processes
satisfy or obey a mathematical equation. Although, as we noted,
there is little reason to believe that planets orbiting the sun
compute an algorithmic approximation of the Newtonian laws of
motion. So instead of viewing such cases in explicit NC terms,
we will analyze the underlying notion of projecting the bare,
abstract procedural descriptions furnished by dynamical systems
onto the time evolution of physical phenomena. Thus, instead of
a mapping between the physical states of the system and the
computational states of an algorithm, there is a mapping between
physical states and the variables of the appropriate dynamical
system (DS). Following Jablonski [12], we argue that DS, when
viewed in this manner, exhibit striking similarities to the
inputless Finite-State-Automata (iFSA) analyzed by Putnam [8],
and that the endeavour succumbs to very similar difficulties as
originally proposed by Putnam in the context of strong TMR*
arguments against computationalism.

Since an iFSA is defined by the set of monadic
computational states and the rules of transitions from any given
state to the next, any execution of an algorithm will take the
form of the sequence of states. Putnam has noted that the
evolution of any non-cyclic physical phenomena can be divided
into a sequence of periods in such a way that we can map the
physical states of the system onto the computational states of an
iFSA. Say, we want to show that Searle's wall realises a
computation performed by the iFSA defined by the states A, B
and C and rules of transition A>B, B>C and C>B. If initialised
in the state A the automaton will transit through states ABCBCB
and will continue to oscillate between states C and B. We can
claim that the wall performed 6 steps of the computation within
any period of time e.g. from 12:00 to 12:06. We simply label all
physical states of the wall within the first minute as
computational state A, within the second minute as state B, third
— C, forth — B, fifth — C and sixth — B.

Since the complexity of the thermal movements in the
wall, openness of the system and, possibly, some non-reversible
physical phenomena (e.g. radioactive decay) insure that every
physical state of the wall will manifest itself only once, the
labelling will be functional i.e. for every physical state only one
computational state is given (however, a single computational
state can be realised by many different physical states).

In applying this same basic strategy using a Dynamical
Systems framework rather than inputless Finite-State-Automata,
we first note that a system is defined by the set of its variables
and rules governing the evolution of the variables over time.
Unlike iFSA that have a finite number of possible states, the
states of a DS are given by the vector of real number variables.
Thus DS have an infinite number of possible states. Usually, the
dynamical models are defined as deterministic, continuous
systems so the rules governing the dynamics are given by a set
of differential equations. Equations are the continuous
equivalents of the rules of transitions for the iFSA. Finally, the
phase-space trajectory of the system, the evolution of its
variables over time, can be compared to the sequence of
computational states of the iFSA.

The analogies between the two formalisms can be
summarised as follows:



iFSA DS
Finite number of states  Infinite number of states
Initial state Initial conditions
Table of transitions Differential equations
Computational steps Time
Sequence of states Trajectory through the phase space

Using these analogies, we can see that it is possible to
map any finite trajectory of any DS onto any non-cyclic physical
process in a manner similar to Putnam's original strategy. We
map the first point of the trajectory onto the first physical state of
the system and all consecutive points onto the corresponding
physical states.

First, we need to map a real, physical time of the
process onto the abstract time of the DS. Since we are interested
in the finite period, we may define a mapping function M as
follows:
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where T is an abstract time of the DS, t — real, physical

time, Ty — the beginning of the dynamical process, T, — the end
of the dynamical process, ty and t, — the beginning and the end
of the physical process in real time.

We need to include Putnam’s condition of non-cyclic
behaviour of the physical system in order to guarantee, that
every moment of the physical time t indicates just one physical
state £, of the system. Given that DS is defined by its equations
of motion

dx .
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where x is a multidimensional vector of variables, and
a single trajectory of the DS is determined by the initial
conditions x and the time interval, we can take an integral of
the equations of motion that will have the form of the function of
the state of the DS over time x = k(). This integral defines the
trajectory of the system in phase space and is the equivalent to
the sequence of states in the case of iFSA. However, since the
trajectory is composed of the infinite number of points it has to
be expressed as a function of time and cannot be presented in a
form of a table of values. Now we can form a labelling function f
that assigns abstract states of the DS to the physical states s, of
the system.

Fls ) =R{M(tD

Thus for every physical state s, we know the time t
when it appeared (since the behaviour of the system is non-
cyclic). Knowing the time t and the time-mapping function M(t)
we can determine the corresponding time T =Mt of the
abstract dynamics. Eventually, since we know the states of the
DS as a function h of time T we can determine the formal state x
of the DS, and what follows, the values of its variables. In other
words, for every non-cyclic physical system and finite period of
time we are able to map its states onto states of any DS.

A main difference between DS and iFSA lies in the
fact that the latter have a finite number of states and steps while
the former have an infinite number. However, since physical
systems are continuous in nature the mapping still can be carried
out. In order to perform Putnam's version of trivialization we
need to know in advance the sequence of the states of the iFSA.
In the case of DS we ought to know the trajectory of the system.
That was easy for iFSAs since computation of the sequence

required only a finite number of steps. However for the DS we
need to integrate the equations of the DS. In many cases,
nonlinear differential equations do not have analytic solutions so
we are unable to obtain the trajectory of the system in the form
of a function of variables over time.

This limitation is however, only epistemic in nature.
Every DS has a trajectory defined for every initial condition even
if we are unable to discover its analytic form. We still may
conclude that, in principle, there is a mapping between any DS
and physical system, although in many cases we will unable to
provide the specific details.

9 CONSTRAINTS ON IMPLEMENATION

In response to TMR* and the trivialization arguments, various
authors, including Chrisley [13], Chalmers [14], Copeland [15],
and Block [16] have proposed a number of constraints on
computational interpretations in an attempt to distinguish ‘true’
cases of implementation from the myriad of purportedly ‘false’
cases utilized by Putnam and others. Two of the most intuitively
compelling restrictions are supplied by (i) causal and (ii)
counterfactual considerations. The first constraint holds that the
pattern of abstract state transitions constituting a particular run of
the computational procedure on a particular input must map to
an appropriate transition of physical states of the machine, where
the relation between succeeding states in this physical sequence
is governed by proper causal regularities. The second constraint
holds that a necessary condition for being a ‘genuine’
implementation is the ability of the mapping to support
counterfactual sequences of transitions on inputs not actually
given. This constraint is prompted by the fact that various TMR*
mappings from formalism to physical system, given by Putnam
and others, are defined only for a single run and say nothing
about what would have happened if a different input had been
given (see Bishop [11] for an exception).

Although both (i) and (ii) are intuitively plausible
suggestions, we view both as ultimately unsuccessful in blocking
the trivialization results. See Schweizer [4] for arguments to the
effect that, within the context of computation in canonical sense
(3), constraint (i) provides a sufficient but not a necessary
condition, while (ii) is unsatisfiable in principle (for sufficiently
rich frameworks, such as those invoked in the Church-Turing
thesis), and can serve only as a measure of degree of
approximation.

In the context of ‘computation’ in sense (1), and
pertinent to the above extension of the tMR* arguments to
Dynamical Systems, we will now briefly examine two of the
main points raised by Chalmers [14] and address them in the
context of DS trivialization. In line with (ii) above, it has been
objected that Putnam's labelling does not map counterfactual
computational states onto any physical states. If a given iFSA is
defined by states A, B, C, D and transitions A>B, B>C, C>B and
D>B it could also perform the sequences ABCBCB, BCBCBC,
CBCBCB or DBCBCB. Because Putnam’s method of
construction of the labelling function only works for the single
chain of physical events, we would be unable to map state D
onto any physical state of the wall because D did not appear in
the sequence used for labelling.

Since an iFSA can perform only a finite number of
state sequences, we need to form a labelling function that maps
all those possible sequences onto some states of the physical
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system and show that such a labelling can be constructed for an
arbitrary physical device or phenomenon. In the context of
classical computation, this stronger version of trivialization is
known as the “clock and dial” reply to Chalmers objection. The
argument states that every physical system can contain not only
non-reversible physical phenomenon (a clock) but also some
physical magnitude that can be set into a number of distinct
states and will remain in the same state for the given period of
time (a dial). Thus the complete state of the system is defined by

the pair [d, S, ], where d is the state of the dial and S; — the state

of the clock at time t. Since our iFSA can perform four different
sequences, d will take four values. The state of the dial will
determine which sequence is mapped onto the states of the clock.

Thus if the dial is set to d1 we will map the first sequence onto
physical states of the system during this time period. If the dial is
set to d2 we will map the second sequence and so on. One can

argue that not every physical system contains clock and dial
components, however there is certainly a large class of such
systems thus the ‘tMR’ is conserved.

A parallel strategy can be applied in the context of DS
trivialization. The infinite number of possible trajectories of the
DS forces us to modify the “clock and dial” response to the
argument. The clock will have to transit continuously through an
infinite number of physical states within a finite amount of time
(which seems to be uncontroversial since physical time is
continuous) while the dial will have to be substituted by devices
that can be set in an infinite number of states. We may picture
the devices as set of continuous sliders, one for every variable in
the equations of the DS. Every initial state of the DS can be
encoded by the appropriate setting of the sliders just as every
initial state of the iFSA can be encoded as a position of the dial.
After that, we map the integrated trajectory of the DS onto the
run of the clock.

A second requirement is reliability, which is closely
akin to causal regularities — a proper labelling function should
interpret not only one but every evolution of the physical system
from the same initial state as a realisation of the same algorithm.
If Searle is right, then he should be able to reliably and
repeatedly reset his wall to a given initial condition and
demonstrate that its physical evolution is identical to the one
used for the initial labelling. Since the wall is an open system
and (as required for the trivialisation argument) exhibits non-
cyclic evolution it certainly will not repeat its states.

However, the “clock and dial” version of the argument
seems to be immune to this objection. The dial can be reliably
set into any of its states and the clock will reliably pass through
the same sequence of moments. And it appears that there will be
no significant difference in this regard between a continuous
“clock an dial” and the sequential counterpart used for iFSA as
long as we are able to demonstrate that the clock can reliably
pass through its sequence of states and the sliders can stay in the
unchanged position through the period of observation.

10 COMPUTATION AND PRAGMATICS

We would now like to propose a different perspective on the
issue. Rather than distinguishing ‘true’ from ‘false’ cases of
implementation, what these and other proposed constraints do
instead is to go some distance in distinguishing interesting,

conceptually rich and pragmatically useful implementations
from the many uninteresting, trivial and useless cases that
abound in the space of possibility. It’s certainly true that there is
no pragmatic value in most interpretive exercises compatible
with MR and tMR*. Ascribing computational activity to
physical systems is useful to us only insofar as it supplies
informative outputs, which in most cases will come down to new
information acquired as a result of the implemented calculation.

So, interesting and useful observer dependent
computation takes place when we can directly read-off
something that follows from the implemented formalism, but
which we didn’t already know in advance and explicitly
incorporate into the mapping from the start. That’s the incredible
value of our computational artefacts, and it’s the only practical
motivation for playing the interpretation game in the first place.
Hence a crucial difference between our computational artefacts
and the attributions of formal structure to naturally occurring
open systems, as employed by TMR* exercises, is that the
mapping in the latter case is entirely ex post facto and thus
supplies us with no epistemic gains. The abstract procedural
‘trajectory’ is already known and used as the basis for
interpreting various state transitions in the open system and
hence characterizing it as an implementation. In sharp contrast,
we can use the intended interpretation of our artefacts both to
predict their future behavior, as well as discover previously
unknown output values automatically.

And this is obviously why an engineered correlation
obtains between fine-grained causal structure and abstract formal
structure in the case of our artefacts — we want them to be
informative and reliable! We also want them to be highly
versatile, and this is where counterfactual considerations come to
the fore in practice: over time we can do runs on a huge number
of different inputs, and in principle the future outputs follow as
direct consequences of the intended interpretation. So a physical
system is useful to us as a computer only when its salient states
are distinguishable by us with our measuring devices, and when
we can put the system into a selected initial state to compute the
output of our chosen algorithm on a very wide range of specific
input values.

These pragmatic considerations supply clear and well
motivated criteria for differentiating useful from useless cases of
physical implementation. And we would advocate this type of
pragmatic taxonomy in lieu of attempts to give overarching
theoretical constraints purporting to distinguish ‘true’ from
‘false’ cases. Some basic desiderata for pragmatically valuable
implementations include (a) fully automatic, (b) reliable, (c)
versatile in the sense of computing values for a wide range of
different inputs (d) non ex post facto (e) yielding increased
predictive power with regard to future physical states of the
implementing mechanisms, (f) possessing technologically
manipulable initial configurations and output configurations
detectable by our measuring devices and (g) physical rather than
purely abstract constraints on the input and output
characterizations.

Similarly, ascriptions of computation in the sense (1)
to the physical systems are motivated by pragmatic reasons.
Useful interpretations ought to yield simple formalisms whose
equations we are able to integrate or at least investigate their
properties with our mathematical resources. Variables should be
mapped onto reliably observable physical magnitudes that figure
in many scientific theories and are not proposed ad hoc.



Valuable interpretations of physical phenomena in terms of DS
give us simplified formal description, epistemically useful and,
hopefully, manifesting some predictive powers. We cannot
however, claim that the physical process itself realises the
mathematical equations in any other sense than that its behaviour
can be fruitfully described using such equations.

11 CONCLUSION

Computation is an extrinsic, observer dependent interpretation
that we project onto physical systems according to our purposes
and potential epistemic gains. As such, it does not support a
stable or independent natural kind. Diverse types of natural
events and processes can be modelled or simulated using
computational techniques, as in sense (2) above, but this is to be
distinguished from canonical sense (3), in which the system itself
is viewed as instantiating and executing an explicit formal
procedure. However, various physical systems do spontaneously
‘obey’ clear regularities in their evolution through time, and
many such regularities have been mathematically characterized
in terms of Dynamical Systems theory. Although this sense (1)
reading does not comprise a case of genuine computation, in the
strict connotation of executing a well defined formal procedure,
it does provide a fundamental form of mathematical
representation of the natural world.

Various opponents of the Computational Theory of
Mind have provided trivialization arguments to the effect that,
even in canonical sense (3), the notion of implementing a
computational formalism is overly liberal to the point of vacuity.
Such results serve to undermine not only CTM in particular, but
the more encompassing notion of ‘Natural Computation’ in
general. In a parallel manner, we extend this strategy to sense (1)
‘computation’ in the guise of Dynamical Systems theory, to
argue that realizing such abstract formal structures is again a
matter of observer dependent ascription. As with the original
trivialization strategies aimed against CTM, this extended result
has deep implications for the science of mind, since Dynamical
Systems have been advocated (by, e.g. van Gelder [17]) as
providing an alternative theoretical foundation for mentality in
the natural world.

Advocates of CTM have proposed a number of
constraints on the notion of ‘genuine’ implementation, in an
attempt to block the trivialization results and uphold a robust
notion computation in the physical world. However we argue
that such constraints derive purely from human interest as
opposed to underlying and independent matters of fact. Rather
than serving to distinguish true’ from ‘false’ cases of
implementation, what the proposed constraints do instead is to
help distinguish conceptually rich and pragmatically useful
implementations from the many uninteresting, trivial and useless
cases that abound in the space of theoretical possibility.

Although practical considerations clearly guide the
design and construction of our computational artefacts, such
pragmatic motivations do not justify any deep or ontologically
grounded distinction  between genuine versus trivial
interpretations. Hence we support an anti-realist view of
computation in nature, and implementing or realizing abstract
formal structures in general is not an intrinsic property of
physical systems. In particular we have viewed the notion of
implementation in the context of senses (1) and (3), but the view
generalizes to all the prospective forms of non-Turing

‘computation’ inspired by considering natural events and
processes. These are abstract, observer dependent ascriptions
projected onto a more basic physical substrate.
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The scandal of the computational universe

First part: the qualitative concepts
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Abstract: This work presents a comprehensive computational-
universe vision. To start, we present the computational model
adopted and we show the issues that have to be resolved in order
to make credible the computational universe vision. To resolve
these issues we introduce an ultimate limit of knowledge:
observers that are part of a system/universe have no access on
information concerning the fundamental nature of the elementary
entities/particles composing the system/universe but only on
information concerning their behaviour. Then, we use this limit
to develop a computational universe model in which the
behaviour of particles is the result of a computation-like process
performed by meta-objects, and in which space and time are also
engendered by this computation. The qualitative results obtained
are used in a companion paper to propose a computational
universe vision of special relativity and quantum mechanics.

Keywords: Pan-computationalism, computational universe.

1. Preliminaries
1.1. Computational model

The computational universe idea introduced by Konrad Zuse
[1][2], and further developed by Jurgen Schmidhuber [3],
considers that the universe can be engendered by a computation.
However, several issues should be addressed for making this
kind of hypothesis credible. Before discussing these issues
(section 1.2), let us clarify the sense in which the term
“computation” is used hereafter.

In conventional computations the state of the computer is
evolving according to certain rules coded by the software.
Taking a more generic perspective, not restricted to the Turing
paradigm, a computation-like process can be viewed as a process
where the states of a system evolve according to certain rules.
Then, a natural process can be viewed as a kind of computation,
where its state evolves according to certain rules (the laws of
physics). This could be extended to the process of evolution of
the whole universe, and we could consider this evolution as a
computation where the state of the universe evolves according to
rules described by the laws of physics. In particular, these laws
(quantum mechanics and relativity) will describe the rules
determining the evolution of the states of objects (e.g.
clementary particles) evolving in a veritable space with the flow
of a veritable time. However, such an interpretation would be a
simple carbon copy of the current models of physics, and will
not bring new light in our vision of the universe. Thus, in this
work we consider a more restricted concept of computation. In
particular, a computer manipulates numerical variables. Hence, it
cannot determine the position of a particle in a veritable space.
Thus, the system has to be fully described by a set of numerical
variables. This excludes the existence of a veritable space in
which evolve the particles. Instead, space has to be engendered
by a computation process operating over numerical variables.
Furthermore the computation rules will not be copies of the
current interpretations of the theories of physics. Instead, they
exclude aspects in these interpretations that lead in non-
computational rules. However, the computational rules will have

to produce the same observable behaviour as these
interpretations. For instance, in computers we use a time
reference (implemented by a clock signal in digital computers).
This creates a fundamental time, which is not compatible with
relativity where there are as many time references as inertial
frames (i.e. an infinite number). Also, in the current
interpretation of special relativity all inertial frames have equal
stance. Thus, computing the state of the objects (elementary
particles) composing the universe in just one inertial frame is not
sufficient for engendering a wuniverse complying this
interpretation. We then need to compute it for all inertial frames
(infinite number). This will need using an infinite set of state
variables (one per inertial frame), and will require infinite
computing power or infinite time. Quantum superposition also
introduces infinite set of states, since observables of continuum
spectrum, like the position and momentum (but also observables
of discrete spectrum like the energy), have infinite number of
eigenvalues, resulting in the superposition of infinite number of
values. We consider rules integrating these aspects, as well as
quantum non-locality, as non-computational. Then, our
computation model will obey the following constraints.

i. The state of each elementary object/particle is described by a

finite number of variables.
ii. The computations of all object/particle variables are rated by
a unique time variable (synchronous process).

iii. The computation of the state variables of distant
objects/particles  does not require  instantaneous
communication.

iv. The rules used to compute the states of the particle are
described by analytical expressions.

v. The complexity of the computations of these expressions is
not relevant as far as they can be done in finite time.

The above constraints correspond to a model that is
computable in the Turing sense, except the fact that such
computation will provide discrete results. However, analogue
computers could be used to implement the analytical expressions
of the rules in point iv. Note also that, there is an open discussing
on whether time, space, and physical states are ultimately
continuous or discrete. However, resolving this controversy is
not in the scope of this article. Instead we will provide
computational universe models for both view points.

Note also that, by succeeding to develop a computational
universe model, which uses simple computational rules but
produces the same observable behaviour as complex theories of
physics, may provide new means for resolving several
controversies of modern physics. Examples of such
controversies, and their treatment in the context of the proposed
vision, are presented in a paper companion to this article [4],
which addresses relativity and quantum mechanics.

1.2. Critical issues
In the previous section we have argued that adopting a model,
which is carbon copy of the theories of physics, is lucking



motivation, as it will not bring new light on our vision of the
universe. Thus, we adopted a simple computational model
described above in points i through to v. However, such a simple
model raises several critical issues. A first set of issues is related
with the question of realism. A second set of is related with the
requirement that the computational model should be able to
engender a universe in which the observable behaviour of its
processes should be the same as the one described by the
theories of physics.

The first set of issues (related to the question of realism) is:

R1- A computation engenders virtual objects, but in our
everyday life we perceive real objects.
R2- In our everyday life we perceive objects evolving over time
in a real space. Thus, since several millennia we consider that
our universe is composed of objects immersed in a veritable
space and evolving with the flow of a veritable time. On the
other hand computations can engender virtual objects immersed
in a virtual space and evolving with the flow of time. This time
is a primary entity (i.e. it_is not engendered by the computation
but it is rating it). For instance, the evolution of a virtual reality
engendered by a computer is rated by the computer clock.

So, a first question is how can we resolve contradictions R1
and R2.

The second set of contradictions (P1 + P5) is related with the
theories of physics:
P1: In our model, the computation of the state variables of the
elementary particles is rated by a time that is external to the
computation, while space is engendered by the computation.
This raises the following question. How could a virtual space
engendered by a computation be merged with an external time
rating the computation to give raise to the 4D space-time
structure described by the theory of relativity?
P2: In our model, the evolution of the states of the
computational universe is rated by a fundamental time. How can
we conciliate this fundamental time with special relativity, where
there is not fundamental time but as many times as inertial
frames?
P3: In special relativity there is no privileged inertial frame,
instead all inertial frames (i.e. an infinite number) have equal
stance. In our model, we use a single set of state variables for
each elementary particle. Thus, the computation of these states
can be done in a single reference frame, which is then becoming
privileged. How can we conciliate this privileged frame with
relativity?
P4: Observables of continuum spectrum, like the position and
momentum, but also observables of discrete spectrum like the
energy, have infinite number of eigenvalues. Thus, quantum
superposition for these observables results in infinite number of
superposition values. This looks incompatible with our model, in
which the state of each elementary particle is described by a
finite number of variables.
P5: Our computational model excludes instantaneous
communication. Thus, a last question is how it can engender a
universe in which quantum non-locality implies that a particle
can correlate instantaneously its state with the result of a
measurement performed over its entangled counterparts?

While the above contradictions seem non reconcilable, we
succeed resolving them by giving a very central role to the
observers that are part of a universe, that is, observers composed
of the same elementary entities (particles) as those composing

any structure of the universe. For such observers we derive a
fundamental limit of knowledge according to which they can
access information concerning the behaviour of these entities but
by no means information concerning their veritable nature. Due
to this limit, such observers could not distinguish a universe in
which particles occupy positions in a veritable space from a
computational universe in which the positions of particles are
determined by state variables. This way we resolve the
contradictions R1 and R2 related with the question of reality.
Then we treat the contradictions P1 through to P5 by developing
a computational universe model in which:

- Lorentz transformations are not reflecting the veritable
structure of a wveritable space-time but become a
consequence of the interaction laws used to compute the
evolution of the states of particles and of the measurement
means that dispose the internal observers of the
computational universe. This allows resolving the
contradictions P1, P2, and P3.

- The interpretation of quantum mechanics based on the
quantum  superposition concept is replaced by a
computational model consisting in computing certain
deterministic functions acting on stochastic signals. This
way we succeed resolving contradiction P4.

- The instantaneous “communication” between the states of
distant entangled particles is treated by exploiting the
distinction of the time pacing the computation from the time
experienced by the internal observers of the system. This
way we resolve contradiction P5.

The following sections address the qualitative analysis of our
approach. Then, in a companion paper [4], we use these
qualitative results to develop the quantitative analysis of our
approach treating special relativity and quantum mechanics.

2. Internal Observers, Objects and Behaviours

In this section we introduce the concept of the internal observer
of a system, and use it to establish an ultimate limit of
knowledge. This limit states that we can access information
concerning the behaviour of the elementary entities (i.e.
particles) composing the universe, but not information
concerning the veritable nature of the entities produced this
behaviour. This limit is implied by the fact that the nature of
information that we can access is conditioned by our position as
internal observers of the universe (in the sense that we are
constituted by the same elementary entities — particles - that
compose any structure of the universe). As a consequence, the
information collected by our sensorial systems as well as by the
systems we built to observe nature, comes from the interactions
of the particles composing these systems with other particles
(like photons, electrons,....). The latter having previously
interacted with the objects that we want to observe, their states
are modulated by these interactions. Thus, they bring to our
sensorial systems information that is the outcome of these
interactions. But the interactions represent the behaviour of the
particles.

To better understand the foundations of this limit let us consider
a system made of several entities represented by light blue
circles in figure 1. Each of these entities is an object, which
comprises a state and exhibits a certain behaviour produced in
the following manner. Each entity interacts with other entities
(interactions illustrated schematically by gray lines) and receives
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information concerning their state. It determines its next state as
a function of its present state and of the present and/or past
states of the entities with which it interacts. Entities described in
such generic terms could correspond to various interacting
objects, including the cells of a cellular automata, the nodes of a
parallel processor, software agents, the elementary particles of
our universe, ... We can call the rules that the entities use to
determine their next state (while interacting with other entities),
laws of interactions. Let us consider in this system a set A of
entities (for example those surrounded by a circle in gray dashed
line in figure 1) and the set B of entities of the system that are
external to A. We observe that the information the entities of set
A receive from the entities of set B concerns the states of the
later and the way in which these states evolve. Thus, for
determining their next state, the only information that the
entities of set A could receive concerning the entities of set B
are related to the states of the latter and the way these states
evolve. But the state of an entity and the way this state evolves
represent its behaviour. Consequently, the states of the entities
of set A can contain information concerning the behaviour of the
entities of set B, but in no way they can contain information
concerning the veritable nature (or structure) of the objects
which produce this behaviour.

Figure 1. A system composed of a set of interacting entities

Let us now consider that the entities of set A are the
elementary particles which compose a sensory organ (for example
the eye) of an observer, as illustrated in figure 2.

Figure 2. Objects and observer being part of a system

The particles of this sensory system interact with other
particles and via these interactions they collect and transfer
information to the particles that compose the mental structures of
this observer. Thanks to this kind of information these structures
form images of all kinds of objects of the system (e.g. universe)
in which belongs the observer. For the reasons we have just
explained, the states of the particles of these sensory and mental
structures can contain only information concerning the behaviour

of elementary particles. Thus, this discussion highlights an
ultimate limit of our knowledge: as observers composed of the
same kind of elementary particles as those composing any object
of our universe (observers that are part of the universe or internal
observers), we can have access to information concerning the
behaviour of the elementary particles but by no means to
information concerning the nature of the veritable objects which
produce this behaviour. Therefore, these objects are meta-objects
for the internal observers. We will refer to this limit as the
ultimate limit of knowledge for internal observers (ULKIO) of
any system.

2.1 System closure versus internal observers
In this section we consider a system structure more suitable for
proposing a computational model of quantum systems, as the one
we describe in a paper companion to this article [4]. Let us
consider that the system in figures 1 and 2 is closed (in the sense
that the entities composing the system could not interact with any
entity external to it), and that the state of each entity of this
system is determined from its own state and the states of the
entities with which it interacts, following certain rules (interaction
laws). The internal observer could observe (through interactions)
a large number of times the state of any given entity and of the
entities with which this entity interacts. Through interactions,
he/she may also force the states of these entities at particular
configurations and observe the outcome. Then, after a sufficient
number of observations and with a certain amount of intelligence
she/he could extrapolate the interaction laws. Afterwards, if these
laws ere deterministic and he knows the state of a closed set of
entities (i.e. not interacting with any other entities), he can use
these laws to predict the evolution of this state.

Let us now consider the system of figure 3. In this system
each entity is composed of two parts, the first is represented by a
light blue circle and the second by a gray circle. In this system
certain laws determine the state of the first (blue) part of each
entity from the state of this part; the state of the gray part of the
entity; and the states of the blue parts of the entities with which it
interacts. Consider also that the gray part of its entity is
autonomous. That is, its future state does not depend on the state
of any other part of any entity but only on its own state. For
instance, the gray part could be an autonomous pseudorandom
generator or a random generator. We observe that for an internal
observer of this system:

- Similarly to the states of the entities of figures 1 and 2, in
figure 3 the states of the blue parts of the entities are
observable and could also be forced through interactions to
take particular values.

- An internal observer (i.e. an observer composed of
clementary entities of the system), has no means for
performing experiments in which he/she forces the states of
the gray parts at selected values, nor observe these states.

- Due to the previous constraints, it may be impossible or it
may require an intractable number of observations for the
internal observer to discover the law governing the state
evolution of a gray part by simply observing the states of the
blue parts,

- With adequate pseudorandom generators, the behaviour of
the blue parts as well as the behaviour of the whole system
and the properties emerging in it may be indistinguishable
with respect to the case of truly random generators.

- Similarly, it may be impossible to extrapolate the state of the



gray parts by observing the states of the blue parts.

- Knowing the state of the blue part of an entity and the states
of the blue parts of the entities with which it interacts may
not allow determining the next state of this blue part (since it
also depends on the unobservable and unpredictable state of
the gray part). However, it may be possible to restrict the set
of possible values of this state (potential values). The
unknown and unpredictable value of the state of the
corresponding gray part will determine which particular
value among these potential values will become the actual
state of the blue part (actualization). Thus, an internal
observer disposing a sufficient number of observations will
not be able to extrapolate laws allowing her/him to predict
the exact value provided by the blue part of an entity (or of a
set of entities), but only laws allowing him to predict the set
of possible values.

Figure 3. System closure versus internal observers

We observe that, though the system of figure 3 can be closed and
possibly deterministic (e.g. when the gray parts are deterministic
autonomous generators such as pseudorandom generators), for its
internal observers the system will be seen as non closed and non
deterministic, since some information not accessible to them (the
values coming from the gray parts) is required to predict the
evolution of the state of the system. For these observers, this
information is a meta-information.

3. Computational universe and emergence of space and time

According to the ULKIO (ultimate limit of knowledge), as

internal observers of the universe (i.e. composed of the same

elementary particles as any other object of the universe), we can
access information concerning the behaviour of elementary
particles (i.e. their states and the way these states evomve) but not
information concerning their veritable nature. As a consequence,
we are not able to know if they are veritable particles immersed in

a veritable space or if their behaviour is the result of a

computation-like process such that:

- The evolution of the state of the particles is determined by
“computation” rules described by analytical expressions
identical to the ones describing the interaction laws of
elementary particles.

- The determination of this evolution includes the evolution of
the position of each particle. But this position does not
correspond to a veritable position in a veritable space.
Instead it is determined by the values that this process
attributes to a position variable.

To illustrate this vision, let us consider that the meta-
system making the computations, which engender the
computational universe, is a cellular network (as shown in figure
4), composed of a set of cells (the meta-objects of the previous
section) that compute the evolution of the states of elementary
particles. Each cell uses its computational means to determine
the next values of the state variables of a “particle” (including its
position variable), as a function of the current values of these
variables and of the current and/or past values of the state
variables of the “particles” with which it interacts. The
computation is performed following certain rules referred as
interaction laws.

b

a
Computational
universe

Figure 4. Cellular network and computational universe

It is worth noting that the distance between “particles” does not
correspond to the distance of the corresponding cells in the
cellular network, but to the numerical distance determined by the
values of the position variables of the “particles”. Thus, in figure
4, two cells a and b are close in the network, but their position
variables have very different values. In this case, in the universe
engendered by the cellular network, the corresponding
“particles” a' and b' will have very distant positions. On the other
hand, the cells b and ¢ are very distant in the network but their
position variables have very close values. As particles
corresponding to distant cells in the network may interact, the
network will dispose communication means to exchange
information between distant cells as required by the interactions.

3.1. Emergence of space
In the illustration example given previously, the cells of the
cellular network determine at each computation step the values
of the position variables of the particles. If we consider that the
values of the position variables represent positions in a multi-
dimensional system of Cartesian co-ordinates (e.g. in a four-
dimensional system) corresponding to a virtual multi-
dimensional space with Euclidian structure, then, the values of
the position variables determined by all the cells will lie in a
subspace of this virtual space. This subspace will have a certain
form (e.g. the form of a curve of three dimensions in a four-
dimensional space, illustrated in figure 5 by the surface of a
sphere of two dimensions). In this sense, the values of the
position variables computed by the cells of the cellular network
determine the form of the space engendered by this computation.
However, this space is virtual for any observer external to
this universe, and she/he will be able to perceive its
computational nature. On the other hand, in the computational
universe, all structures (including the sensory and mental
structures of its internal observers) are shaped by the states of the
particles composing them and by their evolution. These states
also determine the representations of the world emerging in these
mental structures. If the computation rules used in a
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computational universe are identical to the laws of interactions
of a non-computational universe (in the sense that particles are
immersed in a veritable space), then, the states of similar sets of
particles will evolve similarly, creating similar structures and
similar state configurations in both universes. Thus, in the
mental structures of the internal observers of the computational
universe, the states representing the form of an object, the
relative positions of a configuration of objects, etc., will be
similar to the states representing the form of a similar object, the
relative positions of a similar configuration of objects, etc ... in
the mental structures of internal observers of the non-
computational universe.

Figure 5. Emergence of space in a computational universe

Therefore, the representations of the “computational” objects
and of the “computational” space emerging in states of the
mental structures of the observers of the “computational”
universe will be similar to the representation of the “veritable”
objects and of the “veritable” space emerging in states of in the
mental structures of the observers of the non-computational
universe. Thus, the perception of space and of objects emerging
in the mental structures of the observers of the “computational”
universe will be identical to the perception of space and of
objects emerging in the mental structures of the observers of the
non-computational  universe.  Therefore, nothing  could
differentiate these perceptions. Thus, the observers of the
“computational” universe could believe that they live in a world
composed of veritable objects immersed in a veritable space and
nothing could prove to them that this is not true. For the similar
reason, we could not prove that we do not live in a world
composed of “computational” objects immersed in a
“computational” space rather than in a world composed of
veritable objects immersed in a veritable space. This resolves the
reality related questions R1 and R2 stated in section 1.2. The
subsequent sections address certain qualitative questions
concerning the time perceived by the internal observers of a
system, which will be used to treat relativity and quantum
mechanics in the quantitative part of this work (companion paper

[4D)-

3.2. Emergence of internal time

In this section we address a fundamental question concerning the
nature of time:

- Is time an autonomous entity which has an existence per se and
which paces the changes in the Universe? or

- Time does not exist a priori but it is a by-product of the
evolution of the structures and processes of the universe (in the
sense that this evolution creates the notion of time in our minds)?
We are interested about the internal time of a universe and more
generally of a system, that is the time experienced by its internal

observers. Such observers are agents, which anticipate the
evolution of a process taking place in the system, by comparing it
with other processes taking place in the system and selected as
time references (clocks).

3.2.1 A necessary and sufficient (qualitative) condition

Let us first discuss a sufficient condition that enables the
emergence of internal time in any system (including a universe).
We can find that the notion of the internal time (hereafter simply
referred as time) is closely related to a well-known invariance,
which seems to govern the evolution of our universe (we will see
later that this invariance is related with the stability of the laws of
physics). To describe this invariance let us consider a process H
(for example the evolution of a clock) and k successive states h;,
hy, hs, ..., h of this process. Let us consider a second process G
(for example the fall of a water drop) and k successive states g,
2, g3 ... g of G, which are respectively synchronous to the states
hy, hy, hs ... hy of H. Suppose that the processes H and G take
again place under exactly the same conditions as before and that
the state g, of G is synchronous to the state h; of H. Then,
according to the above-mentioned invariance, the states g, g3 ...
g of G will be synchronous to the states h,, h; ... h, of H. In fact,
this synchronism may not be perfect due to the quantum
indeterminism, but will be verified with a high degree of accuracy
if H and G describe the evolution of macroscopic systems. Based
to this invariance, if we observe once two processes G and H,
then, we will be able whenever these processes occur again to
anticipate the evolution of process G by observing the evolution
of H.

The above discussion is not limited to our universe but
determines a sufficient condition for the emergence of time for
observers that are part of any system or “universe”, including a
computational universe. Indeed, let us imagine a world in which
there is always the same relationship between the paces of
evolution of two processes, whenever and wherever these
processes take place. In such a world we can speak about time,
because:

i.  We can choose a process as time reference, and

ii. After having observed once the correspondences between the
different events of this process and the events of another
process we can:

- Use the reference process to predict the instant (event of the
reference process) in which each event of the second process
occurs.

- Measure the duration of a process, by observing the events
of the reference process in which the process under
measurement starts and finishes.

As concerning the necessary condition for the emergence of

(internal) time, let us imagine a world in which:

- Certain times the zebras are incomparably faster than the
lion and certain times happens the opposite.

- A car being at a distance of several kilometres covers
suddenly this distance in a fraction of a second and crushes
us.

- The earth carries out hundreds of evolutions around the sun
without your biological age being advanced, while several
generations of people already passed, and suddenly you age
of a hundred years in a fraction of a second.



Let us imagine a world (or system) in which processes evolve
arbitrarily the one with respect to the other, and thus, there is no
invariant correlation between the paces of evolution of the
different processes. The observation of the changes in such a
world would not lead an intelligent observer to form the notion
of time. Moreover, it would be improbable that such a universe
will engender the intelligence. In fact, an intelligent being could
not act by anticipation to protect itself from a natural
phenomenon, because the speed of evolution of the phenomenon
would be completely unpredictable; a herbivore could not escape
a carnivore thanks to its speed, nor the carnivore catch the
herbivore thanks to its speed, endurance, strategy, and power,
because the relative speed of these animals would change in
unpredictable way. For the same reason, the intelligence could
not emerge, and in any case its existence would not have any
sense: what would be the utility of intelligence if it could not
anticipate any event?

In a system whose state evolves according to certain rules
(laws), it is easy to check that the invariance of these laws is the
necessary and sufficient condition that implies the invariance of
the ratios of the paces of evolution of the processes that take
place in this system. Thus, the invariance of the laws governing
the evolution of the system is the necessary and sufficient
condition for the emergence of (internal) time. In the case of a
universe constituted of particles taking positions in a space
(veritable or computational), this condition can be stated as: the
laws that govern the evolution of the states of the particles are
invariant (i.e. they are independent of the values of the position
variables of the particles, and remain unchanged throughout the
evolution of this universe). Indeed, in this case, the
correspondence between the events of two processes will remain
the same whenever and wherever these processes take place.

However, it is worth noting that this condition could be
somehow relaxed without preventing the emergence of time in
the mental structures of an internal observer. Indeed, the
variation of the laws, which govern the evolution of a universe,
will not prevent this emergence as long as this variation remains
sufficiently weak or sufficiently slow to allow the prediction of
the events with a sufficiently small margin of error.

We can conclude that the internal time of a system (or a
universe) is not an autonomous category but can exist if and only
if the laws governing the evolution of the objects of the system
are invariant.

3.2.2 Quantitative principle governing the internal time

We will notice that the above invariance is not dependent on the
very particular form of the laws governing the evolution of a
system/universe, but on a generic principle of invariance of these
laws. This invariance is the qualitative principle that underlies the
emergence of time (the necessary and sufficient condition for its
emergence). On the other hand, the particular correspondence
between the states of two processes H and G is determined by the
particular expressions describing the laws that govern the
system/universe. For instance if process H is governed by an
electromagnetic interaction having a given expression, and
process G is governed by a gravitational interaction having
another expression, the particular expressions of these laws will
determine the relation of the pace of evolution of process G with
respect to the pace of evolution of process H. Therefore, the
particular form of the laws governing a universe will determine
the quantitative manifestation of time (quantitative principle). It

is also this form that determines the structure of time and
consequently of space-time (e.g. Galileo or Lorentz
transformations), as we show in a companion paper [4].

3.2.3 Time versus meta-time

In the previous sections we have seen that the invariance of the
laws implies the emergence of internal time in a system/universe.
Nevertheless, the emergence of time presupposes that the state of
this system evolves. This assumption means that there is a cause
that makes the system changing its states. We can call this cause
engine of change or external time or meta-time. Whatever is the
term we use the fact is that we tried to understand the nature of
internal time by implicitly introducing a “meta-time”. Since this
“meta-time” is a metaphysical category (thus of inscrutable
nature), we could conclude that this attempt has no sense since it
replaces the question of the nature of time by the question of the
inscrutable nature of a meta-time. This conclusion will be correct
if time is a simple translation of meta-time. But this cannot be the
case, since we have seen that time is determined both
qualitatively and quantitatively by the laws governing the
evolution of the states of the system. We can use the
computational universe vision to make this fact more clear. This
vision is very useful for illustrating the related ideas, as it allows
us to give a simple and clear example of an external time of a
system/universe and use it for illustrating the independence of the
internal time from the external time. Let us consider that the
universe is engendered by a (meta)computing system which is
paced by a temporal dimension that we call meta-time. Let us
suppose that this system is synchronous and its computations are
paced by a meta-clock whose period corresponds to a duration T
of meta-time. That is, T corresponds to the meta-time duration
that the meta-system disposes for carrying out one step of
computation (e.g. for exchanging information between meta-cells
and computing the new states of the meta-cells). This step of
computation will carry the minimal changes that can occur in the
engendered universe. Therefore it will correspond to a minimal
duration of time t;, in this universe. Let us now consider that the
clock period T is variable.

T2

Figure 6. Independence between time and meta-time

This is illustrated in figure 6, where the period T of the meta-
clock takes two different values T, and T, in two different cycles
of computation. In this figure, the old and new states of each
cycle are represented by the high and the low position of a water
drop. Because at each clock cycle the meta-system carries out one
cycle of computation, corresponding to the minimal time duration
t, of the universe, then, the same time duration of the universe (t;)
will correspond to two different durations T; and T, of meta-time.
Thus, stopping, decelerating, or accelerating the meta-clock will
not have any influence on the time experienced by the observers
that are part of the universe.
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We can arrive in the similar conclusion if we consider
continuous meta-time. Let P(T) be the function describing the
evolution of an arbitrary process with the flow of a continuous
meta-time T pacing the computational universe, and C(T) be the
evolution of a process selected as clock in the computational
universe. For convenience, process C(T) can be periodic, that is,
C(T+D) = C(T), where D is a constant meta-time duration D. As
CT is used as a clock in the computational universe, for the
internal observers of this universe its period d will correspond to
an internal-time unit. Figure 7 provides a simple illustration of a
process P(T) (top of the figure), together with a periodic process
selected as clock C(T) (bottom of the figure). In this figure, the
clock period corresponds to a constant meta-time D as well as a
constant internal-time d.

To imitate the acceleration, deceleration, and freezing of
meta-time we can replace T by aT in all processes engendering
the computational universe. For instance, making this substitution
in the above two processes gives the functions P(aT) and C(aT).
Then, for a = 1 all processes evolve as before (normal flow of
meta-time). For a>1 all processes progress faster (meta-time
acceleration). For a <1 all processes progress slower (meta-time
deceleration). For, a = 0 all processes are frozen (meta-time
freezing).
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Figure 7. Process evolution in continuous meta-time

Figure 8 illustrates the effect of parameter a on the
evolution of functions P(aT) and C(aT). In this illustration, on the
left of point A we have a=2; between points A and B we have a =
0; on the right of point B we have a = 4/5. We remark that, figure
7 presents the points of view of both the external observers and
the internal observers (equal distances on the horizontal axis
represent equal durations for both the meta-time and the internal
time. On the other hand figure 8 presents the point of view of the
external observers only. This is because equal distances on the
horizontal axis represent equal meta-time durations but not equal
internal time durations. Indeed, equal internal-time durations must
correspond to the same amount of clock periods. But in figure 8:

- The non-nil horizontal distance AB correspond to nil
internal-time (nil evolution of the clock process);

- The same horizontal distances before point A and after point
B represent different numbers of periods of the clock
process: 2 clock periods before point A versus 4/5 clock
periods after point B.

Then, to represent the view point of the internal observers we
have to: joint points A and B for the process P(T) and A’ and B’
for the process C(T) (as no-internal time elapses between these
points; expend horizontally (x2) the part of the figure before
point A; and contract horizontally (by 4/5) the part of the figure
after point B. Making these modifications, will result in exactly
the curves in figure 7. This means that, with respect to the
internal-time any arbitrary process will evolve identically as in
figure 7. Thus, accelerating, deceleration or freezing the meta-
time has no eff?ct on the internal t‘ime.
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Figure 8. Effects of meta-time disturbances

The above results are generic as they consider any kind of
function. A more specific analysis should consider that the next
state of a physical system is generated from its present state P(T)
and the present state I(T) of the physical systems with which it
interacts. Then, the next state relationship can be written as P(T
+ DT) = F(P(T), I(T)). That is the state P of the system at instant
T+DT is determined by its state P at instant T and by the state E
at instant T of the systems with which it interacts. Then we raise
the question about the value that we can take DT: can it be 0 or
infinitesimal? Setting DT=0 gives P(T) = F(P(T), I(T)) giving
always the present state P(T). Thus, DT>0. By setting T1 =
T+DT we obtain P(T1) = F(P(T1- DT), I(T1-DT)). The state P of
the system at an instant T1 could not be generated by the state P
of the system at multiple instances. Thus, DT has to take a
unique value. So, DT cannot be infinitesimal (an infinitesimal
value is smaller than any given value - including the unique
value of DT). Thus, similarly to any system in our universe, the
computing meta-system can be represented as in figure 9, where
the block implementing the next state function F(P(T), I(T)) has
non-zero finite delay DT (please ignore for the moment the
block AT drawn with dashed line).

Note that a system should start from a defined initial state.
If the initial state is not defined the complete evolution of the
system state may be undefined. Caution has to be taken when



considering the initialization of a system having non-zero delay.
Indeed, to produce defined states, initially the state of the system
has to be defined during a duration equal to this delay. Figure 10,
shows a snapshot the evolution of the states P(T) and C(T) of
two processes, where C(T) is selected as an internal clock in the
computational universe. If the states of these processes are
defined during an initial meta-time interval [T0, TO+DT), where
DT is the delay of the next state function of these processes, then,
theses functions will determine the states of the two processes in
the interval [TO+DT, TO+2DT). Similarly from this interval will
be generated the states in interval [TO+DT, T0+2DT), and so on.

I(T)

F =

F(s(T), (T))

SO

Figure 9. Next state function representation
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Figure 10. Effects of delay in next state computationn

Let us now consider the processes P(T) and C(T) shown in
figure 10, in order to analyse what happens if we introduce on
the inputs of function F(S(T), I(T)) a delay AT drawn in figure 9
with dashed lines. In this case, the delay required for computing
the next state of the computational universe will become equal to
DT+AT. Thus, the system will evolve by means of the next state
function S(T+DT+AT) = F(S(T), I(T)) instead of S(T + DT) =
F(S(T), I(T)), resulting in the curves shown in figure 11. The
consequence is that if two states A and B of process C(T) and A’
and B’ of process P(T) are separated by a meta-time duration DT
in figure 10, the same states will be separated by a meta-time
duration DT+AT in figure 11. Thus, from the meta-time
perspective, introducing the delay AT decelerates all processes of
the computational universe by a factor equal to DT/(DT+AT).
Thus, figure 11 can be obtained by expending horizontally figure
10 by a factor (DT+AT)/DT. However, the time experienced by
the internal observers of the computational universe is
determined by the relations of the paces of evolution of the
processes taking place in the computational universe (e.g. the
pace of evolution of process P(T) in comparison with the pace of

evolution of process C(T) selected as internal clock). Similarly
to figures 7 and 8, to take into account the deceleration induced
on the clock process C(T) by the meta-time delay AT, we have to
contract horizontally figure 11 by the factor DT/(DT+AT).
Making this contraction we obtain exactly the curves of figure
10. Thus, adding the delay AT does not affect the time
experienced by the internal observers of the computational
universe. This, simple observation is essential in order to show
in the companion paper [4] that a computational model
excluding instantaneous communication can engender a
computational universe in which internal observers experience
quantum non—l‘ocality.
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Figure 11. Adding extra delay in next state computation
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Conclusion

We have shown that for any observer that is part of a
system/universe), there is an ultimate limit of knowledge
(referred as ULKIO). This limit allows the internal observers of
a system/universe to receive information concerning the
behaviour of the elementary entities/particles composing the
system/universe, but by no means information concerning their
veritable nature. The consequence is that, as observers that are
part of the Universe we have no means allowing us to distinguish
whether our perceptions correspond to a universe composed of
veritable particles immersed in a veritable space or to a universe
engendered by a computation-like process. We further discuss
the emergence of space and time, and we show that their
structure is determined by the rules used to compute the states of
the elementary particles as well as the actions of measurements
performed by the internal observers of the system/universe.
These qualitative results are used in a companion paper [4] in
order to develop the quantitative part of this work, treating the
computational Universe vision of special relativity and of
quantum mechanics.
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Abstract: This work discusses a computational universe
vision. In a companion paper, we describe a simple
computation model adopted in this vision, as well as the
contradictions raised when we use such a simple model
for reproducing the observable behaviour of the universe
as described by the theories of physics. Then, in order to
resolve these contradictions, we introduce the concept of
the internal observer of a system and we discuss the
emergence of space and time for such observers. This
discussion is qualitative and creates a framework over
which we can construct our computational universe vision
at the quantitative level, in order to integrate the theories
of physics in our computational universe vision. The goal
of the present paper is to develop the computational
universe versions of special relativity and quantum
mechanics.

Keywords: pan-computationalism, computational
universe, special relativity, quantum mechanics.

1. Introduction
The goal of the present paper is to complete a
computational universe vision proposed in a companion
paper [1], by developing the computational universe
versions of special relativity and quantum mechanics. In
the companion paper we argued that adopting a
“computation” model that is a carbon copy of these
theories has no interest, as it will not bring new light in
our vision of the universe. Thus, we adopted a very simple
computation model. However, using such a simple model
for reproducing the behaviour of physical processes, as
described by the theories of physics raises several
contradictions, such as:
- The computations in our computational universe model
are rated by a unique time variable (e.g. a meta-clock).
This is in contradiction with special relativity, where
there is no fundamental time but as many times as
inertial frames.
In special relativity all inertial frames have equal stance,
and the 4D reality of special relativity encompasses the
state of natural systems in all inertial frames. But our
model uses a single set of state variables, which
computes the states of a system in only one inertial
frame.

- Numerous observables (position, momentum, energy,
...) have infinite number of eigenvalues, resulting in
infinite number of quantum superposition values. This
looks incompatible with our model, where the state of
each elementary particle has to be described by a finite
number of variables.

- Our computation model excludes instantancous

communication. This seems inconsistent with quantum
non-locality.

While the computation model we adopted seems
incompatible with the theories of physics, we show in this
paper that this incompatibility does not concern the
observable behaviour of physical systems described by

these theories but their interpretation. To proceed, in the
companion paper [1] we introduce the concept of
observers that are part of the system/universe (internal
observers). Such observers are composed of the same
elementary entities (e.g. particles) as any other object of
the system, and use measurement means also composed of
such entities. Then, we have shown that the time
perceived by such observers (the internal time of the
system), is not related with the time pacing the evolution
of the states of the system (e.g. the meta-clock in the case
of synchronous digital computing), but is exclusively
determined by the rules (interaction laws) computing the
evolution of the states of the elementary entities/particles
composing the system. In addition, we show that these
rules also determine the structure of space perceived by
the internal observers of the system.

Based on these qualitative results [1], the goal of the
present article is to determine computation rules
(representing the laws of interactions), which engender
internal space and time having the 4D space-time structure
of special relativity. Also, based in the distinction of the
internal from the external/meta time, our second goal is to
show that quantum non-locality can be reproduced for the
internal observers, even if the computation model does not
support instantaneous communication. Finally, using a
computational system illustrated in the companion paper
(figure 3 [1]), are third goal is to propose a computational
model of quantum systems, which engenders the same
observable behaviour as the one described by quantum
mechanics, but without using infinite superposition states,
as would be required by the current interpretation of
quantum mechanics for observables having infinite
number of eigenvalues.

2. Emergence of Relativistic Space-Time
2.1 Preliminaries

According to the special relativity, space and time are
imbricated in an inherent 4D structure described by he
Lorentz transformations. However, in the computational
universe, where space and time do not pre-exist but are
engendered by a computation-like process, their structure
cannot be an inherent property but has to emerge in the
computation engendering this universe. As discussed in
the companion paper [1], this space-time structure will be
determined by the form of the laws of interactions, and
will emerge in the measurements of the internal observers
of the computational universe. The characteristic of these
measurements is that they use measurement means
composed of the same particles as all other objects of the
computational universe. This means that the evolution of
the states of these particles is determined by the same
computation rules (interaction laws) as those determining
the evolution of particles engendering the computational
universe. Then, to develop a computational universe
conforming special relativity, we have to:
i. Determine the form of computation rules (interaction

laws) that could engender space-time conforming



Lorentz transformations.

ii. Determine the measurement means (length units, time
units and synchronized clocks) of the internal
observers.

iii. Show that, under the laws of point i and the
measurement means of point ii, the measurements
performed in any inertial frames obey Lorentz
transformations.

As discussed in the companion paper [1], the
computations are paced by a unique time reference (to be
referred hereafter as fundamental time Tg), and they
determine a single set of states for the particles, which
then can correspond to a single inertial frame (to be
referred hereafter as fundamental inertial frame Sp). So,
the computation rules (interaction laws) determining the
evolution of these states should be expressed in the inertial
frame Sg. Thus, in the following we determine the family
of computation rules (macroscopic interaction laws)
engendering the 4D space-time structure of special
relativity (which is described by Lorentz transformations).
In order to be generic (i.e. to cover all possible
computation rules (macroscopic interaction laws) able to
engender this space-time structure, we will not restrict our
analysis in a specific computation rule (macroscopic
interaction law). Instead we will provide a constraint that
the computation rules (macroscopic interaction laws) have
to obey. This constraint will determine the largest class of
laws engendering the Lorentz transformations. This class
of laws will be determined in the following manner:

a. Each specific macroscopic interaction law will be
defined by the analytical expression of the force (or
equivalently of the acceleration) that a source particle

at rest in the fundamental frame Sp induces to a
destination particle (to be referred hereafter as the
basic form of the interaction law). For convenience
we are using the expression of the acceleration instead
of the force. At this level, we do not introduce any
constraint concerning the form of the interaction. That
is, its analytical expression can be proportional to the
inverse square of the distance separating the
interacting particles (as it is the case with our familiar
macroscopic interactions), but can also be more exotic
ones (like polynomial, exponential, having intensities
increasing or decreasing with distance, or whatever
else).

b. From point a, the form of each interaction is freely

determined for source particles at rest in Sq. This form
partially determines the interaction. Then, to
completely determine it, we need to determine its form

for source particles having any speed in Sg. In order to

!'Note that in the context of the theory of relativity we don’t deal with
quantum interaction laws but with the macroscopic expressions of the
interaction laws.

engender a relativistic-space time, this part cannot be
determined freely; instead it will have to obey a
condition that we will describe next. We will refer to
this condition as RCA (relativistic constraint of
accelerations). We show [2] that RCA represents the
necessary and sufficient condition for generating the
4D space-time structure of special relativity. Thus, the
relativistic constraint of accelerations (RCA) described
bellow determines the largest family of computation
rules (interaction laws) able to engender this structure.

2.2 Relativistic Constraint of Accelerations (RCA)

Modern theories of physics consider that distant objects
do not interact instantaneously but the interaction is
propagated in space with a finite speed equal to that of

light. Thus, an object 2 being on position P2 at an instant

ty is not subject to the effect of the interaction of an object
1 originated from the position of this object at the present

instance tp, but from its position I_;l at a past instant t]
such that c(ty - t]) = r (where r is the distance between H
and Fz). For easier reference, we will call the instant t;
and the position ﬁ, satisfying this relationship with an
instant-position pair (tp, 5), the delayed instant and

delayed position with respect to the pair (tp, ﬁ). The
analytical expression of RCA, described below, will also
incorporate this principle.

Let us consider a velocity vector v and select 3 axes X, Y,

Z, which are at rest in the inertial frame Sg and
perpendicular to each other, and such that X is parallel to

the direction of v . Then, these axes constitute a Cartesian

referential in the inertial frame Sg. Let us consider two
particles 1 and 2 such that:

- The position and velocity of particle 2 at an instant ty
are respectively 1?2 and E= (u2x, u2y, u2z),

- The position and velocity of particle 1 at an instant ty,
with At = tp — t; > 0, are respectively ﬁ and
ul = (uix, uly, uiz),

- The norm r of the vector = (ry, Iy, rz) which connects

the positions P| and P2 (i.e. the distance between

2 Special relativity 4D space-time structure is determined by the
transformations (Lorentz) of time and space coordinates when we change
inertial frames. Then, the idea beyond RCA is to modify the expression
of interactions for source particles in a manner that the dimensions of
objects, the distances between objects and the pace of evolution of
processes change in a manner that all spatial and temporal measurements
are compatible with Lorentz transformations, thus creating a
computational universe which has the same observable behaviour as the
one described by special relativity.
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positions P and P2 ) satisfy the relation’ r = cAt.

Let a2 = (a2x, a2y, a2z) be the acceleration induced at

instant ty on particle 2 due to its interaction with particle 1.

If we have two particles 1’ and 2’ identical to the particles
1 and 2 and such that:

- Ataninstant tp’ the position and velocity of particle 2’

are respectively P2' and
uzx +v u2z /yv

1+v-uxx/c2

u2y /yv
1+v-uzx/c2’

ll2'=( s
1+v-ux/c?

. ro
Atan instant t;” =tp’ - — with
c

r'= \/[(yvrx +yvvAD2 + ry2 + rzz] , the particle 1’

is at a position PI' such that the vector connecting
positions P]' and P2'is equal to

= r . .
r'=(yyrx +yyv—, ry, 1z) (or, in equivalent manner,
C

r= (yvrx +yvvAt, ry, rz). The velocity of particle 1°

at instant t;’ is

Uy /Yy Uy, /Yy
l+v-uy /c2 ' 1+v-upy /c2

U +V
u1:= 1x 5
1+v-uy /c

, then, we will say that the laws of interactions satisfy
the Relativistic Constraint of Acceleration (RCA) if
and only if the components of the acceleration induced
on particle 2’ at instant ty” due of its interaction with
particle 1’ are:

, azx
azx = 3
Yv (1+v-u2x/cz)3
Ay '= azy (v-upy /CZ)aZX
y - - b
yvz(l+v-u2X /c2)2 y\;2(1+v-u2X /c2)3
L 427 (v-uy, /02)32)(
a2, =

«{1;2(1+v-u2X /c2)2 \(\;2(1+v-u2x /c2)3
The RCA, described above for two objects is easily
generalized to any number of objects [2].

As said in section 2.1 point a, the acceleration induced on
a particle by a source particle that is at rest in S can be
described by any analytical expression if the source

particle is at rest in Sq (basic form of the interaction law).
Then, the acceleration induced when the source particle is

3 The relations Dt = t, — t; > 0, and r = cDt, introduce in RCA the fact
that the interactions are propagated in space with the speed c of the light.
These relations do not introduce from the “back door” the postulate of of
light speed invariance in all inertial frames, which is an inherent property
of the space-time structure of special relativity. Indeed, the RCA is a
property defined in the fundamental inertial frame S,. Thus, the relations
Dt=1t, —t; > 0, and r = c¢Dt introduce the speed c only in S,. This is also
valid for the use of ¢ in the other expressions used to describe RCA.

not at rest in Sy, is obtained by applying RCA on the basic
form of the interaction law. We observe that the
conditions describing RCA do not concern the structure of
space-time, but only the rules (interaction laws) used to
compute the evolution of the particles composing the
computational universe.

2.3. Internal observers and measurement means

Let us now consider the conditions that have to be
verified by the measurements in order to determine the
structure of space and time in a coherent way.

ISt condition: The structure of space and time of the
computational universe will be determined by the results
of the measurements of the lengths of objects; of the
distances between objects; and of the durations of the
processes taking place in this universe. Thus, the
measurements concern objects composed of particles
obeying RCA, and processes engendered by the evolution
of the states of sets of particles obeying RCA.

2" condition: As discussed in the introduction (see
also the companion paper [1]), the above measurements
are performed by the internal observers of this universe,
which will use measurement means constituted by the
same elementary particles as the ones composing all the
structures of the computational universe (i.e. particles
obeying RCA).

3rd condition: All measurements have to use the
same or identical objects as length units and the same or
identical objects as clocks.

4th condition: In addition to unit lengths and clocks,
performing time and length measurements requires a
principle for synchronizing any two distant clocks C1 and
C2 at rest in any inertial frame S. This synchronization
can be done by launching towards C1 and C2, and from
the middle of the distance separating them, two objects H1
and H2 having equal speeds (synchronization objects).
But to determine the equality of these speeds we need to
make measurements and thus to dispose in advance
synchronized clocks placed in distant positions. Special
relativity overcomes this deadlock by using light beans,
thanks to the postulate of the invariability of light speed in
all inertial frames and directions. However, in the
computational universe, all properties (including the
invariability of the speed of light) have to emerge from the
computation of the evolution of the states of the particles.
That is, no postulates exist except that the computation
rules obey RCA. Then, as stated in section 2.2 (footnote 3),
RCA introduces the value c of the light speed only in the

fundamental inertial frame S(. Hence, as any other inertial
frame S moves with respect to Sq, an invariability of the
speed of the light cannot be taken as granted. Thus, we

cannot use light beans to synchronize distant clocks in any
inertial frame S. To cope with this issue, we have



introduced an original principle for synchronizing distant
clocks [2]. This principle uses as synchronization objects
two identical clocks H1 and H2. These clocks are placed
in the middle M of the distance separating C1 and C2 and
are reset to 0. Then, HI and H2 are launched from M
towards C1 and C2. CI is set to 0 when HI cross its
position and the time indication of HI is registered.
Similarly C2 is set to 0 when H2 cross its position and the
time indication of H2 is registered. If the two registered
times are identical, Cl and C2 are considered to be
correctly synchronized.

Conditions 1, 2, 3 and 4 provide all we need for
performing measurements and analyzing them in order to
determine the structure of the internal space and time
engendered by the computational universe. We show that
measurements performed in any inertial frames obey
Lorentz transformations. The formal proofs are not
presented here for space reasons, but can be found in [2].
Consequently, a computational universe employing
computation rules obeying RCA engenders a space-time
structure compliant with special relativity.

2.4 Conclusions on special relativity

In a companion paper [1] we introduce a computational
model in which the history of the universe is engendered
by a computation that determines the evolution of the
states of the elementary particles. In such a universe, the
space and time perceived by an internal observer cannot
pre-exist but has to be engendered by the computation. In
particular, the perceived space emerges as a by-product of
the values allocated by the computation to the position
variables of the particles, and the perceived time emerges
as a by-product of the paces of evolution of the processes
taking place in the computational universe. As the position
variables and the paces of evolution of processes are both
determined by the form of the computation rules
(interaction laws), these laws will determine the structure
of space-time. This seems incompatible with special
relativity, since in this theory space and time are
imbricated in an inherent 4D structure described by he
Lorentz transformations. However, we have shown that
Lorentz transformations can emerge in the computational
universe as a consequence of the computation rules
(interaction laws). Thus, for its internal observers, the
proposed computational universe model engenders the
same observable behaviour as the one described by the
theory of special relativity. As a consequence, the above-
mentioned incompatibility does not concern the
observable behaviour of physical systems described by
this theory, but only its interpretation attributing the
Lorentz transformations to the geometry of space-time.

3. Quantum Mechanics and Stochastic Computations
3.1 Preliminaries

This section treats the question of a computational model
able to reproduce the non-deterministic behaviour of

quantum systems. Let us start with a quick reminder of the

basic concepts of quantum mechanics:

i. In quantum mechanics the state of a quantum system is
described by a function ¢ (the wave function). This
function is determined by solving Schrdédinger’s
equation or one of its relativistic counterparts (Klein-
Gordon or Dirac). Then, based to this function a

plurality of values ai, a2, ... is determined for each
physical observable; such as position, translational
momentum, orbital angular momentum, spin, total
angular momentum, energy, etc., together with

associated probabilities Pq, P2, ..., following the rules:

ii. At each observable A is associated a Hermitian
operator A (whose form has a certain relation with the
expression of the observable in non-quantum physics,
i.e. Newtonian or relativistic).

iii. The values a1, a2, ... related to an observable A are
the eigenvalues of the operator A of this observable.

. . s 2 2
iv. The associated probabilities are P1= |c1|, P2 = |ca| ,
= @iy Vie {1, 2, ..}, the inner

product of eigenfunction ; of A and the wave
function 1.
v. Ifthe observable A is measured, then, the result will be

.., with ¢;

one of the eigenvalues o, ap, ... with a probability

equal respectively to P1=[c1%, P2 = [cof, ...
vi. After the measurement 1) collapses to the

eigenfunction 1; corresponding to the eigenvalue o
obtained as result of the measurement. Since 1

becomes equal to the eigenfunction ; a subsequent
measurement of the observable A will give as result

the corresponding eigenvalue o with probability equal
to 1 (since, in this case ¢; = apjjy» = @pjjpi> =1)

Before the measurement the system is said to be in
coherence. The measurement destroys this state and after
measurement the system is said to be in decoherence.

The above rules concern observables having discrete
spectrum. Similar rules are used in the case of observables
having continuous spectrum, such as position or
momentum. But in this case the statistical distribution is

described by a probability density function P(a) (e.g. |1p|2

gives the probability density function of position).

These are the strictly necessary concepts and
mathematical formalism required to describe the
observable behaviour of quantum systems. But the state of
coherence is “strange”, since we cannot allocate to the
observable a unique value as in the macroscopic world. To
give it a sense, this state was interpreted by considering
that the observable is in superposition on a plurality of
values. Figure 1 illustrates the concept of superposition by
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showing the observable A to be simultaneously on several
values a1, a2, ..., On, ..., to which correspond certain
probabilities p1, p2, ---, Pns ---

Quantum
System \

state superposition

Figure 1. The state of superposition of an observable A.

In the context of a computational universe, representing
this states requires as many numerical variables as the
number of eigenvalues oy, o, ..., op. However,
observables of continuum spectrum, like position and
momentum (but also certain observables of discrete
spectrum like energy), have infinite number of
eigenvalues. This will imply using infinite number of
numerical variables (corresponding to infinite memory,
and infinite computing power for treating them). This is
incompatible with our goal to develop simple computation
model using finite number of variables. As a matter of fact,
we are looking for a computational model, such that:

- It encompasses the strictly necessary concepts and
mathematical formalism required for producing the
observable behaviour of a quantum system (described
earlier in points i, ii, iii, iv, and v).

- It does not make use of the superposition concept.

To further motivate the elimination of quantum
superposition from our model, we remark that:

e As noted earlier, the state of superposition is not
among the strictly necessary concepts for describing
the observable behaviour of quantum systems.

e The concept of superposition describes a metaphysical
state, since it is not possible to effectively observe the
realization of this state (i.e. to observe that the system
is indeed simultaneously in several states). In fact, any
attempt for doing so (a measurement) leads to
decoherence and provides as result a single value.

e Physics consider that our universe is composed of
objects immersed in a veritable space and evolving
with the flow of a veritable time (merged in space-
time). In this vision, objects exist only within space.
Hence, a physical object must be at any time within
space. Thus, during the quantum state of coherence,
where an object has not a precise position in space,
this vision still requires to place it within space. This
leads to the “strange” interpretation of the state of
coherence, which claims that the object is in
superposition over a plurality of space positions.
However, in the computational universe context, there
is no veritable space, instead, space is engendered as a
by-product of the values that the computation allocates

to the position variables of the elementary
entities/particles. Thus, during the period where an
object is in coherence and does not have an observable
position, the computation does not need to generate
value(s) for the position variable. We can apply this
idea to all physical observables and eliminate the
requirement to use as many numerical variables as the
number of eigenvalues of the physical observables.

A last remark useful for creating our computational
model for quantum mechanics is that, from the
mathematical point of view, the interpretation of quantum
mechanics based on the superposition concept is complete
as it provides all the rules needed to determine the
statistical distributions of the observables. However, in
nature, each measurement of an observable produces a
particular value among the ones allowed by its statistical
distribution. That is, during each particular measurement
there is something that selects a particular value among
the possible ones and with the required probability. The
interpretation based on the superposition concept does not
provide means performing this selection. Thus, from the
physical point of view the superposition interpretation is
incomplete. This incompleteness is not allowed in the
context of the computational universe, because the
computation should not just predict possible values but
effectively produce exact values to the variable coding a
physical quantity4 each time this quantity has to provide
an observable value.

The above discussions leads to
computational model described next.

the stochastic

3.2. A Computational Model for Quantum Systems

In this section we propose a stochastic computational
model of quantum systems, which reproduces their
observable behaviour as described by quantum mechanics
(rules i1 though to vi of section 3.1). Such a model
considers that the behaviour of a quantum system is the
result of a computation-like process, which produces the
observable states of the system (the results of
measurements). Except the results of measurements, any
internal state involved in this computation is not
observable’. Thus, we can consider that the computation is
taking place in a meta-object: nothing concerning this
object is observable except the states it returns when a
measurement is performed. We call such an object a
computing meta-object (CMO). In the stochastic
computational model illustrated in figure 3, the CMO

* In this sentence, to avoid using side by side the word “observable”
with two different meanings, we employ the term « physical
quantity » instead of the equivalent term « physical observable » (or
simply “observable™) used in the rest of the paper.

> This is also the case for the other interpretations of quantum
mechanics, where only the results of measurements are observables
(e.g. the wave function and the states in superposition are not
observable).



produces the observable behaviour of quantum systems by
means of a computation-like process, which uses
deterministic functions to transform a stochastic signal w,
into a signal @ which during each measurement of an
observable provides the result of the measurement.® As the
stochastic signal w, is not observable, it has to be
considered as a meta-signal. Note that this signal cannot
be considered as a hidden variable. This is because, as w,
is stochastic, there is no cause-effect relation between: on
the one hand the values it will take in the future, and on
the other hand its present and past values and the present
and past states of the system and its environment. Thus,
the outcomes of future measurements cannot be
determined by the present and past states of signal wy, of
the quantum system and of its environment (whereas this
would be the case for a hidden variable).

Interaction with environment

<

1st computing

Compute
wave fiinction

Compute Statistical
distribution of A
Compute

function f;

2nd computing bloc
Figure 3. Computing meta-object (CMO)

stochastic
computational model described next. As shown in Fig. 3,

The above discussions leads to the
a CMO comprises 2 computing blocks, aimed at
implementing the strictly necessary concepts and
mathematical formalism reported in section 3.2, points i
through to vi, plus the mechanism producing effective
values in case of measurement.

The first bloc computes the wave function by
resolving a differential equation (Schrodinger, Klein-
Gordon, Dirac) for a function of potential corresponding
to the CMO environment (ultimately determined by the
states of the other CMOs with which it interacts). The
wave function represents at any time the state of the CMO.

The second bloc performs computation only during
“measurements”: each time an observable A is measured
this block computes a deterministic function f; and then

% This model of quantum objects is compliant to the system model
presented in figure 3 of the companion paper [1]. The CMO corresponds
to the light blue circles of this figure, and the signal w,, corresponds to
the gray circles.

uses this function to transform the stochastic meta-signal
W, into a stochastic signal @ which provides the result of
the measurement of observable A. As the function f,
transforms a unique value (the current value of wy) to
produce the current value of a, signal a will bring a
unique value (during measurements), or no value (outside
measurements).

The function f, is computed in a manner that the
statistical distribution (values aj, o, and the
corresponding probabilities pj, pp, ...) of signal a
produced by the transformation a = f3(w,) is identical to
the statistical distribution of the corresponding observable
A determined by the rules of quantum mechanics. This
computation will be possible if, for any statistical
distribution p(a) of an observable A, it exists a
deterministic function fy which transforms the stochastic
signal wy to a stochastic signal a that has the statistical
distribution p(a). In a research report [3] we show that for
a signal w, having any arbitrary but given statistical
distribution of continuous spectrum s(wy) and for any
statistical distribution p(@), it always exists a function f,
which produces a signal a = f3(w,) whose statistical
distribution is equal to p(a). The analytical description of
function fy is also derived [3]. This result is valid for
statistical distributions p(a) of discrete spectrum as well
as of continuous spectrum. This result is easily generalised
to the case of vectorial observables (like for instance) the
position T or the momentum P).

The measurement induces decoherence: the
observable A takes a precise value equal to the value of
signal a (the result of the measurement). Accordingly, the
first computing bloc computes a new wave function which
is compatible with this particular state of observable A
(that is the wave function becomes equal to the
eigenfunction associated to the eigenvalue obtained on
signal @ during the measurement). This influence of the
value of signal @ on the computation of the wave function
is represented in figure 3 by an arrow, which brings the
value of signal a to the input of the first computing bloc.

Thanks to the results in [3] guarantying the existence

of function f; and providing its analytical description, all
steps related to the above description are computable by
means of analytical functions. Also, from the above
discussion,  these = computations  reproduce the
mathematical formalism reported in section 3.2, points i
through to vi. Thus, the proposed computation model
produces the observable behaviour of quantum systems
described by quantum mechanics. One of the
consequences of these results is that quantum systems
cannot exhibit the computing power of a truly parallel
computer performing as many parallel computations as the
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number of the states of n g-bits states (i.e. 2n). This
explains with very generic arguments valid for all
quantum algorithms, why these algorithms do not exhibit
the computing power of truly parallel computers [4].

3.3 Quantum Entanglement

As our computing model excludes instantaneous
communication between various computing modules [1],
it seems that this model could not support quantum
entanglement (where a particle can correlate
instantaneously its state with the result of a measurement
performed over its entangled counterpart). Indeed, for a
computational universe comprising huge amounts of
elementary entities/particles, to minimize the time
required for computing their states, parallel computation
will be preferable (e.g. a cellular network where each cell
continuously produces the state of a particle). However, as
the cellular network does not support instantaneous
communication between cells, a particle could not
correlate instantaneously its state with the result of a
measurement performed over its entangled counterpart.

To overcome this apparent contradiction, we can use
the distinction between the internal time emerging in the
computational universe and the external time (meta-time)
pacing the computation [1]. For the shake of illustration,
let us consider an example using means available in our
universe. In this example, cells exchange information by
means of Hertzian communication, which employs: an
identification value (ID) unique to each cell a particle; an
entanglement variable EV internal to each cell; and a
mechanism of Hertzian emission/reception.  This
mechanism uses during emission a modulation frequency
equal to the identification value ID of the cell and during
reception a demodulation frequency equal to the value of
the entanglement variable EV of the cell, as illustrated in
figure 3. In this figure, particles pi and pj are entangled.
At the instant of entanglement, particle pi assigns the

identification value IDj of particle pj to its entanglement
variable EV; (EV; = IDj). Similarly, particle pj assigns the
identification value ID; of particle pi to its entanglement

variable EVj (EVj = ID;j). Then, if observable A of particle
pi is measured, pi emits information reporting that a
measurement happened as well as the result of the
measurement. Particle pj uses as demodulation frequency

the value of its entanglement variable (EVj = ID;). Thus, it
immediately receives this information and adapts its state
to the measurement. In a similar manner, particle pi can
immediately adapt its state to a measurement performed
on particle pj. Therefore, this computation reproduces the
behaviour of entangled particles and combined with the
computation illustrated in figure 3, provides a model
(illustrated in figure 4) that produces a behaviour identical
to the one described by quantum mechanics.

Particle i Entanglement Particle j

ID; D

Compute
wave function

Compute Statistical
distribution of A

Compute
wave function

Compute Statistical
distribution of A
Compute
function f,

Compute
function f,

Figure 4. Computational model for entangled particles

However, as the communication is not instantaneous,
the above mechanism requires some meta-time duration to
transmit “information” from the cell computing the
particle that undergoes measurement to the cell computing
the entangled counterpart of the first particle. In the
discrete time model presented in [1] and using a meta-
clock of period T, integrating this duration in the meta-
time period T will increase the meta-time duration of each
computation step. However, as shown in [1], stopping,
decelerating, or accelerating the meta-clock does not have
any influence on the time experienced by the observers
that are part of the universe (internal time). Therefore, the
meta-time duration required for this transmission does not
affect the internal time of the computational universe.
Hence, quantum entanglement can emerge in the
computational universe, even if the computation does not
support instantaneous communication.

E(T) ——»]
(T) —*

AT F(S(T), (T) E(T))

S(T)

y

A\ 4
\4

Figure 5. Next state computation for quantum non-locality

Concerning the model of continuous time, we have
found [1] that inserting a delay AT between a) the present
state S(T) of a particle pi and the states I(T) of the
particles with which pi interacts, and b) the module
computing the next state of particle pi, does not affect the
time and the processes experienced by the internal
observers of the computational universe. The related
figure is shown above. In this figure we have added an
input E(T) coming from the entangled counterpart of pi
(particle pj). By selecting AT to be equal to the meta-time
interval required for the communication of the
computation modules (cells) producing the states of pi and
pj, we observe that the computation of the next state of pi



uses the states of pi and pj corresponding to the same
meta-time instance T. This fact, in combination with the
fact that adding a delay AT does not affect the time
experienced by the internal observers of the universe,
implies that for this observers a measurement on pj has
instantaneous impact on the state of pi.

Conclusions and further discussion

This paper presents the second part of a computational
universe vision. The first part of this vision (described in a
companion paper also presented at the 6™ AISB
Symposium on Computing and Philosophy) proposes a
simple model for the computational universe, and also
develops a qualitative framework for supporting it. To
start, it shows a fundamental limit of knowledge for
observers that are part of the observed system (in the
sense that they are constituted by the same elementary
entities/particles as the ones composing any other
structure of the system). It results that the sensorial
systems of such internal observers can receive information
concerning the behaviour of these elementary entities but
by no means information concerning their veritable nature.
Then, in a universes-like system, its internal observers
have no means allowing distinguishing whether their
perceptions correspond to a universe composed of
“veritable” particles immersed in a “veritable” space or to
a universe engendered by a computation-like process.
Thus, computational universe models able to produce the
observable behaviour of the physical systems represent
credible visions of the universe.

The companion paper also elaborates a qualitative
framework dealing with the emergence of space and time
perceived by the internal observers of a system/universe
(internal space and internal time). In the present paper
(second part of the proposed computational-universe
vision), we employ this qualitative framework, in order to
elaborate the computational-universe versions of special
relativity and of quantum mechanics. Adopting such a
framework leads to the abandon of existing interpretations
of these theories (which were developed on the basis of a
“physical” universe vision composed of veritable particles
immersed in a veritable space and evolving with the flow
of a time). The implications are two fold. On the one hand,
as we are free from the conceptual constraints of a
“physical” universe, certain contradictions in the existing
interpretations of the theories of physics could be resolved.
On the other hand, as our theories will need to conform
constrains of computational models, the capability of a
theory to conform such constraint could be used as
criterion of its credibility. For instance, the interpretation
of quantum mechanics stating that during coherence the
state of a physical observable A consists in the
superposition of all the eigenvalues of its operator A, is
not compatible with a computational model since the
operators of certain physical observables have infinite
number of eigenvalues.

Applying these ideas to the special relativity leads to
a computational model where the internal space and time
emerging in the computation comply with this theory (i.e.
all measurements performed by internal observers obey
Lorentz transformations). But at the same time it exists a
fundamental time (the meta-time that paces the
computation), according to which events can be ordered in
a unique manner into past, present, and future. This allows
re-establishing an objective time-flow missed in special
relativity and can resolve a question raised by numerous
philosophers [5][6], which is summarized in the
foundation text of the International Conference on the
Nature and Ontology of Spacetime [7]:

“A 3D world requires not only a relativization of
existence, but also a pre-relativistic division of events into
past, present, and future. Therefore, it appears that such a
world view may not be consistent with relativity. However,
the alternative view — reality is a 4D world with time
entirely given as the fourth dimension — implies that there
is (i) no objective time flow (since all events of spacetime
are equally existent), (ii) absolute determinism (at the
macro scale), and (iii) no free will. It is precisely these
consequences of the 4D world view that make most
physicists and philosophers agree that a world view leading
to such implications must be undoubtedly wrong. But so
far, after so many years of debate, no one has succeeded in
formulating a view that avoids the above dilemma and is
compatible with relativity.”

Concerning quantum mechanics, we developed a
computational model, which reproduces the behaviour of
quantum systems by means of deterministic computations
performed over stochastic signals, and at the same time
eliminates the need of infinite number of variables, as
would be required for certain physical observables if we
had integrated in our model the state of superposition.
Last but not least, we have shown that a computation
model that does not support instantaneous communication
can engender a computational universe compatible with
quantum non-locality.
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